搜档网
当前位置:搜档网 › 数列的概念单元测验试卷doc

数列的概念单元测验试卷doc

数列的概念单元测验试卷doc
数列的概念单元测验试卷doc

一、数列的概念选择题

1.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,

12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被

4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24

B .26

C .28

D .30

2.在数列{}n a 中,10a =

,1n a +,则2020a =( ) A .0

B .1

C

.D

3.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件

D .既不充分也不必要条件

4.数列{}n a 满足()1

1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )

A .1006

B .1176

C .1228

D .2368

5.已知数列{}n a 的通项公式为23n

n a n ??= ???

,则数列{}n a 中的最大项为( ) A .

89

B .

23

C .

6481

D .

125

243

6.已知数列{}n a 满足11a =,()*11

n

n n a a n N a +=∈+,则2020a =( ) A .

1

2018

B .

1

2019 C .

1

2020

D .

1

2021

7.在数列{}n a 中,()11

11,1(2)n

n n a a n a --==+

≥,则5a 等于

A .

3

2

B .

53 C .85

D .

23

8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=>

B .20210a =

C .1024是三角形数

D .

123111121

n n a a a a n +++?+=+ 9.

3

,则 ) A .第8项

B .第9项

C .第10项

D .第11项

10.

函数()2cos 2f x x x =-{}n a ,则3a =( ) A .

1312

π

B .

54

π C .

1712

π

D .

76

π 11.已知数列{}n a 的前5项为:12a =,232a =,343

a =,454a =,56

5a =,可归纳得

数列{}n a 的通项公式可能为( ) A .1

+=

n n a n

B .2

1

n n a n +=

+ C .3132

n n a n -=-

D .221

n n

a n =

- 12.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤

C .数列{}n a 的最小项为3a 和4a

D .数列{}n a 的最大项为3a 和4a 13.已知在数列{}n a 中,112,1

n n n

a a a n +==+,则2020a 的值为( ) A .

1

2020

B .

1

2019

C .

11010

D .

11009

14.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648 B .722

C .800

D .882

15.数列1

2,16,112,120

,…的一个通项公式是( ) A .()1

1n a n n =-

B .()1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

16.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开

始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )

A .201920212S F =+

B .201920211S F =-

C .201920202S F =+

D .201920201S F =-

17.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

18.已知数列{}n a 的前n 项和为n S ,已知1

3n n S +=,则34a a +=( )

A .81

B .243

C .324

D .216

19.已知数列{}n a 满足12n n a a n +=+,且133a =,则n

a n

的最小值为( ) A .21

B .10

C .

212 D .

172

20.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

二、多选题

21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54

C .S 2020=a 2022-1

D .a 1+a 3+a 5+…+

a 2021=a 2022

22.设数列{}n a 满足11

02

a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .

21

12

a << B .{}n a 是递增数列 C .2020312

a <<

D .

20203

14

a << 23.已知数列{}n a 满足0n a >,

121

n n n a n

a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )

A .11a =

B .121a a =

C .201920202019S a =

D .201920202019S a >

24.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )

A .4(b 2020-b 2019)=πa 2018·a 2021

B .a 1+a 2+a 3+…+a 2019=a 2021-1

C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021

D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0

25.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,11

4

a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1

4(1)

n a n n =

+

C .数列{}n a 为递增数列

D .数列1n S ??

????

为递增数列

26.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4

n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n

= B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1

{

}n

S 为递增数列 27.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12

d =

B .12

d =-

C .918S =

D .936S =

28.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有

m n m n a a a +=+,则下列结论正确的是( )

A .11285a a a a +=+

B .56110a a a a <

C .若该数列的前三项依次为x ,1x -,3x ,则10103

a =

D .数列n S n ??

????

为递减的等差数列

29.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >

D .数列

{}n

a 也是等差数列

30.(多选题)在数列{}n a 中,若22

1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称

{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}

2

n a 是等方差数列

B .

(){}1n

-是等方差数列

C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 31.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-

B .23n a n =+

C .2

23n S n n =-

D .2

4n S n n =+

32.在下列四个式子确定数列{}n a 是等差数列的条件是( )

A .n a kn b =+(k ,b 为常数,*n N ∈);

B .2n n a a d +-=(d 为常数,

*n N ∈);

C .(

)

*

2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2

1

n S n n =++(*n N ∈).

33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22

B .d =-2

C .当n =10或n =11时,S n 取得最大值

D .当S n >0时,n 的最大值为21

34.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17a

B .35S

C .1719a a -

D .1916S S -

35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >

B .170S <

C .1819S S >

D .190S >

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.B 解析:B 【分析】

先写出新数列的各项,找到数列的周期,即得解. 【详解】

由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,

则201819201812S S b b S b b =++=++381126=?++=, 故选:B.

2.A

解析:A 【分析】

写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】

10a =

,1n a +1n =

时,2a 2n =

时,3a 3n =

时,4a ; ∴ 数列{}n a 的周期是3

20206733110a a a ?+∴===

故选:A. 【点睛】

本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.

3.A

解析:A 【分析】

根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】

{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,

充分性:

1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,

0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,

10n a +<,则1n n S S +<,不合乎题意;

若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.

所以,“*n N ?∈,1n n S S +>”?“{}n a 为递增数列”;

必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.

所以,“*n N ?∈,1n n S S +>”?/“{}n a 为递增数列”.

因此,“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】

本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.

4.B

解析:B 【分析】

根据题意,可知()

1

1121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,

248a a +=,572a a +=,6824a a +=,

,45472a a +=,4648184a a +=,可知,

相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组

求和法,即可求出{}n a 的前48项和. 【详解】

解:由题可知,()1

1121n n n a a n ++=-+-,

即:()

1

1121n n n a a n ++--=-,则有:

211a a -=,323a a +=,435a a -=,547a a +=,

659a a -=,7611a a +=,8713a a -=,9815a a +=,

474691a a +=,484793a a -=.

