搜档网
当前位置:搜档网 › 超好的8D报告 电动汽车电机控制器MCU误报故障解析

超好的8D报告 电动汽车电机控制器MCU误报故障解析

电动车控制器检测分析步骤

控制器常见故障与解决办法 用万用表测量MOS管、三极管参数的方法: (1)M OS管参数的测量 万用表档位切换到二极管/蜂鸣档,将黑表笔放在中间管脚上,红表笔分别测量两外两只管脚对应的参数,然后将上下桥的MOS管参数分别进行比较。 (2)三极管参数的测量 1 3 2 PCB贴片板上的三极管有三种,即8550,8050,5551.将万用表档位切换到二极管档,测试8550(Y2,Y6或HD)时,将黑表笔接触2脚,红表笔依次测试1,3脚的参数;测试8050(Y1,Y5或HC)时,将红表笔放在2脚,黑表笔依次测试1,3脚的参数;5551(G1)的测试方法同8050的测试方法。 贴片电阻的读法及测试方法: 贴片电阻一般分为2种: (1)3位数,普通型,前2位为有效数值,第三位为0的个数,如:“103”为10000欧姆,即10K,“152”为1500欧姆。 (2)4位数,精密型,前3位都为有效数值,第四位为0的个数,如“1502”为15000欧姆,“1511”为1510欧姆。 测试方法:将万用表档位切换到对应量程的欧姆档,将测试表笔连接到待测电阻上。 注意: (1)如果被测电阻值超出所选择量程的最大值,将显示过量程“1”,应选择更高的量程,对于大于1MΩ或更高的电阻,要几秒钟后读数才能稳定,这是正常的。将测试出的阻值与贴片电阻上标的值对比,即可判断电阻是否值变。 (2)当没有连接好时,例如开路情况,仪表显示为“1”。 直插电解电容标识的含义以及极性的判断 (1)电解电容标识的含义:以63V/1000uF为例,63V是电容的耐压值,1000uF是电容的容量。 (2)正负极的判断:在灰色的部分一般有两条矩形框,那么挨着这个灰色部分最近的引

电动汽车常见故障分析

电动汽车常见故障浅析 一.整车没电产生的原因。 1、保险丝坏,用万用表测量电池端电压如有电压输出则正常,如无电压输出 则保险丝坏或电池接插头掉或电池坏。 2、接线插头松动,检查电源开关接插件。 3、电源开关坏,用万用表测量电源开关输入、输出线两端电压,如有正常电 压输出则电源开关正常,如无电压输出,则电源开关坏〔电池有电压输出情况下〕则予以维修或更换。 二.充电机不充电的原因。 1、充电机保险丝烧坏,此时充电机各指示灯均不亮,须更换保险丝。 2、电池组线掉,则把电池连接线接好。 3、充电机插头和电池插座接插不到位,应重新接插。 4、充电机坏,此时充电机保险丝正常,用万用表测充电机输出电压应为零。※注意:我们使用的是智能充电机。具有欠压、过压保护功能、在电压不稳定或电池充满电的情况下会自动断电停机。这种情况下,先断开电源、停止使用充电机,过十几分种后重新使用充电机。 三、电动机运行时产生大量火花,局部过热,抖动的原因。 1、电动机进水造成短路把电动机烧坏; 2、电动机超负载运行使换向器短路烧坏。现象是换向器变黑(电动机超负载运行不能超过一分钟)。 四、电动机异响的原因。 1、电动机和后桥连接同心度达不到标准; 2、电刷和换向器接合不好,需较正调整;

3、电动机里面转子上的轴承坏,则更换; 五、电动机不转的原因。 1、保险丝烧掉,更换。 2、电源开关坏,更换电源开关。判断方法:打开电源开关,用万用表欧姆档 测量一下电源开关的输入端与输出端之间的电阻,如电阻值为零则正常,如电阻值无穷大,则电源开关坏。 3、加速器坏,用万用表直流电压档测量一下加速器输出端电压,如有电压输 出则正常,如无电压输出则不正常,如无电压输出则加速器坏,须更换。 4、控制器坏,须更换电控。用万用表测量电控输出端电压,有输出电压则好,否则则坏。 5、电动机烧坏,更换电动机。 6、电动机各连接线线头松动,把电动机各连接线头重新检查一遍。 六.刹车效果不灵的原因。 1、检查刹车油杯里制动液是否缺少,如少则加液; 2、检查制动油杯、制动油管是否漏油,如有则更换; 3、检查刹车片是否磨损严重,如磨损严重则更换; 4、检查制动轮毂刹车片间隙调整(正常是 2-4mm)。 七、转向不灵活的原因。 1、如方向机固定螺栓松动使方向机位置变形,则紧固螺栓。 2、如果方向机间隙过大,调整方向机调整螺母。 3、检查方向机轴承是否损坏,如损坏则更换轴承。 使用常识 一、电动汽车怎样充电? 电动汽车充电方便快捷,凡有 220V 交流电源的地方均可充电。充电时,

