搜档网
当前位置:搜档网 › 牛顿方程、拉格朗日方程、达朗伯原理及哈密顿的比较

牛顿方程、拉格朗日方程、达朗伯原理及哈密顿的比较

牛顿方程、拉格朗日方程、达朗伯原理及哈密顿的比较
牛顿方程、拉格朗日方程、达朗伯原理及哈密顿的比较

牛顿方程、拉格朗日方程、达朗伯原理及哈密顿方程的比较

(以阿特伍德机为例)

已知:绳长为l ,半径为r ,滑轮质量不计,1m ,2m 的坐标分别为1x ,2x 。试求两物体的加速度1x ,2x 。 1、牛顿方程: 对于1m :

1m g -1

T

=1

m 1

x

① 2

m g -1

T =2

m 2

x

1

x

=-2x ③ 1

T

=1T ④

1

x =-2

x

=121

2

g m m m

m

-+

分析: 当1m >2m 时

1

x =-2

x =

1

2

1

2

g m

m m

m

-+

当1m <2m 时

1x =-2x =

211

2

g m

m m

m

-+

当1m =2m

1

x

=-2x =0

2、拉格朗日方程

0d

L L dt q q α

α?

?

?? ?-= ????

?

势能零点为坐标轴X 轴零点处 T =21

112

m v -22

21

2

m v =21

1

1

2

m x -

222

1

2

m x

()()2

1

2

1

1

212

m

m x

x x +=-

U =()11221

g g l r m x m x x π----

L T U =- ()()2

12

1

1

1

2

1

1

2

g g l r m m x

m x m

x π=+

+

+-- ()1

2

1

L m m x q α

?=

+?

1

L x ?=

? (广义动量)

12L g g m m q

α

?=

-?1

L x ?=

?(广义力)

固有:()()121120g m m x m m ---= 3、达朗伯原理

首先,推导虚功原理

虚位移:0t δ=

虚功(约束力)=0→理想约束 在牛顿力学中有,当1m =2m 时

0i

i

N F -= ()0i

i i

r

N F δ-=

虚功原理:0i i

r F

δ?=∑

(平衡条件)

拉格朗日平衡:

dL L L U dt q q q ααα??

??? ?==- ?????

?

如果一个系统处于平衡状态,则势函数有极值,有极小值则出现稳定平衡且稳定平衡是力学中存在的平衡。

动力学原理:2

i

i

i

i

m x N F -= 2

0i

i

i

i

m x N F --=

达朗伯原理:()2

0i

i i i i

m x r N

F δ--=

4、哈密顿方程

①广义动力()L T U =-

()2

2

2

12T m

y

x

z

=+

+

x

T m x

x

P

?==? 同理有y

T m y

y

P

?==? ,z

T m z

z

P

?==?

即是:

x

L m x

x

P

?==? 同理有y

L my

y

P

?==? ,z

L m z

z

P

?==?

②勒让德变换 设函数(),f x y 令f X x

?=

?,f Y y

?=

?

对于函数(),f x y 的全微分

f f df dx dy Xdx Ydy x

y

??=+

=+??

令()(),,G X Y f x y xX yY =-- ()()(),dG X Y df d xX d yY =--

d f X d x x d X Y d y y

=---- x d X y d Y =-- ① 而G G dG dX dY X

Y

??=

+

?? ②

由①②可以得:

G x X

?=-?

G y Y

?=-?

在拉格朗日方程中: (),L

q

q αα L

P q αα

?=? ()1

1s

H L q

P ααα=?

?=-

-- ??

?

∑ 哈密顿函数 ()1

,s

H

L q

q P

P

α

α

α

αα==-+∑(,q P αα为共轭变量)

()1

1

,s

s

H H

dH

d d q q P P q

P ααα

α

ααα

α

==??=

+

?

?∑

(

)

11

11

,s

s

s

s

L

L

dH

d d d d q

q q q q

P P P q q αααα

αααααααααα====??