所以,132a a +=,248a a +=,572a a +=,6824a a +=,

45472a a +=,4648184a a +=,

可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S ,

则4812345645464748S a a a a a a a a a a =++++++++++,

()()1357454724684648a a a a a a a a a a a a =++++

+++++++++

1211

1221281611762

?=?+?+

?=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】

本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.

5.A

解析:A 【分析】

由12233n

n n n a a +-??

-=? ???

,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得

到n =2时,a n 最大. 【详解】

解:112222(1)3333n n n

n n n a a n n ++-??????-=+-=? ? ? ?????

??, 当n <2时,a n +1-a n >0,即a n +1>a n ;

当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1a 4>a 5>…>a n ,

所以数列{}n a 中的最大项为a 2或a 3,且2328239

a a ??==?= ???. 故选:A . 【点睛】

此题考查数列的函数性质:最值问题,属于基础题.

6.C

解析:C 【分析】

根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:

11

n

n n a a a +=

+, ∴两边同时取倒数得

11111n n n n

a a a a ++==+,

1111n n

a a ,

即数列1n a ??

????

是公差1d =的等差数列,首项为

1

11a .

则1

1(1)1n

n n a =+-?=, 得1n a n

=

, 则20201

2020

a =

, 故选:C 【点睛】

本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.

7.D

解析:D 【解析】

分析:已知1a 逐一求解2345122323

a a a a ====,,,. 详解:已知1a 逐一求解234512

2323

a a a a ==

==,,,.故选D 点睛:对于含有()1n

-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.

8.C

解析:C 【分析】

对每一个选项逐一分析得解. 【详解】

∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;

将前面的所有项累加可得1(1)(2)(1)

22

n n n n n a a -++=+=,∴20210a =,故B 正确; 令

(1)

10242

n n +=,此方程没有正整数解,故C 错误; 12

1111111

1212231n a a a n n ????????+++

=-+-++- ? ? ???+????????

122111n n n ??=-= ?++??,故D 正确.

故选C 【点睛】

本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.

9.D

解析:D 【解析】 【分析】

根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】

根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-?=+

而=

所以4541n =+ 解得11n = 故选:D 【点睛】

本题考查了等差数列通项公式的求法及简单应用,属于基础题.

10.B

解析:B 【分析】

先将函数化简为()2sin 26f x x π??

=-

??

?4

x k π

π=+或512x k π

π=

+,k Z ∈,再求3a 即可. 【详解】

解:∵()2cos 22sin 26f x x x x π??

=-=-- ??

?

∴ 令()0f x =得:226

3

x k π

π

π-=

+或2226

3

x k π

π

π-

=

+,k Z ∈, ∴4

x k π

π=

+或512

x k π

π=

+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4

124

a a a π

ππ==

=

故选:B. 【点睛】

本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.

11.A

解析:A 【分析】

将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】

因为12a =,232a =

,343

a =,454a =,565a =,

故可得1223,12a a ==, 343

a =,454a =,56

5a =,

故可归纳得1

+=n n a n

. 故选:A. 【点睛】

本题考查简单数列通项公式的归纳总结,属基础题.

12.C

解析:C 【分析】

令n n b na =,由已知得121n n b b n +-=+运用累加法得2

+12n b n =,从而可得

12

+

n a n n

=,作差得()()()+13+4+1n

n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,

由此可得选项. 【详解】

令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113+

+122

n

n n b n --==,所以2+1212+n n

b n a

n n n n

===, 所以()()()()+13+41212+1+

++1+1n n n n a a n n n n n n -??-=-= ???,

所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,

故选:C. 【点睛】

本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.

13.C

解析:C

由累乘法可求得2

n a n

=,即可求出. 【详解】

11

n n n a a n +=+,即11n n a n a n +=+, 12

321123

2112321

21232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=

????

??=??????--2n

=, 202021

20201010

a ∴=

=. 故选:C.

14.C

解析:C 【分析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2

22n a n =,即可得

出. 【详解】

由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2

22n a n =.

则此数列第40项为2220800?=. 故选:C

15.C

解析:C 【分析】

根据选项进行逐一验证,可得答案. 【详解】 选项A. ()

1

1n a n n =-,当1n =时,无意义.所以A 不正确.

选项B. ()1221n a n n =-,当2n =时,()2

111

22221126

a ==≠???-,故B 不正确. 选项C.

11122=-,111162323==-?,1111123434==-?,1111204545==-? 所以11

1

n a n n =

-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111

1012

a =-=≠,故D 不正确. 故选:C

16.B

解析:B

利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=++++

+++,可得

21n n F S +=+,代入2019n =即可求解.

【详解】

由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++

1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=

123211n n n n F F F F F F ---=++++

+++,

所以21n n F S +=+,令2019n =,可得201920211S F =-,

故选:B 【点睛】

关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出

21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.

17.A

解析:A 【分析】

根据数列的递推关系式即可求解. 【详解】

由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a ++++

+++++=+

3462020562020201920202021a a a a a a a a a a =+++

=+++=+=.

故选:A

18.D

解析:D 【分析】

利用项和关系,1n n n a S S -=-代入即得解. 【详解】

利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,

34216a a ∴+=

故选:D 【点睛】

本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.

19.C

解析:C 【分析】

由累加法求出2

33n a n n =+-,所以

331n a n n n

,设33

()1f n n n

=

+-,由此能导出5n =或6时()f n 有最小值,借此能得到

n

a n

的最小值. 【详解】

解:()()()112211n n n n n a a a a a a a a ---=-+-+?+-+

22[12(1)]3333n n n =++?+-+=+-

所以

331n a n n

n

设33

()1f n n n

=

+-,由对勾函数的性质可知, ()

f n 在(上单调递减,在

)

+∞上单调递减,

又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662

a a ===, 所以

n a n

的最小值为62162a =.

