搜档网
当前位置:搜档网 › 地铁牵引供电系统钢轨电位越限问题简析

地铁牵引供电系统钢轨电位越限问题简析

地铁牵引供电系统钢轨电位越限问题简析
地铁牵引供电系统钢轨电位越限问题简析

地铁牵引供电系统钢轨电位越限问题简析

成都地铁1号线于2010年9月开始试运营,从2011年10月开始,地铁1号线世纪城站至金融城站钢轨电位限制装置动作较频繁,且世纪城站电压型框架保护越限告警,针对该故障现象,我们展开了一系列的专项检查,并做了简要分析。

一、影响钢轨电位的因素

影响钢轨电位的因素很多且较复杂,可通过钢轨电位简单数学模型来讨论分析。

假设l)走行轨的纵向电阻是均匀分布的;

2)轨道对地的过渡电阻和土壤电阻也是均匀分布的;

3)排流网结构电阻是均匀分布的;

4)馈电线路的阻抗忽略不计。

建立轨道一排流网一大地的电阻分布网络如图所示。

根据网络分布图建立数学模型,经基尔霍夫电压、电流定律推导得出钢轨上任一点处电压方程如下,设变电所一端坐标。

,其中,为轨道对埋地金属结构的过渡电阻,;设为埋地金属结构对地的过渡电阻,;为走行轨的电阻,;为埋地金属结构电阻,;为走行轨在处的电压,V;为走行轨在处的电流,A;为轨道泄漏的杂散电流,A;为测量点距变电所的距离,km;为机车距变电所的距离,km;为列车取流电流,A。方程中常数A、B与列车取流有关。

通过模型分析计算,我们知道钢轨对地电压与列车取流、钢轨纵向电阻、轨地过渡电阻存在理论性的变化规律。

成都地铁1号线处于运行初期,牵引网电压较高、行车间隔大,根据牵引供电模拟计算可知,正常运行方式与非正常运行方式下钢轨电位均未达到90V。从动作情况可知,钢轨电位限制装置在2011年度中仅于10月30日后开始动作,且动作较频繁。因此,初步判断可能存在的原因有:设备本身故障;回流网电阻突增;牵引网正极对地或负极有泄露。针对以上情况,供电专业展开了专项检查和相应的处理。

二、检查处理措施

地铁牵引供电系统

地铁牵引供电系统保护 来源:中国论文下载中心 [ 08-12-11 10:20:00 ] 作者:黄德胜编辑:studa0714 【摘要】作者根据自己的实践经验,提出牵引变电所两种不可或缺的保护:牵引变电所内部联跳、因馈线开关没有远后备保护,故应设开关失灵拒动保护。迅速切断电源是一切继电保护的最终目的,直流电路尤其如此。为迅速切断电源,在短路电流上升过程中将其遮断,是直流保护应当遵循的基本原则。文中分析了三种保护上“死区”形成的原因,为使馈线开关保护更加完善,直流馈线应设开关失灵拒动保护,以使列车运行更加安全。 【关键词】牵引变电所内部联跳馈线开关开关失灵拒动短路电流死区。 一、概述 地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源, 既当牵引网发生短路时, 并非仅双边供电两侧的牵引变电所向短路点供电, 而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区, 是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时, 首先要迅速“切断电源”、“消除死区”, 针对这两点, 牵引供电系统除交流系统常用的保护外, 还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt △I 等特殊保护措施, 这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。对任何供电系统的继电保护而言, 可靠性总是第一位的, 而对直流牵引供电系统, 速动性可以看成和可靠性是同等重要的, 所以直流侧保护皆采用毫秒级的电器保护设备, 如直流快速断路器、di/dt △I 保护等, 目的就是在直流短路电流上升过程中将其遮断, 不允许短路电流到达稳态值。至于选择性, 在直流牵引供电系统中则处于次要位置, 其保护的设置应是“宁可误动作, 不可不动作”。误动作可以用自动重合闸进行矫正; 不动作则很可怕, 因为牵引供电系统短路时产生的直流电弧, 如不迅速切断电源,电弧可以长时间维持燃烧而不熄灭; 而交流电弧则不同, 其电压可以过零而自动熄灭。 关于地铁牵引供电系统的常用保护,已为业内人士所熟知,这里不再多作介绍。下面谈一下容易被人忽视的两种保护。 二、引变电所内部联跳保护 牵引变电所内部联跳的定义:当发生短路故障引起两台整流机组直流引入断路器或交流断路器同时跳闸时,应迅速跳掉全部直流馈线断路器,以及时切断电源。见图(01)