电动车控制器故障快速判断实例

电动车控制器故障快速判断实例 [提要] 可以通过举一反三加深理解,掌握快速判断控制器故障的技巧,如果仅仅采用更换控制器来检验控制器好坏,不仅麻烦同时也很难保证彻底排除故障隐患。 例1 电机不转 维修部接到一故障车,客户反映骑行中突然电机不转了,检查步骤如下:打开电门锁观察仪表显示正常,用力转一下轮子感觉很顺利,这说明控制器功率管无损坏,此时可基本断定控制器没有损坏。拔掉转把插件(一定要拔掉),用一把镊子短接控制器转把细红线与信号细绿线,电机运转正常,更换转把后故障排除。 例2 电机不转 维修部接到一故障车,客户反映骑行中突然电机不转了,打开电门锁用力向前转一下轮子感觉很顺利,向后转有阻力,说明刹车电路故障。此时拔掉刹车断电插件继续试验,发现运转正常,经查发现有一个刹把回位不良,处理后故障排除。 例3 电机不转 用例1-2的方法实验完后仍不转,查电机霍尔线发现明显接触不良,整理插件后故障排除。 例4 电机不转 用例1-3的方法试验完后仍不转,此时测电门锁线对地线之间的电压,发现没有电压,经查主线束电门锁连线端子断线,造成电路不通,处理后故障排除。 例5 电机有时不转 客户反映骑行中突然电机不转了,但过一会又能转了,这多是因为电源线接触不良,造成供电不正常,一般不是控制器故障,去掉电源插件让电源线与控制器直接相连,故障排除。 例6 电机不转 生产线上装车时运转正常,复检时却发现不转了,此时先用人力将电机启动起来再加转把发现可以运转但噪声很大,这是缺相运行的典型特征,经查果然有一颗相线没有插好,整理后故障排除。 例7 下雨后电机不转 经查发现控制器已被水浸,很明显这是防飞车保护在起作用,清除转把插件污泥和水分后故障排除。 例8 转一下就停 此情况为电机霍尔出现故障的典型特征,修理或更换电机后故障排除。 例9 运行噪声大 这是相序不匹配或控制器故障,换控制器重试后故障排除,证明控制器有问题。 例10 运行时有极大噪声 更换控制器后发现运行噪声极大,很明显这是相序不匹配,经查发现电机相线接错,纠正后故障排除。 例11 助力不起作用 换助力传感器和控制器都很麻烦,此时可以拔掉控制器助力插件,用一把镊子反复短接助力信号线细蓝线与细黑线数次,发现可以运转,更换传感器后故障排除。 例12 电机有时自行运转 销售人员反映有一电动车有时会自行运转,经查助力传感器的细红线和控制器细红线被通过一个开关断开了,此时如有外界干扰会引起控制器误动作,将开关改在传感器的细蓝线和控制器的细蓝线之间,故障排除。

电动车控制器怎么判断好坏电动车控制器接线图介绍

电动车控制器怎么判断好坏电动车控制器接线图介绍 时间:2017/1/3 16:48:00 人气:4737 编辑:腾牛小编 分享到: 标签:电动车 导读:在日常生活中,很多人喜欢骑电动车出行。电动车的使用寿命与电动车的控制器有关,那么电动车控制器怎么判断好坏下面小编将为大家介绍电动车控制器接线图,希望对大家有帮助! 电动车是常用的交通工具,方便快捷。很多人喜欢使用,电动车的使用寿命与电动车的控制器有关。那么电动车控制器怎么判断好坏电动车控制器多少钱一只下面小编为大家介绍电动车控制器接线图,希望对大家有用!

仔细观察做工 一个控制器的做工体现一个公司实力,同等条件下,作坊控制器肯定不如大公司的产品;手工焊接的产品肯定不如波峰焊下来的产品;外观精致的控制器好过不注重外观的产品;导线用得粗的控制器好过导线偷工减料的控制器;散热器重的控制器好过散热器轻的控制器等等,在用料和工艺上有所追求的公司相对可信度高,对比就能看得出来。 对比温升 用新送来的控制器和原来使用的控制器进行同等条件下堵转发热试验,两个控制器都拆掉散热器,用一辆车,撑起脚,先转动转把达到最高速,立即刹车,不要刹死,免得控制器进入堵转保护,在极低速度下维持5秒钟,松开刹车,迅速达到最高速,再刹车,反复同样的操作,比如30次,检测散热器最高温度点。 拿两个控制器的数据对比,温度越低越好。试验条件应该保证相同的限流,相同的电池容量,同一辆车,同样从冷车开始测试,保持相同的刹车力度和时间。试验结束时应检查固定MOS的螺丝松紧程度,松得越多表明使用的绝缘塑料粒子耐温性越差,在长期使用中,这将导致MOS提前因发热而损坏。再装上散热器,重复上述试验,对比散热器温度,这可以考察控制器的散热设计。 观察反压控制能力 选取一辆车,功率可以大一点,拔掉电池,选用充电器为电动车供电,接上E-ABS使能端子,确保刹把开关接触良好。慢慢转动转把,太快了充电器无法输出很大的电流,会引起欠压,让电机达到最高速,快速刹车,反复多次,不应出现MOS损坏现象。在刹车时,充电器输出端的电压会快速上升,考验控制器的瞬间限压能力,此试验如果用电池测试基本没有效果。