???? ?=-+

++

? ?????

?

?∑∑

∑∑ H L q

q

α

α

??=-

?? ③

H q

P αα

?=

? ④ 由拉格朗日得L P q αα

?=

? ⑤

L

P q

αα?=? ⑥

由③④⑤⑥可以得到:

H P

q

αα

?=-

? (广义力)

H q

P αα

?=

? (广义速度) 由哈密顿求解阿特伍德机:

()()21

2

1

1

1

2

1

12

H g g l r m

m x

m x

m x π=

+-

-

--

()12

121H g g g m m

m m x ?=-+=--?

()1

2

1

1

H m m x P x α?=

-=

?

()1

2

1

11H H m

m x

P

x x α????==

+

? ?????

故由哈密顿方程可以得到:

1

2

1

1

1

2

H g m m

x P

m x m α-?=-

→=?+

分析力学的优点:消去“理想约束”减少方程数量,进而减少计算量。 1、 简单易于理解,是从牛顿力学中吸取精华升华而成。

2、 不象牛顿力学那样,用于不同坐标时形式有所不同,其间变换复杂易出错,而且牛顿力

学有多少个研究对象就有多少个方程,需要很繁杂的分析理解过程还有要列出很多很繁杂的方程组,对于系统内研究对象很多的情况下,几乎是没有办法求解的;分析力学从整体入手,纵观全系统,只需找出系统的势能和动能,做出拉格朗日函数并对广义速度和广义坐标求偏导就可以了。

3、 拉格朗日和达朗伯虚功原理以及哈密顿方程既是对牛顿力学的运用,又是牛顿力学的升

级,能简单快捷的解决复杂问题。 4、 较拉格朗日和虚功原理而言,我觉得哈密顿方程又有一定的优越性,至少其可以被定义

H T U =+,而且有意义。

5、 几种方法都有 各自的优点和缺点,我们在运用的时候就应该作适当选择,以简化分析、

运算,提高解题速度和质量。

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

牛顿法求非线性方程的根

学科前沿讲座论文 班级:工程力学13-1班姓名:陆树飞

学号:02130827

牛顿法求非线性方程的根 一 实验目的 (1)用牛顿迭代法求解方程的根 (2)了解迭代法的原理,了解迭代速度跟什么有关 题目:用Newton 法计算下列方程 (1) 013=--x x , 初值分别为10=x ,7.00=x ,5.00=x ; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时 给出结果并分析现象,当6510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k ()x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法。

三 程序设计 (1)对于310x x --=,按照上述数学原理,编制的程序如下 program newton implicit none real :: x(0:50),fx(0:50),f1x(0:50)!分别为自变量x ,函数f(x)和一阶导数f1(x) integer :: k write(*,*) "x(0)=" read(*,*) x(0) !输入变量:初始值x(0) open(10,file='1.txt') do k=1,50,1 fx(k)=x(k-1)**3-x(k-1)-1 f1x(k)=3*x(k-1)**2-1 x(k)=x(k-1)-fx(k)/f1x(k) !牛顿法 write(*,'(I3,1x,f11.6)') k,x(k) !输出变量:迭代次数k 及x 的值 write(10,'(I3,1x,f11.6)') k,x(k) if(abs(x(k)-x(k-1))<1e-6) exit !终止迭代条件 end do stop end (2)对于32943892940x x x +-+=,按照上述数学原理,编制的程序如下 program newton implicit none

(完整word版)拉格朗日方程的应用及举例08讲

1 拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n 个方程,是一个包含n 个二阶常微分方程组,方程组的阶数为2n 。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q 和广义速度q 表示的动能函数和广义力Q 。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。圆盘的盘面和曲杆均放置在水平面上。已知曲杆以匀角速度ω1绕通过O 点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x 和?,x 为圆盘与曲杆接触点到曲杆A 点的距离,?为曲杆OAB 的转角,? = ω1t 。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标