香港地铁直流牵引供电系统钢轨电位限制装置的设计

香港地铁直流牵引供电系统钢轨电位限制装置的设计 摘要:在香港地铁直流牵引供电系统中,钢轨对地绝缘安装,被用作直流牵引电流的负极回流通路。为了保障乘客的安全,在钢轨和地之间安装了钢轨电位限制装置,当钢轨电位超过预定的值时,钢轨电位限制装置将钢轨电位钳制到地电位。本文根据作者在香港地铁直流牵引供电系统设计中的实际经验,对钢轨电位限制装置的系统结构和设计原理进行介绍。关键词:钢轨电位限制装置、晶闸管 一、前言 在香港地铁直流牵引供电系统中,钢轨对地绝缘安装,被用作直流牵引电流的负极回流通路。因此,钢轨对地有时存在高电位,而列车与钢轨之间是等电位的,当乘客站在站台时,有可能通过列车车体接触到这一高电位。特别是在站台上安装了站台屏蔽门之后,由于站台屏蔽门直接与钢轨连接,更增加了乘客接触钢轨高电位的机会。为了保障乘客的安全,在钢轨或负母排和地之间安装了钢轨电位限制装置。 二、系统构成及装置特性 钢轨电位限制装置安装在牵引变电所和车站内,用来将钢轨的电位限制在预定的范围内。同时,在接触导线对故障电流回流线或地短路时,钢轨电位限制装置还可提供故障电流的回流通路,使得相应的直流馈线断路器可以识别故障并快速分断以清除故障。系统构成如图一所示。

图一系统构成 钢轨电位限制装置监视钢轨与地之间的电压,如果该电压超过预定的值,钢轨电位限制装置动作,将钢轨通过钢轨电位限制装置接地,同时,钢轨电位限制装置监视钢轨与地之间的电流,当该电流低于预定的值时,钢轨电位限制装置将自动复位,断开钢轨对地的连接。 在香港地铁工程中,钢轨电位限制装置的设计主要采用了晶闸管加接触器的技术,如图一所示。在钢轨对地方向和地对钢轨方向设置两组晶闸管,利用电压检测电路和触发脉冲电路来产生触发脉冲和控制信号去触发两组晶闸管的导通以及控制接触器的闭合。通过控制电路来调节预定的电压值和相应的延时时间。通过电流检测电路,当电流低于预定值时使钢轨电位限制装置自动复位,电流值也可以在一定范围内进行设置。此外,该装置还提供了工作状态、报警信号、操作次数等信号用来完成当地指示和远方显示功能。 三、设计原理分析 由于采用了晶闸管技术,确保了当钢轨上出现高电位时,晶闸管可在极短的时间内被触发导通并能承受很大的初始故障电流,使得整个系统更加安全、可靠。接触器在设计上主要考虑能承受长时间的电流而不发生过热并能确保晶闸管可靠地断开。 因为当直流牵引供电系统中接触导线对钢轨或地短路时,会有很大的初始故障电流流过钢轨电位限制装置,而此时晶闸管首先被触发导通来承受该电流,如何考虑晶闸管的额定值就成

地铁1号线供电系统设计

(此文档为word格式,下载后您可任意编辑修改!) 工作总结 地铁牵引供电系统设计 分校(站、点):国顺 年级、专业:08秋机电一体化 教育层次:大专 学生姓名:朱臻 指导教师:李杰 完成日期: aufwiedesan

目录 一、牵引站一次系统 (3) 二、牵引供电系统各主要设备介绍 (5) (一)交流系统 (5) (二)整流器 (6) (三)直流高速断路器 (9) (四)中央信号屏…………………………………………………………………… 11 参考文献…………………………………………………………………………… 14 致谢……………………………………………………………………………… 15

地铁牵引供电系统设计 随着城市的发展,轨道交通越来越离不开人们的日常生活,上海地铁的客流也与日聚增,而供电系统在整个地铁运营中则起着举足轻重的作用。地铁供电系统主要可分为:主变电系统,牵引供电系统和车站及附属设备供电系统(降压站)三大部分,主变电系统就是将电网的110KV高压电转换为33KV 和10KV供牵引和降压站。牵引供电系统(以下简称牵引站)要求:供电安全系数高,能适应地铁列车大密度、高频率启动和制动,相邻供电区域间必须没有无电区域。因此,上海地铁采用了33KV的交流高压电通过整流器转为1500V的直流电并送到触网为列车供电技术。下面就以92年建成的地铁一号线衡山路牵引站为例作一下系统的介绍。 一、牵引站一次系统 地铁供电系统不同于一般的工业和民用电,属于一级负荷,对安全性和可靠性有着较高的要求,所以牵引站也是按照上述要求来设计的。衡山路牵引站33kv有两条回路供电,分别是上衡牵和广衡牵33KV进线开关,平时上衡牵运行,广衡牵作备用:采用西门子公司制造的GIS(六氟化硫全封闭高压开关柜)组合式开关柜,比传统高压柜占地面积小,可靠性高,维护工作也大大减少。 本牵引站由两台4.4MVA整流变压器将33KV降到1220V并送往整流器,采用干式双绕组变压器,一次侧为Dd0接法,有利于简少谐波干扰;二次侧为DY5接法利用三角形和星形互差30度的特点组成交流6相整流电路通过整流以后得到12脉波直流电,比一般三相6脉波整流电路大大减少了脉动系