完整版详解电动汽车各系统常见故障及处理

详解电动汽车各系统常见故障及处理 一、故障检测方法 汽车故障检测是通过观察、检测、分析及判断等一系列工作完成的, 其基本方法主要分为两类:直观检测法与现代仪器设备检测法。 (1)直观检测法直观检测法又称人工经验检测法,是指检测人员借助丰富的实践经验和一定的理论知识,在汽车不解体或局部解体 的情况下,依据直观的感觉,借助简单工具,采用眼观、耳听、手摸和鼻闻等手段对汽车进行检查、试验和分析,查明故障原因和故障部位。 (2)现代仪器设备检测法现代仪器设备检测法是在人工经验检 测法的基础上发展起来的一种检测方法,是指在汽车不解体的情况下, 使用测试仪器、检测设备或工具,检测整车、总成或机构的参数、曲 线和波形,为分析、判断汽车故障原因提供定量依据。 实际上,上述两种方法经常会同时使用,称为综合检测法。 电动汽车的故障处理同传统汽车故障处理的含义相似,而因为电动汽车构造的特殊性又在细节上与传统内燃机汽车存在着差异。基本流程首先应找到故障产生的部位;之后用相应的仪器进行测试,分析、研究故障产生的原因,推理验证故障的产生情况;然后进行维修,确认故障已经修复;最后驾驶人试车,以检验故障修复的效果。 二、动力系统常见故障及处理方法 2.1动力电池系统 电动汽车中高压系统的功能是确保整车系统动力电能的传输,并随 时检测整个高压系统的绝缘故障、断路故障、接地故障和高压故障等, 是确保整车设备和人员安全的首要任务,也是电动汽车产业化的关键

技术之一。 电动汽车的主要部件----动力电池系统属于高压部件,其设计的好坏直接影响着整车安全性及可靠性。在动力电池系统中,从故障发生的部位看,分为传感器故障、执行器故障(接触器故障)和部件故障 (电芯故障)等,动力电池系统故障诊断及处理十分必要。 动力电池系统故障按照故障发生的部位可以分为三类,即单体电池 故障、电池管理系统故障、线路或连接件故障。 (1)单体电池故障单体电池的故障包括三种。 ①第一种故障电池性能正常,无需更换,对应故障有单体电池SOC 偏低和单体电池soc偏高。如果单体电池SOC偏低,则该电池在汽 车行驶过程中,电压最先达到放电截止电压,使得电池组实际容量降 低,应对该单体电池进行补充充电。如果单体电池soc偏高,则该电 池在充电末期最先达到充电截止电压,影响充电容量,需对该单体电池进行单独补充放电。 ②第二种故障电池性能衰退严重,应立即更换,对应故障有单体电池容量不足和单体电池内阻偏大。在电池组中,最小的单体电池容量也限制了整个电池组的容量,因此发生单体电池容量不足故障会影响车辆续驶里程。锂离子电池内阻如果过大,会严重影响电池的电化学性能,如充放电过程中的极化严重、活性物质利用率低、循环性能差等。 ③第三种故障电池影响行车安全,对应故障包括单体电池内部短路; 单体电池外部短路;单体电池极性装反,在强振动下锂离子电池的极耳、极片上的活性物质、接线柱、外部连线和焊点可能会折断或脱落,造成单体电池内部短路或

基于TMS320F28035电动汽车电机控制器

2011-2012德州仪器C2000及MCU创新设计大赛 项目报告 题目:基于TMS320F28035电动汽车用电机控制器 学校:重庆大学 组别:专业组 应用类别:先进控制类 平台: C2000 题目:基于TMS320F28035电动汽车电机控制器 摘要:21世纪,纯电动汽车已经成为了解决燃油车辆带来的能源和环境问题的 最有希望的方案之一。而电动汽车电机控制器又是纯电动汽车的核心部分。本设 计以TI公司的TMS320F28035为控制核心,设计了一款用于电动汽车的低压电机 控制器,采用先进的弱磁控制算法和效率优化策略,实现了电机在整个运行范围 内输出最大转矩和达到较高的效率。 Abstract:ELECTRIC vehicles (EV) are seen as a possible step towards the solution of the pollution problem in urban environment. And the motor controller is core of the electric vehicle. Based on TMS320F28035 ,we design a motor controller used in low voltage EV. With the advanced control

scheme ,we can get the maximum torque in the whole speed range and the maximum efficiency. 1引言 1.1系统设计的背景 20世纪90年代以来,汽车作为人类最重要的代步和交通工具,在全球范围内得到蓬勃快速发展。其实世界汽车工业总共发展了100多年,已经成为世界上许多国家的支柱产业,在人类经济生活和生产中发挥着举足轻重的作用。进入21世纪,在今后的50年里,全球人口将从60亿增加到100亿,汽车的数量将从7亿增加到25亿。如果这些车辆使用内燃机的话,他们所需要的石油将不可估量,它们所排出的尾气将无法处理,它们将对我们的环境造成巨大的伤害。这些问题迫使人们去寻找21世纪可持续发展的道路交通工具。另外,由于能源资源日益消耗,迫使人们重新考虑未来汽车的动力来源,世界各国都竞相积极地研制新能源汽车,从而来替代燃料汽车。由于新能源汽车清洁无污染,能源形式多样并且能量比重高,结构简单而且维护方便,是21世纪最有发展潜力的汽车。 近二十多年来,西方工业发达国家政府把电动汽车的研究开发看作解决环境问题和能源问题的一种有效手段,在经济上给予大力支持。美国政府至今已出资数百亿美元支持汽车厂商和相关厂商进行电动汽车技术的开发研究。美国三大汽车公司1991年联合成立了美国先进电池联合体,投入了4.5亿美元,其中政府拨款2.25亿美元,共同开发镍镉、镍氢、锌空气电池、燃科电池等各种高性能蓄电池。日、法、德等国各大公司也投入巨资研究开发高性能电池。在电动汽车整车研究开发方面,至90年代末期,国外大汽车公司已开发生产了100多种型号的纯电动汽车、燃料电动汽车和混合动力汽车(表1)。其中,已有10多种纯电动汽车车型投入商业化生产;近年来,燃料电池电动汽车成为新的开发热点,美国计划到2010年市场上燃料电池汽车占市场4%份额,达到60万辆,日本政