7第5章哈密顿原理

第5章哈密顿原理 如前所述,力学的变分原理的实质是:将真实运动与可能发生的运动加以比较,建立判别准则以区分真实运动和可能的运动。哈密顿原理是通过真实运动与可能的运动在位形空间的位形轨迹加以比较,而哈密顿作用量S 是对不同的位形轨线取不同值的泛函,从而得到对真实运动来讲,哈密顿作用量的变分等于零。 将拉格朗日方程引人哈密顿函数,导出哈密顿正则方程;给出了一种对偶的数学体系,开拓了应用前景;由动力学普遍方程对时间积分,导出一个重要的力学变分原理——哈密顿原理,提出了将真实运动与同样条件下的可能运动区分开来的准则;对于有限过程,提供了一种动力学问题的直接近似解法。 5.1 哈密顿正则方程 哈密顿正则方程是分析力学中又一个重要的力学方程,它与拉格朗日方程等价,是2n 个一阶常微分方程组。我们知道,对于一个质点系统,在建立拉格朗日方程后,重要的问题是研究这个微分方程组的积分,但是求解往往是很困难的。哈密顿正则方程的重要性在于它将n 个二阶微分方程变换为2n 个一阶方程,而且结构对称、简洁,为正则积分理论创造了有利条件。若是说拉格朗日方程对分析力学起着开拓性作用,则哈密顿正则方程对分析力学中的积分理论起着基础的和推动的作用。哈密顿正则方程的重要性还在于在许多理论的定性研究中,并不需要求解微分方程组,而是将二阶微分方程变换为二个一阶方程并应用几何方法求解。 5.1.1 正则方程的建立 对于主动力均有势的k 个自由度的完整约束系统,其拉格朗日方程为 ),,2,1(0d d k j q L q L t j j ==??-???? ???? (5-1) 引入广义动量 ),,2,1(k j q L p j j =??= (5-2) 代入式(5-1),有 ),,2,1(k j q L p j j =??= (5-3) 设拉格朗日函数L 满足条件 0det 2≠??? ? ? ????k j q q L 于是,可由式(5-2)反解出 ),,2,1(),,,,,,(11k j t p p q q f q k k j j == (5-4) 式(5-3)和式(5-4)就把方程(5-1)由k 个二阶微分方程化为2k 个一阶微分方程,其中方程 组(5-4)并非正则形式。引入哈密顿函数

用牛顿迭代法求近似根

用牛顿迭代法求近似根

————————————————————————————————作者:————————————————————————————————日期:

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

哈密顿原理

§7-4 哈密顿原理 人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律. 牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架. 哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架. 哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义. 一、变分法简介 1. 函数的变分. 自变量为x 的函数表示为)(x y y =. 函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化. 函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起

的. 这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ. 与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下: )()0,(),(* x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成 ()()()x x y x y y εηε=?=0,,δ* 在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动. q t d d →函数的微分. 在曲线I 附近, 存在 着许多相邻曲线, 这些曲 线都满足力学系统的约束 条件, 称为可能运动曲线, 它们的方程表示为 ()()()t t q t q εηε+=0,,* 在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ, ()()()t t q t q q εηεδ=?=0,,*