故选:C. 【点睛】

本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.

20.A

解析:A 【分析】

由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于

λ的不等式,解之可得λ的取值范围. 【详解】

由已知得22

1(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,

因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ

本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.

二、多选题

21.BCD 【分析】

由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】

对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可

解析:BCD 【分析】

由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】

对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++

++++++n n n a a a a a a a a a a a a a a +-=----

即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,

()()()135202124264202220202022+++

+++++a a a a a a a a a a a a =---=,故D 正确.

故选:BCD. 【点睛】

本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.

22.ABD 【分析】

构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,

所以当时,,

即在上为单调递增函数, 所以函数在为单调递增函数, 即,

即, 所以 ,

解析:ABD 【分析】

构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】

由()1ln 2n n n a a a +=+-,1102

a << 设()()ln 2f x x x =+-, 则()11122x

f x x x

-'=-

=--, 所以当01x <<时,0f x

即()f x 在0,1上为单调递增函数, 所以函数在10,2?? ???

为单调递增函数, 即()()102f f x f ??<<

???

即()131

ln 2ln ln 1222

f x <<<+<+=, 所以()1

12

f x << , 即

1

1(2)2

n a n <<≥, 所以

2112a <<,20201

12

a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,

1

12

n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231

32131113ln(2)ln ln 222234

a a a e =+->+>+=+> 因此20202020333

144

a a a ∴<><>,故D 正确 故选:ABD 【点睛】

本题考查了数列性质的综合应用,属于难题.

23.BC 【分析】

根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,

求出,可得C 正确,D 错. 【详解】 由可知,即,

当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则

解析:BC 【分析】

根据递推公式,得到11n n n

n n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;

根据求和公式,得到1

n n n

S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】

由121n n n a n a a n +=+-可知2111

n n n n n

a n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则12

1

a a =

,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321

111102110n n n n n n n n n n S a a a a a a a a a a a a +++??????-=++

+=-+-+

+-=-= ? ? ???????,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:

由递推公式求通项公式的常用方法:

(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;

(2)累乘法,形如()1

n n

a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1

n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通

项时,常需要构造成等比数列求解;

(4)已知n a 与n S 的关系求通项时,一般可根据11

,2

,1n n n S S n a a n --≥?=?

=?求解.

24.ABD 【分析】

对于A ,由题意得bn

=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3

解析:ABD

对于A ,由题意得b n =

4

πa n 2

,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】

由题意得b n =

4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π

a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·

a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;

数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n

-1

2

=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+

(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;

由题意a n -1=a n -a n -2,则a 2019·

a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】

此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题

25.ABC 【分析】

数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】

数列的前项和为,且满足,, ∴,化为:,

∴数列是等差数列,公差为4, ∴,可得

解析:ABC 【分析】

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11

4

a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1

n

S ,n S ,2n ≥时,()()

111144141n n n a S S n n n n -=-=

-=---,进而求出n a .

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114

a =, ∴1140n n n n S S S S ---+=,化为:

1

11

4n n S S --=, ∴数列1n S ??

????

是等差数列,公差为4,

∴()1

4414n n n S =+-=,可得14n S n

=, ∴2n ≥时,()()

1111

44141n n n a S S n n n n -=-=

-=---, ∴()1

(1)41(2)41n n a n n n ?=??

=??-≥-??

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】

本题考查数列递推式,解题关键是将已知递推式变形为1

11

4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题

26.AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】

因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;

解析:AD 【分析】

先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】

11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+=

1

1104n n n S S S -≠∴

-= 因此数列1{

}n S 为以1

1

4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n

=+-=∴=,即A 正确; 当2n ≥时1111

44(1)4(1)

n n n a S S n n n n -=-=

-=--- 所以1,141,24(1)n n a n n n ?

=??

=??-≥-??

,即B ,C 不正确;

故选:AD 【点睛】

本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.

27.BD 【分析】

由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.

因为,,所以公差. 故选:BD

解析:BD 【分析】

由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】

因为1937538a a a a +=+=+=, 所以()199998

3622

a a S +?=

==. 因为35a =,73a =,所以公差731

732

a a d -==--. 故选:BD

28.AC

数列的概念与简单表示法(含 解析)

第一节数列的概念与简单表示法 知识要点 1.数列的定义、分类与通项公式 (1)数列的定义: ①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)数列的分类: (3)数列的通项公式: 如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 如果已知数列{a n}的首项(或前几项),且任一项a n与它的前一项a n (n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数-1 列的递推公式.

3.对数列概念的理解 (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别. 4.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n) =a n(n∈N*). 题型一:由数列的前几项求数列的通项公式 [例1] 下列公式可作为数列{a n}:1,2,1,2,1,2,…的通项公式的是( ) A.a n=1 B.a n=C.a n=2- D.a n= [自主解答] 由a n=2-可得a1=1,a2=2,a3=1,a4=2,….[答案] C 变式:若本例中数列变为:0,1,0,1,…,则{a n}的一个通项公式为________. 答案: a n= 由题悟法 1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n+1来调整. 2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.