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

电动车控制器损坏检测小知识

电动车控制器损坏检测小知识 最近很多网友在高标的商城里面询问电动车控制器为何会损坏,下面我们就集中在这里进行回复。如还有不明白的,可以到我们的商城里询问售后人员。 一、控制器损坏的原因分析 控制器损坏的原因,有以下几种情况: 1)控制器内部供电电源损坏。 2)功率器件损坏。 3)控制器工作时断时续。 4)连接线磨损及接插件不良或脱落引起控制信号丢失。 针对以上损坏原因的分析如下: 1)控制器内部供电电源的损坏,可能是由控制器内部电路短路或外部引线短路引起的。 2)功率器件的损坏,可能是由电动机损坏、功率器件本身的质量差或选用等级不够、器件安装或振动松动、电动机过载、功率器件驱动电路损坏或参数设计不合理引起的。 3)控制器工作起来时断时续,可能是由器件本身在高温或低温环境下参数漂移、控制器总体设计消耗大导致某些器件局部温度过高而使器件本身进入保护状态或器件接触不良引起的。 4)连接线磨损及接插件不良或脱落,可能是由线材选择不合理、对线材的保护不完备、接插件的选型不好及线束与接插件的压接不牢引起的。 二、控制器好坏简要判断 1.用万用表欧姆档进行测量(断电测量) 1)用万用表置于欧姆档20k,用红表接控制器负极,黑表笔依次接测量控制器主线黄、绿、兰,应有10k?左右的读数(数字万用表),三次读数应基本一致。 2)用万用表黑表笔接控制器正极,红表笔依次测量控制器主线黄、绿、兰,应有15k?左右的读数,三次读数应基本一致。

3)如步骤1)、2)的测量正常,则表示无刷控制器内的MOS管基本正常,把控制器与整车连接,接通电源,拔掉制动线,用万用表电压档测量转把5V电压是否正常。若以上测量正常,则表示控制器基本正常,否则可判定控制器损坏。 2.用万用表二极管档进行的测量(断电测量) 1)将万用表置于二极管档测量,用红表笔接控制器负极,黑表笔依次测量控制器主线黄、绿、兰,读数在500左右(数字万用表),三次读数应基本一致。 2)用万用表黑表笔接控制器正极,红表笔依次接控制器主线黄、绿、兰,读数在500左右,三次读数应基本一致。 3)如步骤1)、2)的测量正常,则表示无刷控制器基本正常,把控制器与正常连接,接通电源,拔掉制动线,用万用表电压档测量转把5V电压是否正常。若以上测试正常,表示控制器基本正常,否则可判定控制器损坏。 三、控制器其他部件检测 1.断电检测(用二极管档) 1)检测控制器电源输入正负极是否短路。 2)霍尔信号线检测:用黑表笔接黑线,红表笔接红、黄、绿、兰四根线,应无短路故障。 2.通电测试(用直流电压档) 1)检测控制器电源输入端是否有蓄电池工作电压。 2) 检测霍尔信号线是否有5V电压。 3) 检测转把电源是否有5V以上电压。 4) 转动转把,检测信号线的电压是否在0.8V~4.2V之间变化

电动汽车常见问题问答

1、 新能源汽车有什么特点 新能源汽车,即是采用新型清洁型能源作为动力,来代替通常使用的高污 染类可燃油质(如汽油和柴油)。 按照燃料的来源划分,新能源汽车技术可分为五类: 是基于传统石油燃料的节能环保汽车,如先进柴油车和混合动力汽车; 二是基于天然气和石油伴生品的燃气汽车; 三是基于石化燃料化工的替代燃料汽车,如煤制油等; 四是生物燃料汽车,包括燃料乙醇和生物柴油汽车; 五是燃料电池汽车和纯电动汽车。 6新能源汽车的关键技术是什么? 新能源汽车整车、电机、电机控制器、电池及系统总成技术 7、什么是动力电池,有何特点,哪些电池适用于做动力电池? a)动力电池学术界至今没有明确定义。但全球电动汽车行业基本约定:为 电动汽车提供驱动动力的电池被称为动力电池,包括传统的铅酸电池、镍氢电池以 及新兴的锂离子动力电锂电池,分为功率型动力电池(混合动 力汽车)以及能量型动力电池(纯电动汽车)。手机、笔记本电脑等消费 电子产品使用的锂电池一般统称为锂电池,以区别于电动汽车用锂电池(动力锂电 池)。动力电池是电动汽车发展最关键的技术。传统的铅酸、