5.7哈密顿原理作业

1 哈哈密密顿顿原原理理作作业业 1.如图示,质量为m 的复摆绕通过某点O 的水平轴作微小振动,复摆对转轴的转动惯量为0I ,质心C 到悬点O 的距离为 ,试用哈密顿原理求该复摆的运动方程及振 动周期。 1.解:取θ为广义坐标,则拉格朗日函数为: θ+θ=-=cos mg I 21 V T L 2 0 其中取悬点O 为零势能点。 于是哈密顿原理0dt L 21t t =δ?可得:0dt cos mg I 2 121t t 20=??? ??θ+θδ? 即:()0dt sin mg I 2 1t t 0=θδθ-θδθ ? 而δθθ-δθθ=δθθ=θδθ 0 000I )I (dt d )(dt d I I 则:()0dt sin mg I )I (dt d dt sin mg I 212 1t t 00t t 0=??? ??θδθ-δθθ-δθθ=θδθ-θδθ ?? 即:()0dt sin mg I I 212 1t t 0t t 0=δθθ+θ-δθθ ? 而0I 21t t 0=δθθ ,δθ取任意值 所以:0sin mg I 0=θ+θ 即:0sin I mg 0=θ+θ 而θ≈θsin ,则:0I mg 0 =θ+θ ,此即为所求的运动方程。 其中角频率0I /mg =ω 所以振动周期)mg /(I 2/2T 0 π=ωπ=。 2.试用哈密顿原理求质量为m 的质点在重力场中用直角坐标系表示的运动微分方程。 2.解:取x,y,z 为广义坐标,则: 体系的动能)z y x (m 2 1 T 222 ++= 势能mgz V =(以地面为零势能点) 拉氏函数mgz )z y x (m 21 V T L 222-++=-=

C语言编程_牛顿迭代法求方程2

牛顿迭代公式 设r 是f(x) = 0的根,选取x0作为r 初始近似值,过点(x0,f(x0)) f(x)的切线L ,L 的方程为y = f(x0)+f'(x0)(x-x0),求出L 与x 轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r 的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x 轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r 的二次近似值。重复以上过程,得r 的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r 的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程 f(x)=0似方法。把f(x)在 x0 f(x) = f(x0)+(x -x0)f'(x0)+(x -x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x -x0)-f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 牛顿迭代法又称牛顿切线法,它采用以下方法求根:先任意设定一个与真实的根接近的值x 0作为第一个近似根,由x 0求出f(x 0),过(x 0,f(x 0))点做f(x)的切线,交x 轴于x 1,把它作为第二次近似根,再由x 1求出f(x 1),再过(x 1,f(x 1))点做f(x)的切线,交x 轴于x 2,再求出f(x 2),再作切线……如此继续下去,直到足够接近真正的x *为止。 ) ()()()(0' 0010 100' x f x f x x x x x f x f - =-= 因此, 就是牛顿迭代公式。 例1 用牛顿迭代法求方程2x 3-4x 2 +3x-6=0在1.5附近的根。 本题中,f(x)= 2x 3-4x 2+3x-6=((2x-4)x+3)x-6 f ’(x)= 6x 2-8x+3=(6x-8)x+3 #include "stdio.h"

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

1哈密顿原理

1哈密顿原理

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中,真实运动的主函数具有稳定值,即对于真实运动来讲,主函数的变分等于0。 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i &来描述,其中i q 是广义坐标,=i q &dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x =,θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和

1哈密顿原理-新版.pdf

牛顿质点动力学 1 牛顿第二定律dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性;局部研究:平均值、动量定理、动能定理;瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。哈密顿原理、保守力及其势 4 五大类典型模型概括: 一个原理:哈密顿原理(稳定性与对称性原理); 哈密顿原理的文字表述如下: 保守的、完整的力学体系在相同时间内,由某一初位形转移到另一已知位形的一切可能运动中, 真实运动的主函数具有 稳定值,即对于真实运动来讲,主函数的变分等于0。二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部)求极限、求导、突变及奇异性研究方法(瞬时) ;

四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法);五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性 1.拉格朗日函数和哈密顿量拉格朗日函数 L 对于一个物理系统,可用一个称为拉格朗日函数的量 ),,(t q q L i i 来描述,其中i q 是广义坐标,i q dt dq i /是广义速 度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上 运动,其坐标显然有x 、y 、z 三个,但广义坐标只有 ,两 个,其中cos sin R x ,cos ,sin sin R z b R y ;一 般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐 标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势 能之差;U T L 哈密顿量H