数列的概念与简单表示法

数列的概念与简单表示法 [考纲传真]1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 【知识通关】 1.数列的有关概念 n n 若数列{a n }的前n 项和为S n , 则a n =??? S 1,n =1, S n -S n -1,n ≥2. 4.数列的分类 [

求数列的最大(小)项,一般可以利用数列的单调性,即用??? a n ≥a n -1, a n ≥a n +1.(n ≥2, n ∈N *)或?? ? a n ≤a n -1,a n ≤a n +1 (n ≥2,n ∈N *)求解,也可以转化为函数的最值问题或利 用数形结合思想求解. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( ) (4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) [答案] (1)× (2)× (3)× (4)√ 2.已知数列11×2,12×3,13×4,…,1 n (n +1) ,…,下列各数中是此数列中的项的是( ) A .135 B .142 C .148 D .154 B 3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 A 4.在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( ) A .32 B .53 C .85 D .23 D 5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________. 5n -4

数列的概念及其表示法

第六章数列 命题探究 解答过程 (1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得 b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2. 所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n. (2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n, 4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1, 上述两式相减,得 -3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1= - - -4-(3n-1)×4n+1 =-(3n-2)×4n+1-8. 得T n=-×4n+1+. 所以,数列{a2n b2n-1}的前n项和为-×4n+1+ §6.1数列的概念及其表示法 考纲解读 分析解读本节内容在高考中主要考查利用a n和S n的关系求通项a n,或者利用递推公式构造等差或等比数列求通项a n,又考查转化、方程与函数、分类讨论等思想方法,在高考中以解答题为主,题目具有一定的综合性,属中高档题.分值为5分或12分.

五年高考 考点数列的概念及其表示 1.(2016浙江,13,6分)设数列{a n}的前n项和为S n.若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=. 答案1;121 2.(2015江苏,11,5分)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前10项的和为. 答案 3.(2013课标全国Ⅰ,14,5分)若数列{a n}的前n项和S n=a n+,则{a n}的通项公式是a n=. 答案(-2)n-1 4.(2015四川,16,12分)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列. (1)求数列{a n}的通项公式; (2)记数列的前n项和为T n,求使得|T n-1|<成立的n的最小值. 解析(1)由已知S n=2a n-a1, 有a n=S n-S n-1=2a n-2a n-1(n≥2), 即a n=2a n-1(n≥2). 从而a2=2a1,a3=2a2=4a1. 又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1). 所以a1+4a1=2(2a1+1),解得a1=2. 所以,数列{a n}是首项为2,公比为2的等比数列. 故a n=2n. (2)由(1)得=, 所以T n=++…+=- - =1-. 由|T n-1|<,得--<,即2n>1000. 因为29=512<1000<1024=210, 所以n≥10. 于是,使|T n-1|<成立的n的最小值为10. 教师用书专用(5—6) 5.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形 A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是. 答案a n=- 6.(2014广东,19,14分)设数列{a n}的前n项和为S n,满足S n=2na n+1-3n2-4n,n∈N*,且S3=15.

数列的概念及表示

课题:数列(第一课时) 一、教学目标: 知识目标:(1)了解数列的概念,了解数列的分类,了解数列是一种特殊的数列, 会用列表法和图像法表示数列; (2)理解数列的通项公式,会根据通项公式写出数列的前几项,会 根据简单数列的前几项写出数列的通项公式。 能力目标:通过数列概念的归纳概括,初步培养学生的归纳、抽象、概括的能力, 渗透函数思想。 情感目标:通过有关数列的实际应用,激发学生学习数列的积极性。 二、重点:数列的概念,数列的通项公式及其简单应用. 三、难点:根据数列的前几项归纳概括出数列的一个通项公式. 四、教学方法:观察发现、探究合作、启发引导、讲练结合 五、教学手段:多媒体课件、投影仪 六、教学过程: 1、问题情境 (1)庄子说:一尺之棰,日取其半,万世不竭。每次剩下的部分依次是: 1111,,,,24816 (2)某种细胞,如果每个细胞每分钟分类成2个,那么每过1分钟,1个细胞分裂的个数依次为:1,2,4,8,16,32,┅┅ (3)2012----伦敦奥运,从1984年到2012年,我国共参加了8次奥运会,各次参赛获得的金牌总数依次为:15,5,16,16,28,32,51,38. 问题1:这几组数据有什么共同的特点? 2、学生活动 都是一列有顺序的数。 特点1:都是一列数,2:有一定的次序 3、建构数学 (1)数列的定义:按照一定次序排成一列的数称为数列; 数列中的每个数都叫做这个数列的项; 各项依次叫做这个数列的第1项(首项),第2项,…,第n 项,…,如: 数列 2, 4, 8, 16 问题2:① 1,-1,1,-1,……是数列吗? ② 数列1,2,3,4,5与数列5,4,3,2,1是否是同一个数列? (2)数列的分类:有穷数列,无穷数列。 问题3:下面三个数列哪些是有穷数列,哪些是无穷数列? a 4 a 1 a 2 a 3

数列的概念与表示方法

第三讲 数列的概念与表示方法 【知识要点】 1.数列的概念 按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.数列一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为数列{a n },其中数列的第1项a 1也称首项;a n 是数列的第n 项,也叫数列的通项. 2.数列的表示方法 (1)列举法 (2)图象法 (3) 解析法 (4)递推法 3.数列的分类 4.数列与函数的关系 从函数观点看,数列可以看作定义域为正整数集N * (或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列. 5.数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f(n),那么这个式子就叫做这个数列的通项公式.不是每个数列都有通项,如果数列有通项公式,但其通项公式在形式上不一定惟一. 6.求数列通项公式的常见类型与方法 (1)已知数列的前n 项,求其通项公式 ①据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: 分式中分子、分母的特征;相邻项的变化特征;拆项后的特征;各项符号特征等.并对此进行归纳、联想. ②根据数列的前几项写出数列的一个通项公式是不完全归纳法,它着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整. ③观察、分析问题的特点是最重要的,观察要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决. 题型一 由数列的前n 项求其通项公式 例1 写出下列各数列的一个通项公式: (1)4,6,8,10,… (2) ,32 31,1615,87,43,21

数列的概念与简单表示讲义

数列的概念与简单表示讲义 【知识要点】: 知识点一:数列的概念 ⒈数列的定义:按一定顺序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项,第2项,…,第项,….其中数列的第1项也叫作首项。 3. 数列的一般形式:,或简记为,其中是数列的第项 知识点二:数列的分类 1. 根据数列项数的多少分: 有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6,…是无穷数列 2. 根据数列项的大小分: 递增数列:从第2项起,每一项都大于它的前一项的数列。 递减数列:从第2项起,每一项都小于它的前一项的数列。 常数数列:各项相等的数列。 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列 知识点三:数列的通项公式与前项和 1. 数列的通项公式 如果数列的第项与之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 如数列:的通项公式为(); 的通项公式为(); 的通项公式为(); 注意:(1)并不是所有数列都能写出其通项公式; (2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…; 它的通项公式可以是,也可以是. (3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. (4)数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.