镍氢电池在安全性能、循环寿命、环保等方面的弱点已不是动力电池的主流。 b)。功率型动力电池需要短时间大电流充放电(短时间提供大能量)池浅充浅放(每次使用时少量放电少量充电),锰酸锂电池(甚至负极用钛酸锂材料)适合做混合动力电池;能量型动力电池强调大能量均匀提供汽 车较长时间行驶的动力,电池深充深放(每次使用时尽量将电方完然后充 满),磷酸铁锂电池适合做能量型动力电池。 8、动力电池有那几部分组成? 二次锂离子动力电池的组成: 9、动力电池如何解决使用的安全性? 、电 a) 正极 b) 隔膜 C)负极 d) 有机电解液 e) 电池外壳 a) 材料选定:选择安全性好的材料(正、负极,隔膜) b) 电池设计:正、负极活性物质匹配, C) 生产工艺:工艺合理 d) 机械设计:防爆阀设计合理 e) 充、放电保护:安装保护板,选择性能可靠的充电机

电动车控制器测试中的型式试验详解

电动车控制器测试中的型式试验详解 1. 概述 应在控制器所为之设计的电动车上或车辆制造厂认可的测功机上做动态电气测试。对于交通用的道路车辆,推荐使用相关的ISO标准或其它一致同意的车市循环工况。 2. 型式试验 在控制器商品化之前,型式试验应由电动车控制器生产者进行,从而证明本报告中所述的控制器的特性能满足预定的应用要求。进一步的型式试验应在生产运行中进行,以保证仍能满足特性要求。生产中设计或材料的改变应由一系列与用户需求一致的进一步的定型试验来进行评估。 (注:必须认识到特定的定型试验是有破坏性的)。 1)机械试验 进行机械试验以保证在考虑到几何尺寸,结构,使用,振动阻尼,进水和噪声的产生等情况下,仍能满足特性要求。 2)电气试验 进行电气试验以保证,当控制器安装在电动车上后,考虑到运行的温度范围,湿度,控制功能,连锁装置及极度电气条件下的性能等情况下,仍能满足特性的要求。 3)绝缘强度试验 绝缘强度试验应按照相关的要求,在完全重新制造的新控制器上进行。 4)内部温度 应在认可的试验循环工况上利用控制器进行试验,并测量内部器件的最大温度,任何单个器件的温度都不能超过器件生产者所允许的最大值,对于十分严重的条件应在试验中使用标准的控制器冷却装置。在试验中,如果安装了温度保护装置应进行试验。 5)电压限制 控制器应进行测试以满足在如运行电压限制所述的电压范围内运

行,并且,如果指定的电池端压超过范围,应进行检查确定没有损害。6)电磁干扰 应对电动汽车控制器进行检查以保证控制器运行中产生的电磁辐射不超过所规定的范围,并且也要试验保证外部产生的电磁干扰,不论是由于自身的运行还是由于其他加于牵引电池的运行的负载,都不会产生负面的影响。

电动汽车电机控制器国内外发展现状

电动汽车驱动电机与电机控制器国内外发展现状 1、国外驱动电机在新能源汽车上的应用 电机方面: 全球范围看,有刷直流电机、一般同步电机、感应电机与有刷磁铁电机商品化历史最长,产品更新换代不断,迄今还在应用。上世纪80 年代开始进入商品化的表面永磁同步电机与1990 年代以来研制开发的开关磁阻电机、内置式永磁同步电机以及最新的同步磁阻电机相继进入市场,并在电动汽车与混合动力汽车上获得应用。 根据电动汽车、混合动力车车型的开发应用年代,日本的产业水平与市场偏好,成本核算等方面考虑,先采用感应电机,而近几年来在批量生产的日本电动汽车车型上以采用永磁同步电机为主流。 近年来美、欧开发的电动汽车多采用交流感应电机。其主要优点是价格较低,性能可靠;缺点是起动转矩小。日本近年来问世的电动汽车与新型混合动力车大多采用永磁电机。其主要优点是效率比交流感应电机高,但价格较贵。永磁材料耐热温度低于120℃,而开关磁阻电机(SRM:Switched Reluctance Motor)结构新型、简单、起动性能好,无大的冲击电流,但噪声大。 驱动电机系统的驱动方式与控制方面: 车辆的电机驱动系统的驱动方式可分为集中驱动与车轮独立驱动。集中驱动结构简单,可以沿用内燃机汽车的部分传动装置,是目前应用最多的电驱动方式,容易处理电机冷却、防振以及电磁干扰等问题。但是集中驱动传动系统复杂、传动效率低,不能对两侧驱动轮转矩进行单独控制,影响车辆的操纵稳定性。 车轮独立驱动的范例是三菱汽车公司应用开发的轮毂电机电动汽车,和日产汽车公司开发的轮毂电机电动汽车。 车轮独立驱动的优点是简化传动系统,布置方便;由于每个电机可以单独控制,能实现车轮驱动力的单独调节和施加横摆力矩控制,容易实现车辆底盘系统的电子控制,改善车辆驱动性能和行驶性能。但轮毂电机驱动系统会使车轮质量过大,对于整车动力性能造成影响,还可能带来其它问题,如电机散热、防水、防尘难度大等。 正因为上述问题,三菱在推出新一代电动汽车“iMiEV”时,不再采用轮毂电机,仍采用集中驱动系统,驱动电机采用永磁电机。 至于电机驱动系统的控制,涉及到电压波形与调制率控制、矩形波电压相位控制、直流电流失调反馈(DC offset feedback)控制,与可变电压系统控制。此外,在电机控制的硬件方面,例如混合动力车用电机控制在100us 程度的抽样周期中必须进行多项控制计算,再加上保险失效处理功能(fail safe),其编制程序极其繁复。 从驱动系统的实际应用中,因为仍以传统的集中驱动方式作为主流,而永磁电机由于其优点突出,在日本纯电动汽车与混合动力车上得到更多应用。而从成本角度来看,采用集中驱动可以尽可能沿用基型车的车身和悬架而降低成本,往往比采用轮毂电机驱动系统成本低。而iMiEV 纯电动车采用传统的集中驱动系统,即驱动方式通过减速器、差速器、驱动轴把电机输出扭矩传递到左右车轮,驱动车辆行驶。 2、国内驱动电机行业现状 电机业中的小行业、但制造门槛高 作为电机行业的细分领域,电动汽车驱动电机是一个小行业。主要是由于市场处于起步