简单的论述哈密顿原理

简单的论述哈密顿原理 摘要:证明力积分变量与变分无关的情况下积分运算与变分运算次序的可交换性,从不同角度论述了哈密顿原理的含义。 关键词:哈密顿原理,拉格朗日函数,变分,拉格朗日方程 1.引言 哈密顿原理是分析力学中几个重要原理之一,但它不是一个独立原理,它可已从其他原理推导出来,因而可以从不同角度说明它的物理含义。一般理论力学教材都是在拉格朗日方程两边同时乘以虚位移求所有自由度下的虚功之和,然后再求从位形1即(到位形2,即(之间或时间至 之间的作用量得出,最后变换成,并没有说明最后一步为 什么要那样做,也没有说明那样做的意义。本文先证明当积分变量与变分无关的条件下积分运算与变分运算次序的可交换性,然后再从不同角度论述哈密顿原理的意义。 2.理论 2.1变分运算与积分运算次序的可交换性 假定变量由一个或一组函数的选取而确定,则变量称 为函数的泛函,记作[]。泛函由n个函数的形式确定,是函数的“函数”。泛函与函数的概念略有不同,函数中的变量是可以变化的数值,而对于泛函处于自变量地位的是形式可以变化的函数。下面举例说明,如图1中有,两个固定点,连接两个固定点之间的曲线的长度由下式确定,即

显然,依赖于函数的选取,若函数的形式发生变化,则曲线的形状随 之变化,曲线的长度也随之变化。长度就是的 泛函。 下面证明变分运算与积分运算顺序的可交 换性,该泛函只依赖一个函数,即 自变量为的函数表示为。函数的变分是函数的微变量,它与函数的微分有本质有本质的不同,函数的微分,粗略的讲,它是由自变量的变化引起的。而函数的变分不是因为自变量的变化,它是来自函数形式的变化引起,这种由于函数形式变化造成的函数的变化称为函数的变分,记作。与函数临近但形 式与不同的函数有许多。 假设这些函数可以表示为如下的形式: 其中是非常小的参数,是任意给定的可微函数,因时,函 数形式的变化决定于上式的第二项。因此函数的变分写成 引入(2)式的记法(1)可记为 被积函数的形式是已知的,积分的上下限是固定的。当函数 的形式上发生变化时,泛函就会发生变化,这种由于函数形式的变化引起泛函的变化就为泛函的变分,记作。现将被积函数

牛顿迭代法求方程的根

利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理: 牛顿迭代法是牛顿在17世纪提出的一种求解方程f(x)=0.多数方程不存在求根公式,从而求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。 设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标x1=x0-f(x0)/f'(x0),称x1为r的一次近似值,过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴的横坐标 x2=x1-f(x1)/f'(x1)称x2为r的二次近似值,重复以上过程,得r 的近似值序列{Xn},其中Xn+1=Xn-f(Xn)/f'(Xn),称为r的n+1次近似值。上式称为牛顿迭代公式。 /* 用牛顿迭代法求下面方程 x*x*x-5*x*x+16*x-80=0的实根的过程是:

拉格朗日方程的应用及举例08讲

拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n个方程,是一个包含n个二阶常微分方程组,方程组的阶数为2n。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q和广义速度q 表示的动能函数和广义力Q。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1已知质量为m,半径为r的均质圆盘D, 沿OAB直角曲杆的AB段只滚不滑。圆盘的盘面和曲 杆均放置在水平面上。已知曲杆以匀角速度 1绕通过 O点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x和 ,x为圆盘与曲杆接触点到 曲杆A点的距离, 为曲杆OAB的转角, = 1t。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标标准