数列的概念及简单表示方法

§ 数列的概念及简单表示法 1. 数列的定义 按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项. 2. 数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间的大小关系分类 递增数列 a n +1__>__a n 其中n ∈N + 递减数列 a n +1__<__a n 常数列 a n +1=a n 按其他标准分类 有界数列 存在正数M ,使|a n |≤M 摆动数列 从第二项起,有些项大于它的前一项,有 些项小于它的前一项的数列 3. 数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式. 5.已知S n ,则a n =??? ?? S 1 ?n =1? S n -S n -1 ?n ≥2? .

1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达. ( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n = 1+?-1? n +1 2 . ( × ) (4)如果数列{a n }的前n 项和为S n ,则对?n ∈N +,都有a n +1=S n +1-S n . ( √ ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=1 2a n -1,且a 2=1,则可以写出数列{a n }的任何一项. ( √ ) 2. 设数列{a n }的前n 项和S n =n 2 ,则a 8的值为 ( ) A .15 B .16 C .49 D .64 答案 A 解析 ∵S n =n 2 ,∴a 1=S 1=1. 当n ≥2时,a n =S n -S n -1=n 2 -(n -1)2 =2n -1. ∴a n =2n -1,∴a 8=2×8-1=15. 3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( ) A .1 B .9 C .10 D .55 答案 A 解析 ∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1. 4. (2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +1 3 ,则{a n }的通项公式是a n =_____. 答案 (-2) n -1 解析 当n =1时,a 1=1;当n ≥2时, a n =S n -S n -1=2 3a n -23 a n -1, 故 a n a n -1 =-2,故a n =(-2)n -1 . 当n =1时,也符合a n =(-2)n -1 . 综上,a n =(-2) n -1 . 5. (2013·安徽)如图,互不相同的点A 1,A 2,…,A n ,…和B 1, B 2,…,B n …分别在角O 的两条边上,所有A n B n 相互平行,

数列的概念与简单表示法

高一数学必修5数列新容:数列与等差数列 数列的概念与简单表示法 数列的分类: (1)据数列的项数是否有限可分类为有穷数列、无穷数列. (2)据数列的项大小关系可分类为 ①递增数列:从第二项起,每一项都大于它的前一项的数列; ②递减数列:从第二项起,每一项都小于它的前一项的数列; ③常数数列:各项相等的数列; ④摆动数列:从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列. 练习: 1、下列给出数列,试从中发现变化规律,并填写括号的数 (1)()() 1,3,6,10,,21,,??????; (2)()() 3,5,9,17,33,,,??????; (3)() 1,4,9,16,,36,??????. 2.下面数列中递增数列是,递减数列是,常数数列是,摆动数列是 (1)0,1,2,3,??????;(2)82,93,105,119,129,130,132;(3)3,3,3,3,3,??????; (4)100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01; (5)1,1,1,1,1, ---??????;(6精确到1,0.1,0.01,0.001,???的不足近似值与过剩近似值分别构成数列1,1.4,1,1.141,1.414,;2,1.5,1.42,1.415, ????????????. 3.据下列数列的前几项,写出下列数列的一个通项公式 (1)1,3,5,7,9??????; (2)9,7,5,3,1,??????; (3) 2222 21314151 ;,;; 2345 ---- (4) 1111 ,,,, 12233445 ---- ???? .

《数列的概念与简单表示法》学案

数列的概念与简单表示法 2013年11月28日制案人:贾勇 一、复习目标: 1. 理解数列及其有关概念,了解数列和函数之间的关系; 2. 了解数列的通项公式,会用通项公式写出数列的任意一项;会根据其前几项写出 它的通项公式. 3、了解数列的递推公式,会由递推公式写出数列的前几项,并掌握求简单数列的 通项公式的方法. 二、基础知识回顾: 1.数列的定义 【 按照排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 反思: ⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列 ⑵同一个数在数列中可以重复出现吗 2、数列的分类: ? 1)根据数列项数的多少分数列和数列; 2)根据数列中项的大小变化情况分为数列,数列,数列和数列. 3.数列的通项公式 如果数列{a n}的第n项a n与序号n之间的关系可以用一个公式 来表示,那么这个公式叫做这个数列的通项公式 反思: ⑴所有数列都能写出其通项公式 ) ⑵一个数列的通项公式是唯一 ⑶数列与函数有关系吗如果有关,是什么关系 @ 4、数列的表示方法:、、。 5、已知s n,则a n=

三、基础练习: 1、(2010青岛二模)①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列 2 3 , 3 4 , 4 5 , 5 6 ,······的通项公式是a 1 n n n = + ③数列的图象是一群孤立的点;④数列1,-1,1,-1···与数列-1,1,-1,1,···是同一数列;其中真命题的个数是()A、1 B、2 C、3 D、4 2、数列 (1) 2 {(1)} n n- -的第4项是. — 3、在横线上填上适当的数:3,8,15,,35,48. 四、典例剖析: 1、题型一:由数列的前几项求数列的通项公式: @ 。 本题收获: # (3) 1925 ,2,,8 222 ,,······ (2) (1)