电动车控制器故障快速判断

电动车控制器故障快速判断 例1 电机不转 客户反映骑行中突然电机不转了,检查步骤如下:打开电门锁观察仪表显示正常,用力转一下轮子感觉很顺利,这说明控制器功率管无损坏,此时可基本断定控制器没有损坏。拔掉转把插件(一定要拔掉),用一把镊子短接控制器转把细红线与信号细绿线,电机运转正常,更换转把后故障排除。 例2 电机不转 客户反映骑行中突然电机不转了,打开电门锁用力向前转一下轮子感觉很顺利,向后转有阻力,说明刹车电路故障。此时拔掉刹车断电插件继续试验,发现运转正常,经查发现有一个刹把回位不良,处理后故障排除。 例3 电机不转 用例1-2的方法实验完后仍不转,查电机霍尔线发现明显接触不良,整理插件后故障排除。 例4 电机不转 用例1-3的方法试验完后仍不转,此时测电门锁线对地线之间的电压,发现没有电压,经查主线束电门锁连线端子断线,造成电路不通,处理后故障排除。 例5 电机有时不转 客户反映骑行中突然电机不转了,但过一会又能转了,这多是因为电源线接触不良,造成供电不正常,一般不是控制器故障,去掉电源插件让电源线与控制器直接相连,故障排除。 例6 电机不转 生产线上装车时运转正常,复检时却发现不转了,此时先用人力将电机启动起来再加转把发现可以运转但噪声很大,这是缺相运行的典型特征,经查果然有一颗相线没有插好,整理后故障排除。 例7 下雨后电机不转 经查发现控制器已被水浸,很明显这是防飞车保护在起作用,清除转把插件污泥和水分后故障排除。 例8 转一下就停

此情况为电机霍尔出现故障的典型特征,修理或更换电机后故障排除。 例9 运行噪声大 这是相序不匹配或控制器故障,换控制器重试后故障排除,证明控制器有问题。 例10 运行时有极大噪声 更换控制器后发现运行噪声极大,很明显这是相序不匹配,经查发现电机相线接错,纠正后故障排除。 例11 助力不起作用 换助力传感器和控制器都很麻烦,此时可以拔掉控制器助力插件,用一把镊子反复短接助力信号线细蓝线与细黑线数次,发现可以运转,更换传感器后故障排除。 例12 电机有时自行运转 销售人员反映有一电动车有时会自行运转,经查助力传感器的细红线和控制器细红线被通过一个开关断开了,此时如有外界干扰会引起控制器误动作,将开关改在传感器的细蓝线和控制器的细蓝线之间,故障排除。 例13 更换控制器后不久重新出现故障 一电动车骑行不到五公里,电机不转了,更换控制器后不久重新出现电机不转故障,消费者十分反感要求退车。冷静分析,很可能电动车存在其他隐患,不是控制器造成的故障,后经认真查找发现电源插接件接触不良,处理后故障排除。 以上为高标电动车控制器总结出的典型案例,不同的控制器可能有所差别。我们可以通过举一反三加深理解,掌握快速判断控制器故障的技巧,如果仅仅采用更换控制器来检验控制器好坏,不仅麻烦同时也很难保证彻底排除故障隐患。

电动汽车用车电机及控制器技术条件

ID号:9034790 受控文件归档日期:2009-04-21 09:13:27 编码:ID号:xxxxxxx 受控文件归档日期:2009-04-xx 编 码: JLYY-XX -09 电动汽车用电机及控制器 技术条件 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二○○九年五月

前言 为了规范电动汽车用电机及控制器的技术特性,控制驱动电机及控制器系统质量和出厂检验规则编制了本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司新能源技术开发部负责起草。 本标准主要起草人:刘波。 本标准于2009年5月13日发布并实施。

1 范围 本标准规定了吉利电动汽车使用的电机及控制器型号、要求、检验规则、标志、随车技术文件、包装、运输、贮存及质量承诺。 本标准适用于吉利电动汽车用的驱动电机及其控制器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 755-200 旋转电机定额和性能 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 4772.1-1999 旋转电机尺寸和输出功率等级第1部分:机座号56~400和凸缘号55~1080 GB/T 4942.1-1985 电机外壳防护分级 GB/T 4942.2-1993 低压电器外壳防护等级 GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值 GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值 GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求 GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件 GB 1471l-1993 中小型旋转电机安全通用要求 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 GB/T 2900.25-1994 电工术语旋转电机 GB/T 2900.26-1995 电工术语控制电机 GB/T 2900.33-1993 电工术语电力电子技术 GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法 GB 10069.3 旋转电机噪声测定方法及限值第3部分:噪声限值 GB/T 18488.1-2001 电动汽车用电机及其控制器技术条件 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 3 定义

纯电动客车电机控制器设计方案..