利用牛顿迭代法求解非线性代数方程组

利用牛顿迭代法求解非线性代数方程组 一、 问题描述 在实际应用的很多领域中,都涉及到非线性方程组的求解问题。由于方程的非线性,给我们解题带来一定困难。牛顿迭代法是求解非线性方程组的有效方法。下面具体对牛顿迭代法的算法进行讨论,并通过实例理解牛顿迭代法。 二、 算法基本思想 牛顿迭代法求解非线性代数方程组的主要思想是将非线性函数线性化。下面我们具体讨论线性化过程: 令: ()()()()?? ?? ????????=????? ???????=????????????=0000,,2121 n n x x x x x f x f x f x F (3-1) 则非线性方程组(3-2) ()()()0 ,,,0 ,,,0,,,21212211===n n n n x x x f x x x f x x x f (3-2) 可写为向量形式 ()0=x F (3-3) ? ()0=x F 成为向量函数。

设()()() ()k n k k x x x ,,,2 1 是方程组(3-2)的一组近似解,把它的左端在()()() ()k n k k x x x ,,,2 1 处用多元函数的泰勒展式展开,然后取线性部分,便得方程组(3-2)得近似方程组 ()()() ( ) ()()() () ()()()() ( )()()() () ()()() () ( ) ()()() () ()0 ,,,,,,0 ,,,,,,0 ,,,,,,1 21211 2122121 211211=???+=???+=???+∑∑∑===k j n j k n k k n k n k k n k j n j k n k k k n k k k j n j k n k k k n k k x x x x x f x x x f x x x x x f x x x f x x x x x f x x x f (3-4) 这是关于()()()n i x x x k i i k i ,,2,1 =-=?的线性方程组,如果它的系数矩阵 ????????? ???????????????????????????????n n n n n n x f x f x f x f x f x f x f x f x f 2 1 2221 2121 11 (3-5) 非奇异,则可解得 () ()()???? ?? ? ???????---?????????? ??????????????????????????????=?????????????????-n n n n n n n k n k k f f f x f x f x f x f x f x f x f x f x f x x x 21 1 2 1 2221 2121 11 21 (3-6) 矩阵(3-5)称为向量函数()x F 的Jacobi 矩阵,记作()x F ' 。又记

哈密顿原理

哈密顿原理 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

牛顿质点动力学 1 牛顿第二定律 dt d p f 从三个方面来应用: 全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性; 2 重点研究非惯性、矢量性、连续性、相对性的问题; 3 从动力学观点上升到能量的观点。 哈密顿原理、保守力及其势 4 五大类典型模型 概括: 一个原理:哈密顿原理(稳定性与对称性原理); 二种建模方法:动力学方法、能量法; 三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时); 四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法); 五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。(科学计算技术与研究式的学习模式) 哈密顿原理、对称性和稳定性

1.拉格朗日函数和哈密顿量 拉格朗日函数L 对于一个物理系统,可用一个称为拉格朗日函数的量),,(t q q L i i 来描述,其中i q 是广义坐标,=i q dt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中?θcos sin R x = , θ?θcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义 坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。 在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差; U T L -= 哈密顿量H 物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和 ),,(t p q H i i =U T +(i=1,2…s ) 其中 )(/i i q L p ??=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可写成v p m =。作用量I 定义为 ?=2 1 t t Ldt I 其中,积分上下限是质点初末态I q 、F q 对应的时间。 2.哈密顿原理及轨道稳定性

牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究 摘要:牛顿迭代法是求解非线性方程的根的常用方法。在实际计算中往往会遇到重根情况,针对这种情况,我们在牛顿迭代法的理论基础上,探讨了三种不同的迭代格式。为了对比这三种方法,本文进行了两个实验,分别是含有重根的非线性方程求解问题实例和牛顿迭代法在求解购房按揭利率的应用实例。在分析运算结果后,得出了三种算法优势和劣势。 关键词:牛顿迭代法;MA TLAB;重根 Abstract:Newton iteration method is a common method to solve the roots of nonlinear equations. In order to solve this problem, we discuss three different iteration schemes based on Newton iteration method. In order to compare the three methods, two experiments are carried out in this paper, one is the solving of nonlinear equations with heavy roots, and the other is the application of Newton iteration method in solving house mortgage interest rate. The advantages and disadvantages of three algorithms are obtained after analyzing the results. Key words:Newton iterative method;MA TLAB;Root weight