数列的概念与简单表示法

2021年新高考数学总复习第六章《数列》 数列的概念与简单表示法 1.数列的有关概念 概念含义 数列按照一定顺序排列着的一列数 数列的项数列中的每一个数 数列的通项数列{a n}的第n项a n 通项公式 数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式 叫做数列的通项公式 前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和 2.数列的表示方法 列表法列表格表示n与a n的对应关系 图象法把点(n,a n)画在平面直角坐标系中公式法 通项公式把数列的通项使用公式表示的方法 递推公式 使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n-1)等 表示数列的方法 3.a n与S n的关系 若数列{a n}的前n项和为S n, 则a n= ?? ? ??S1,n=1, S n-S n-1,n≥2. 4.数列的分类 分类标准类型满足条件 项数 有穷数列项数有限 无穷数列项数无限 项与项间的 大小关系 递增数列a n+1> a n 其中n∈N* 递减数列a n+1< a n 常数列a n+1=a n

概念方法微思考 1.数列的项与项数是一个概念吗? 提示不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的通项公式a n=3n+5与函数y=3x+5有何区别与联系? 提示数列的通项公式a n=3n+5是特殊的函数,其定义域为N*,而函数y=3x+5的定义域是R,a n=3n+5的图象是离散的点,且排列在y=3x+5的图象上. 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.(×) (2)所有数列的第n项都能使用公式表达.(×) (3)根据数列的前几项归纳出数列的通项公式可能不止一个.(√) (4)1,1,1,1,…不能构成一个数列.(×) (5)任何一个数列不是递增数列,就是递减数列.(×) (6)如果数列{a n}的前n项和为S n,则对?n∈N*,都有a n=S n-S n-1.(×) 题组二教材改编 2.在数列{a n}中,已知a1=1,a n+1=4a n+1,则a3=. 答案21 解析由题意知,a2=4a1+1=5,a3=4a2+1=21. 3.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=. 答案5n-4 题组三易错自纠 4.已知a n=n2+λn,且对于任意的n∈N*,数列{a n}是递增数列,则实数λ的取值范围是. 答案(-3,+∞) 解析因为{a n}是递增数列,所以对任意的n∈N*,都有a n+1>a n,即(n+1)2+λ(n+1)>n2+λn,整理,得2n+1+λ>0,即λ>-(2n+1).(*) 因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n}中,a n=-n2+11n(n∈N*),则此数列最大项的值是.

数列的概念与简单表示法

数列的概念与简单表示法 This model paper was revised by the Standardization Office on December 10, 2020

第六章数列 §6.1数列的概念与简单表示法 考点梳理 1.数列的概念 (1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做__________),排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成__________,其中a n是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n}. (2)通项公式:如果数列{a n}的__________与序号__________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. (3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取值时所对应的一列________. (4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项__________与它的前一项__________ (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. (5)数列的表示方法有__________、__________、__________、__________. 2.数列的分类 (1)数列按项数是有限还是无限来分,分为__________、__________. (2)按项的增减规律分为__________、__________、__________和 __________.递增数列a n+1______a n ;递减数列a n+1_____a n;常数列a n+ 1______a n .递增数列与递减数列统称为__________. 3.数列前n项和S n与a n的关系 已知S n,则a n= ? ? ?(n=1)_________, (n≥2)_________. 自查自纠: 1.(1)项首项a1,a2,a3,…,a n,… (2)第n项n(3)函数值(4)a n a n-1 (5)通项公式法(解析式法) 列表法图象法递推公式法 2.(1)有穷数列无穷数列(2)递增数列递减数列 摆动数列常数列><=单调数列 3.S1S n-S n-1 典型例题讲练 类型一数列的通项公式 例题1根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2) 2 3 , 4 15 , 6 35 , 8 63 , 10 99 ,…;

数列的概念与表示(一)

数列的概念与表示导学案 一、基础知识 引例:按一定次序排列的一列数 (1)1,2,3,4,5 (2)1,51,41,31,21 (3),1,1,1,1--…… (4)1,1,1,1,…… (5)1,3,5,4,2 (6)2的精确到1,0.1,0.01,0.001,……的不足近似值排列成一列数 1、概念:(1)数列: 注:①按一定次序排列 ②同一个数在数列中可重复出现 上例中能构成数列的是: 。(1)与(5)相同吗? (2)项: (3)项的序号: 2、表示:数列的一般形式为: ,简化为 。 例:,41,31,21, 1…,1,n …简记为: 1,3,5,7,…12-n ,…简记为 注:}{n a 与n a 的区别: 3、数列与函数的关系: 4、数列的通项公式: 作用:①以序号代n 可求数列各项;②可验证某数是否是数列中的项 注:①通项公式有时不存在;②一个数列的通项公式形式可能不唯一。 5、递推公式: 6、分类: 二、例题解析 例1、根据}{n a 的通项公式,写出它的前5项。 (1)1+=n n a n (2)n a n n ?-=)1( 例2、写出下面数列的一个通项公式,使它的前4项分别是下列各数 (1)1,2,3,4; (2)1,3,5,7; (3)5 15,414,313,2122222----; 例3、已知:}{n a 中,11=a ,以后各项由111-+ =n n a a 给出,写出这个数列的前5项。

三、课后练习 1、根据}{n a 的通项公式,写出它的前5项: (1)1)1(5+-?=n n a (2)1 122++=n n a n 2、根据通项公式,写出它的第7项与第10项 (1))2(+=n n a n (2)32+-=n n a 3、写出下面数列的一个通项公式,使它的前4项分别是下列各数。 (1)1,2,3,4 (2)2,4,6,8 (3)161,81,41,21-- (4)5141.4131,3121,211---- 4、写出下面数列}{n a 的前5项 (1))2(35 11≥+==-n a a a n n (2))2(2211≥==-n a a a n n