纯电动客车电机控制器设计方案 摘要:依思普林产品采用自主开发的1200V/400-800A六单元IPM模块,电机控制器结构完全针对电动客车应用设计,具有体积小、重量轻、功率密度高、温升低(控制器内部温升比市场同类产品低30℃以上)、长期可靠性高的特点,产品性能达到国际先进水平。 关键词:纯电动客车;电机控制器;设计方案 早在2010年,我在一次去瑞士考察时,走在苏黎世大街上,整洁的大街上几乎看不到燃油车,简直就是有轨电车的天下,恍惚间让我看到八九十年代老北京什刹海的景色,干净的空气让我流连!在回来不久后我就成立了深圳市依思普林科技有限公司,专注从事新能源汽车核心部件的研发。 依思普林目前拥有多名IGBT模块及电机控制器开发经验技术人员,团队所研发的电机控制器,性能覆盖540V/200kW以内所有新能源电动客车车型,功率范围在80kw-200kw。产品采用自主开发的1200V/400-800A六单元IPM模块,电机控制器结构完全针对电动客车应用设计,具有体积小、重量轻、功率密度高、温升低(控制器内部温升比市场同类产品低30℃以上)、长期可靠性高的特点,产品性能国内领先,达到国际先进水平。

一、控制器外观结构及技术参数 图1-1 电机控制器内部结构 图1-2 电机控制器外形图

电机控制器技术参数如下表: 表1-1 电机控制器技术参数二、电动客车电控整体解决方案

三、主要技术创新点: 1、造型新颖 依思普林电机控制器的箱体是铝合金一体压铸,防护等级达到IP67。体积小,重量轻,造型新颖,突出了“绿色、环保”的主题。 2、自主知识产权汽车级大功率IGBT模块技术 目前国内市场上电机控制器多采用标准封装的工业级的IGBT模块,由于模块不是针对电动客车应用设计,IGBT模块采用的材料、结构及长期可靠性均无法满足电动客车的应用要求,

电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统 1 电机驱动系统的作用 电机驱动系统是电动汽车的核心,它与整车动力性能的好坏密切相关,是电动汽车关键技术之一。电机驱动系统由电动机和驱动控制器两部分组成。电动机是一种将电能转变为机械能的装置,为满足整车动力性能的需求,要求其具有瞬时功率大、过载能力强、加速性能好、使用寿命长、调速范围广、减速时实现再生制动能量回馈、效率高、可靠性高等特点。驱动控制器是将电池的电量转变为适于电动机运行的另一种电能变换控制装置。通过这种变换和控制使电动机处于最佳工作状态,以满足电动汽车实际行驶工况的需要,驱动控制器要求结构简单、控制精度高、动态响应好、系统高可靠、成本低。驱动电机及其控制器的性能好坏直接决定车辆的品质好坏,所以在试验室中正确地进行试验是必要的。 2 电机控制器性能测试设备 2.1 实验设备目前常用的测功机主要有直流电力测功机、交流电力测功机、电涡流测功机和水力测功机。直流电力测功机:由直流电机、测力计和测速发电机组合而成。直流电机的定子由独立的轴承座支承。它可以在某一角度范围内自由摆动。机壳上带有测力臂,它与测力计配合,可以检测定子所受到的转矩。转轴上的转矩可以由定子上量测。与直流电机类似,直流测功机调速性能好,控制简单,但由于换向器的原因,不适合高速运行,而且大功率的测功机相对于其他类型,体积较大。不适用于动力电机测试。交流电力测功机:由 1 台三相交流电动机和测

力计、测速发电机组成。它的测功原理与直流测功机相同,但不存在换向问题,结构简单,可靠性高。目前交流测功机在动、静态性能上已经得到了很大提高。电力测功机既可以进行电动性能测试,也可以进行馈电性能的测试。 2.2 测试方法 通过安装夹具及联轴器将被测电机与测功机连接,适当调整使轴与轴的对中度符合试验要求,对个别超高速电机,为防止试验过程中因为轴振动或对中不够精确引起轴承发热失效或者损坏电机的情况,可以考虑在适当位置安装振动传感器及温度传感器,对试验过程中局部情况实时监测,一旦有异常立即停止。针对标准的要求,试验时测试额定及峰值负载下的转速,转矩和效率特性,以及额定负载下的馈馈电特性。温升试验也是在台架上进行,分别测量电机绕组的温升和控制器的温升。电机和控制器都配备有散热系统,或水冷或风冷。电机及控制器从冷机状态下启动开始工作,温度会随之慢慢增加,在固定负载的情况下,温度最终会趋于稳定,这段时间内温度的变化量就是温升值。标准中有3种方法:电阻法、埋置检温计(ETD法和温度计法。试验电机不宜拆开。因此选用电阻法比较适合,通过比较试验前后环境温度、冷却水温度以及绕组直流电阻的变化来计算电机不同工况下的温升值。控制器的温升通过温度计即可测量。温升值根据不同产品的工作制要求进行测试。用在不同类型系统上的电机应选用不同的工作制,比如纯电动汽车,串联式、并联式以及混联式混合动力汽车,PLUG-IN混合动力汽车等不同类型的应用。在该项目中,标准里除了对温升值的要求外,对试验过程中电