5第3章拉格朗日方程

第3章拉格朗日方程 以动力学普遍方程为基础,拉格朗日导出了两种形式的动力学方程,分别称为第一类和第二类拉格朗日方程。将达朗贝尔原理与虚位移原理相结合,建立起动力学普遍方程,避免了理想约束力的出现;再把普遍方程变为广义坐标形式,进一步转变为能量形式,导出了第二类拉格朗日方程,实现了用最少数目的方程描述动力系统;应用数学分析中的乘子法,采用直角坐标形式的普遍方程和约束方程而建立的一组动力学方程,是第一类拉格朗日方程,便于程式化处理约束动力系统问题。拉格朗日方程是分析力学得以发展之源。 3.1 第二类拉格朗日方程 第二类拉格朗日方程是分析力学中最重要的动力学方程,它给出动力学问题一个普遍、简单而又统一的解法。拉格朗日方程只适用于完整约束的质点系。 3.1.1 几个关系式的推证 为方便起见,在推导拉格朗日方程前,先推证几个关系式。 质点系由n个质点、s个完整的理想约束组成,它的自由度数为k= 3n–s,广义坐标数与自由度数相等。该系统中,任一质点M i的矢径r i可表示成广义坐标q1,q2,…,q k和时间t的函数,即 r i=r i(q1,q2,…,q k,t) i=1,2,…,n 它的速度 (3-1) i=1,2,…,n 式中称为h个广义坐标的广义速度,分别为广义坐标和时间的函数,与广义速度没有直接的关系。式(3-1)对求偏导数,则有 (3-2) 这是推证的第一个关系式,它表明,任一质点的速度对广义速度的偏导数等于其矢径对广义坐标的偏导数。为推证第二个关系式,将式(3-1)对广义坐标q j求偏导数, 或 (3-3) 这是第二个关系式,它表明,任一质点的速度对广义坐标的偏导数等于

用牛顿迭代法求解近似根

第四题 题目:用Newton 法求方程在 74 28140x x -+= (0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001). 解:此题是用牛顿迭代法求解近似根的问题 1. Newton 迭代法的算法公式及应用条件: 设函数在有限区间[a,b]上二阶导数存在,且满足条件 ⅰ. ()()0f a f b <; ⅱ. ()''f x 在区间[a,b]上不变号; ⅲ. ()'0f x ≠; ⅳ. ()()'f c f c b a ≤-,其中c 是a,b 中使()()''min(,)f a f b 达到的一个. 则对任意初始近似值0[,]x a b ∈,由Newton 迭代过程 ()()() 1'k k k k k f x x x x f x +=Φ=-,k=0,1,2… 所生成的迭代序列{ k x }平方收敛于方程()0f x =在区间[a,b]上的唯一解а. 对本题: )9.1()9.1(0 )8(4233642)(0 )16(71127)(0 )9.1(,0)1.0(,1428)(3225333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ???='-=+9.1)()(01x x f x f x x k k k k 2. 程序编写 #include #include void main() { double x0,x=1.9; do

{ x0=x; x=x0-(x0*x0*x0*x0*x0*x0*x0-28*x0*x0*x0*x0+14)/(7*x0*x0*x0*x0*x0*x0-28*4*x0*x0 *x0); } while(fabs(x-x0)>1e-5); printf("x=%f",x); } 3.打印结果 4.讨论分析 A.要用误差范围来控制循环的次数,保证循环的次数和质量。 B.编写程序过程中要注意标点符号的使用,正确运用适当的标点符号。C.Newton迭代法是局部收敛的,在使用时应先确定初始值。

相关主题