数列的概念及其表示方法

数列的概念及其表示方法 一、学习目标 1.了解数列的概念及其表示方法;理解数列通项公式的有关概念; 2.给出数列的通项公式,会写出数列的前几项;给出简单数列的前几项,会写出它的一个通项公式; 3.通过独立思考、小组合作来提升获取知识的能力,增强团结协作的意识,养成善于观察、归纳、类比、联想等良好的思维品质. 二、学习重点与难点 学习重点:数列的概念及其通项公式. 学习难点:用函数的观点理解数列的概念. 三、学习过程 活动一:创设情境 1. 同学们,以下四个问题蕴含着四列数,你能写出来吗? (1)国际象棋的传说:每格棋盘上的麦粒数排成一列数: . (2)古语:如果将“一尺之棰”视为1份,那么每日剩下的部分依次为: . (3)童谣:一只青蛙,一张嘴,两只眼睛,四条腿,这句童谣中蕴含的一列数为: . (4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为: . 2. 同学们,你能说说上述几列数有什么共同特点吗? 活动二:数列的概念及其理解 1. 数列的定义:__________________________________________________. 数列的项: __________________________________________________. 2. 数列的分类(按项数分):__________________________________________________.

思考1:1.数列1,2,3,4,5.与数列5,4,3,2,1.相同吗? 2.金,木,水,火,土.是数列吗? 3.数列1,2,3,4,5.与数列1,2,3,4,5,… 相同吗? 3. 数列的表示方法: 数列的一般形式可以写成 . 其中1a 是数列的第 项(或称为 ),2a 是数列的第 项,…, n a 是数列的第 项. 有时,我们把上面的数列简记为 . 思考2:1.此处的n a 与{}n a 有何区别? 2.数列中的项和集合中的元素有何区别? 活动三:探索数列与函数的关系 国际象棋每格棋盘上的麦粒数: 序号n 1 2 3 4 ... 64 项 a n 1 2 22 23 ... 263 请回答: 1.这个数列中,对每一个项的序号n 都有唯一的项 a n 与之对应吗? 2.一般数列中,对每一个项的序号n 存在唯一的项a n 与之对应?

数列的概念与简单表示法(第一课时)

数列的概念与简单表示法(第一课时) 教学设计案例 山东省滕州市第一中学时科峰(277500) 一、教材与教学分析 1.数列在教材中的地位 根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学任务分析 (1)了解数列的概念 新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类. (2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系. 3.教学重点与难点 重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系. 二、教学方法与学习方法 自主学习与合作探究相结合.

五.板书设计 六、教学评价与反思 新课程的编排特点和学习方式的变化,使课堂教学方法发生了重大变化.新课程提倡教学目标综合化、多元化和均衡性,知识的生活化,使学生获得对数学知识理解的同时,在思维能力、观察能力、情感态度与价值观等方面得到进步和发展. 鉴于此,本节课的教学设计要真正体现出学生的主体地位,以学生活动、学生探究为主,把数学与生活实际联系起来,具体说来,新课程的理念有如下体现: (1)体现“双主体”的原则,摆正了教师在教学中的位置 本节课的组织与实施,充分体现了教师的主导和学生的主体性相结合的原则;教师扮演的是组织者、引导者、参与者,学生是学习的主体,通过大量实例激发学

数列的概念及简单表示方法

§6.1 数列的概念及简单表示法 1.数列的定义 按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项.2.数列的分类 3.

数列有三种表示法,它们分别是列表法、图象法和解析法. 4. 数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式. 5.已知S n ,则a n =????? S 1 (n =1) S n -S n -1 (n ≥2) . 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达. ( × ) (2)根据数列的前几项归纳出数列的通项公式可能不止一个. ( √ ) (3)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +1 2 . ( × ) (4)如果数列{a n }的前n 项和为S n ,则对?n ∈N +,都有a n +1=S n +1-S n . ( √ ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( √ ) (6)若已知数列{a n }的递推公式为a n +1=1 2a n -1,且a 2=1,则可以写出数列{a n }的任何 一项. ( √ ) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为 ( ) A .15 B .16 C .49 D .64 答案 A 解析 ∵S n =n 2,∴a 1=S 1=1. 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. ∴a n =2n -1,∴a 8=2×8-1=15. 3. 已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于 ( ) A .1 B .9 C .10 D .55

(完整版)数列的概念与简单表示法练习题及答案解析

练习一 1.数列1,12,14,…,1 2n ,…是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 2.已知数列{an}的通项公式an =1 2[1+(-1)n +1],则该数列的前4项依次是 ( ) A .1,0,1,0 B .0,1,0,1 C.12,0,1 2 ,0 D .2,0,2,0 3.数列{an}的通项公式an =cn +d n ,又知a2=3 2,a4=154,则a10=__________. 4.已知数列{an}的通项公式an =2 n2+n . (1)求a8、a10. (2)问:1 10是不是它的项?若是,为第几项?

练习二 一、选择题 1.已知数列{an}中,an=n2+n,则a3等于( ) A.3 B.9 C.12 D.20 2.下列数列中,既是递增数列又是无穷数列的是( ) A.1,1 2 , 1 3 , 1 4 ,… B.-1,-2,-3,-4,… C.-1,-1 2 ,- 1 4 ,- 1 8 ,…新课标第一网

D .1,2,3,…,n 3.下列说法不正确的是( ) A .根据通项公式可以求出数列的任何一项 B .任何数列都有通项公式 C .一个数列可能有几个不同形式的通项公式 D .有些数列可能不存在最大项 . 4.数列23,45,67,8 9,…的第10项是( ) A.1617 B.1819 C.2021 D.2223 5.已知非零数列{an}的递推公式为an =n n -1 ·an -1(n >1),则a4=( ) A .3a1 B .2a1 C .4a1 D .1 6.(2011年浙江乐嘉调研)已知数列{an}满足a1>0,且an +1=12an ,则数列{an} 是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 二、填空题 7.已知数列{an}的通项公式an =19-2n ,则使an>0成立的最大正整数n 的值为__________.