纯电动汽车常见电气故障分析与处理 一、

纯电动汽车常见电气故障分析与处理 一、常见故障 1. 无法启动 第一类:启动不了的同时,车辆电气件没有工作,也就是整个电气系统都无法工作。 第二类:车辆电气件工作正常,但是车辆无法启动行驶。 2. 电气设备件不工作 电动汽车主要电气设备有各种灯具(前组合灯、测灯、倒车灯、后组合灯等)、收音机、顶部风扇、真空泵、刮水器、组合仪表、电动助力转向器、空调等。现场调试过程中,收音机、真空泵、组合仪表和刮水器经常出现不工作故障。 3. 电气设备工作不正常 电气设备工作不正常主要是指工作状态与设计状态不一致,如真空泵不停地抽气、组合仪表显示不正常、收音机有很大的干扰等。 二、常见故障的分析与处理 1.无法启动故障分析与处理 启动不了的直接原因是直流接触器不吸合,导致动力电池电源无法接入电动机控制器高压模块,因此无法控制电动机的运行,车辆无法开动。分析启动问题需要参考电动汽车原理图。 图1为动力回路电控系统原理。动力电池接入电动机控制器高压模块,三相异步电动机的3个接线柱也接入电动机控制器的高压模块,同时反馈转速信号,电动机控制器通过获得输入信号控制异步电动机的运行。电动机控制器是连接动力电池与三相异步电动机的枢纽,同时也是控制中枢。

低压电气系统结构原理如图2所示。动力电池96V电源通过DC/DC转换器变换为12V,给低压电气设备供电。 第一类启动不了表现为整车电气设备不能工作,即整车都没有电源。因为电动汽车没有设计小蓄电池,低压用电设备的电源都是由电源转换器从96V/72V转换为12V 的直流电供电。出现第一类启动不了的问题一般是由于电源转换器没有正常工作输出1 2V电压,导致整个汽车的电气设备都没有得电。负极控制模块无法得到主接触器吸合所需的输入信号,因此无法启动。更换DC/DC转换器就可以排除故障。 第二类启动不了是车辆电气设备都工作正常,但是无法开动车辆。这种情况一般是负极控制模块的电路出现故障。 动力电池负极与电动机控制器之间有个负极控制模块,图3所示为负极控制电路模块原理。负极控制模块是为了启动开关控制车辆运行所设,核心为主接触器,外围控制信号的输入主要目的就是为了主接触器的吸合。

新能源汽车的故障分析与对策

龙源期刊网 https://www.sodocs.net/doc/c38388714.html, 新能源汽车的故障分析与对策 作者:朱先栋 来源:《科技风》2019年第35期 摘要:新能源汽车彻底颠覆了传统汽车单靠汽(柴)油发动机作为运行动力的传统运行方式。这极大缓解和降低了汽(柴)油发动机产生的尾气造就的环境污染问题。目前,市场上的新能源汽车大致有纯电和是油电混合动力两种。本文主要分析新能源汽车的常见故障,并提出解决方式及维修关键技术、提高维修质量的手段,综合施策,推动新能源汽车应用范围扩大,优化其发展路径。 关键词:新能源汽车;故障;维修技术 一、绪论 在经济社会发展日新月异的今天,传统粗犷型增长方式日益不适合时代的要求,高质量发展成为趋势。人民生活水平日益提高,中国汽车保有量连年增长,在带来巨大产值的同时,也带来了巨大的环境压力、城市拥堵等一系列问题,解决尾气排放问题愈发急切。新能源汽车作为少污染或零污染的代名词,日益引发重视。国家就新能源汽车销售下发一系列补贴政策,进行推广。新能源汽车的逐渐普及,使得其维修问题成为是否购买的首要考虑因素。新能源汽车内部构件与传统燃油车差别很大,独成体系。本文就新能源汽车的一些常见故障进行具体分析,细化解决措施和维修手段,并就提升手段做进一步说明。 二、新能源汽车的常见故障 (一)新能源汽车的动力电池存在故障 新能源汽车一般分为纯电动汽车和油电混合汽车。目前,纯电动汽车的电池技术研究刚刚开始,实践操作相对较少,动力电池故障是影响纯电动汽车运行稳定的第一号因素,使用过程中如果不能有效控制,极有可能出现过度充电或者放电现象,降低电池使用时长。油电混合汽车同样存在这个问题。对于油电混合动力车而言,主要动力是燃油,在起步加速的时候,使用电动马达,可以有效降低燃油量,降低资源消耗。在行驶过程中,电池组在控制系统、驱动系统及辅助系统中的作用也至关重要。随着汽车行驶里程增加,动力电池会出现一定的磨损,导致电动汽车行驶动力不足,进而影响汽车行使效果。动力电池在新能源汽车的运行中,需要进行长时间的运转,因此极易出现管理系统故障以及电池故障等问题。因此,动力电池的维修工作需要高度重视,及时分析系统故障等问题的成因,并及时改正,提升电池使用时长。受环境

相关主题