《数列的概念与简单表示法》-教案

2.1.1 数列的概念与简单表示法(第一课时) 一、教学目标 (1)了解数列的概念通过实例,引入数列的概念,并理解数列的顺序性,感受数列是刻画 自然规律的数学模型。同时了解数列的几种分类。 (2)体会数列之间的变量依赖关系,了解数列与函数之间的关系。 二、教学重点与难点 教学重点:了解数列的概念,以及数列是一种特殊函数,体会数列是反映自然规律的数学模型。 教学难点:将数列作为一种特殊函数去认识,了解数列与函数之间的关系。 三、? 四、教学过程 一、创设情境,实例引入 1.斐波那契数列,《算盘全书》中兔子繁殖的问题 2.引导学生观察向日葵图片,建自然现象中体现出的数的规律。 师:观察向日葵花瓣,你会发现花瓣的排列有怎样的规律? 2.早在春秋战国时期,惠施说过:“一尺之棰,日取其半,万世不竭”。 实际上这里面就蕴含着数列的知识和以后要学习的极限思想,因此,我们所研究数列非常重要。今天我们就来学习数列的概念与简单表示法。 板书课题:数列的概念与简单表示法 二、| 三、新课教学 (一)引入 1.古希腊毕达哥拉斯的学派的基本观点:万物皆数。他们认为数是万物的本源,因此他们曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,比如他们曾经过的三角形数。 师:什么叫做三角形数?这些数可以用图中的三角形点阵来表示。 我们看三角形数分别是1,3,6,10……(板书) 师:类似的他们还研究了正方形数,他们分别是1,4,9,16,25……(板书) (二)新课教学 问题一:那么现在就请大家循着古代数学家的足迹,归纳一下这几列数都有那哪些特点? ~ 我们刚才说这个学派的最根本观点是什么?万物皆数 所以第一个特点是什么?都是一列数 第二个特点呢?我们看他的排列是不是乱排的, 也就是说这几列数都研究的是数,同时有规律,那我们把满足这两个性质的一列数叫做数列。按照一定顺序排列的一列数成为数列。

数列的概念与简单表示法(第一课时)教学设计)

数列的概念与简单表示法(第一课时)教学设计 【课题】数列的概念与简单表示法(第一课时) 【课型】新授课 【授课教师】昆明市第24中学云付泽 一、教材与教学分析 1.数列在教材中的地位 根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题). 2.教学任务分析 (1) 理解数列的概念 新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类. (2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系. 3.教学重点与难点 重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系 二、教学方法 小组合作、探究学习模式 通过对问题情境的分析讨论的方式,运用从具体到抽象、从特殊到一般的思维训练方法,引导学生探究数学归纳法。 三、教学基本流程

四、学习过程设计 【创设问题情境】 1. 传说古希腊毕达哥拉斯学派数学家研究的问题: 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… 2. 古语:一尺之棰,日取其半,万世不竭.每日所取棰长排成的数: 1,21,41,81,161,32 1,…… , 3. 4月10日至4月17日昆明的日最高气温(单位:℃) 23, 21, 18, 20, 20, 22, 21, 19 思考:上述这些问题中的几列数有什么共同特点? (1) 都是一列数;(2)都有一定的顺序 【设计意图】:引出课题------数列的概念与简单表示法 活动一:数列的概念探究 引导学生观察一下几列数具有的共同特征,然后让学生抓住数列的特征,归纳得出数列概念。 (1)1,3,6,10,… 1,4,9,16,25,… 1,21,41,81,161,32 1,…… (2)1,21,31,4 1,…… (3)23, 21, 18, 20, 20, 22, 21, 19 (4)1-,1,1-,1,…… (5)1,1,1,1,…… 引导学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些 数都是按照一定顺序排列的…只要合理教师就要给予肯定。 教师引导归纳出: 1. 数列的定义 按照一定顺序排列着的一列数叫数列. 2. 数列的项 数列中的每一个数就是数列的项 3. 数列的一般形式: ,,,,,321n a a a a 简记为{}n a 【设计意图】:利用学生熟悉的生活实例创设情景引入问题,既可以帮助学生直观地理解数列的概念,又可以使学生认识到“数学来自于生活” 活动二:数列和集合的关系 将以上几列数用集合如何表示?请写出相应的集合。观察集合中的元素和原来数列中数有什么差别? 经过以上问题可得出集合和数列的区别是: 第一,集合的对象可以是任意的东西。如全体中华人民共和国的公民组成一个集合,某农场全部拖拉机组成一个集合,所有的化学元素组成一个集合,等等。而数列的对象都

《数列的概念与简单表示法》教案

第 1 课时 数列的概念与简单表示法 授课类型:新授课 ● 教学目标 知识与技能:1、理解数列及其有关概念,了解数列和函数之间的关系; 2、了解数列的通项公式,并会用通项公式写出数列的任意一项; 3、对于比较简单的数列,会根据其前几项写出它的个通项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ● 教学重点 数列及其有关概念,通项公式及其应用 ● 教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ● 教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,…(三角形数是指形如 n(n+1)/2 的数) 正方形数:1,4,9,16,25,…(正方形数是指形如 n^2 的数) Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同, 那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第 1 项(或首项),第 2 项,…,第 n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第 1 项(或首项),“9”是这个数列中的第 6 项. ⒊数列的一般形式: a 1 , a 2 , a 3 , , a n , ,或简记为{a n },其中a n 是数列的第 n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1 1 是这个数列的第“3”项,等等 ”,“ ” 3 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用

相关主题