地铁钢轨电位限制装置Ⅲ段频繁动作分析研究

地铁钢轨电位限制装置Ⅲ段频繁动作分析研究 文章就某沿海城市地铁1号线部分车站的钢轨电位限制装置Ⅲ段频繁动作进行研究,从钢轨电位的影响因素分析,找出可能影响钢轨电位限制装置Ⅲ段频繁动作的原因,并提出相对应的治理措施。 标签:钢轨电位;钢轨电位限制装置;回流系统;暂态参数;功率分配 Abstract:This paper studies the frequent movement of rail over-voltage protection device (OVPD)Ⅲsection in some stations of Metro Line 1 in a coastal city. From the analysis of the influencing factors of rail potential,the reasons that may affect the frequent movement of rail over-voltage protection device Ⅲsection are found out and the corresponding control measures are put forward. Keywords:rail potential;rail over-voltage protection device (OVPD);reflux system;transient parameters;power distribution 1 概述 目前国内各城市地铁均采用直流750V或1500V供电,电客车通过接触网或接触轨取流,牵引电流通过走行轨返回牵引变电所整流机组负极。由于钢轨自身存在阻抗及杂散电流的影响,在钢轨上产生电压降落,即为钢轨电位。钢轨电位的产生主要会造成以下3点危害:(1)危及乘客人身安全;(2)钢轨正向平均电位越高,杂散电流会越大,从而加快杂散电流对土建结构钢筋、设备金属外壳及地下金属管线产生腐蚀;(3)造成轨旁设备如屏蔽门、转辙机出现频繁打火放电现象,严重时可导致直流框架保护动作,引起大规模停电。因此为了限制钢轨电位,在工程设计时采用在车站变电所设置钢轨电位限制装置(Rail Over-V oltage Protection Device,OVPD),其一端接钢轨,另一端接地母排,内设置隔离开关,在正常运行状态下是隔离开关处于分位,当OVPD内部控制器检测到钢轨和接地母排之间的电位差达到整定电压值时,OVPD合闸,将钢轨和地短接,达到设定的延迟时间后自动断开。某沿海城市地铁1号线根据欧标提供的人体耐受曲线要求,当电位到150V人体的耐受时间为300s,从而将整定电压值设置为三段:Ⅰ段整定值为120V,Ⅱ段整定值为150V,Ⅲ段整定值为500V。下文就某沿海城市地铁1号线部分车站的钢轨电位限制装置Ⅲ段频繁动作进行分析研究。 2 钢轨电位的影响因素 表1为在一段运行期间有电客车或没有电客车运行时,部分车站变电所的OVPD Ⅲ段动作记录情况。从表中可以看出,吕厝站和湖滨东路站的OVPD 直接跳过Ⅰ段和Ⅱ段,Ⅲ段直接动作,甚至吕厝站在有电客车经过时处于长时间合闸状态。现从影响钢轨电位的主要因素(回流系统的通畅性、系统功率分配情况对钢轨电位的影响、回流系统暂态参数影响和排流对钢轨电位影响)进行分析。

地铁直流牵引供电系统馈线保护方法研究.

现代电子技术年第期总第期!通信与信息技术" 地铁直流牵引供电系统馈线保护方法研究 丁丽娜!韩红彬 西南交通大学电气工程学院" 摘 四川成都 #$%%&$’ 要(针对目前国内地铁直流馈线保护方法不是很成熟!本文介绍了地铁直流牵引供电系统中采用的几种直流馈线 保护方法!详细分析了大电流脱扣保护)*电流上升率及电流增量保护.过流保护.双边联跳保护.接触网热过负荷保,+*-护!自动重合闸保护的基本保护原理!并举例说明了如何通过对电流上升率!电流增量/和电流上升持续时间-的测量来区分故障情况和正常运行情况)为地铁馈线保护的配置提供了理论基础) 关键词(馈线0直流0保护0地铁 3 中图分类号(12&$45 文献标识码(6文章编号($%%&8&2%%:’%%5%&9" ;<=<>?@ABCD?BE<@EFBCGPQRS?>@EFBC LMTTUPLP=E

地铁直流牵引供电系统保护 王振朴

地铁直流牵引供电系统保护王振朴 发表时间:2019-04-11T11:20:09.453Z 来源:《基层建设》2019年第3期作者:王振朴 [导读] 摘要:近年来,随着我国经济的发展和综合国力的不断增强,我国的科学技术水平不断的提升,这促使了地铁开始广泛的在我国的各个城市开始使用,使得地铁越来越成为城市交通不可或缺的工具。 石家庄市轨道交通有限责任公司河北石家庄 050000 摘要:近年来,随着我国经济的发展和综合国力的不断增强,我国的科学技术水平不断的提升,这促使了地铁开始广泛的在我国的各个城市开始使用,使得地铁越来越成为城市交通不可或缺的工具。在地铁的使用过程中,直流牵引供电是地铁正常运行的关键,在很大程度上决定着地铁运行中供电的安全性和可靠性。因此,加强对于地铁直流牵引供电系统的重视程度至关重要。本研究便是从这个角度出发,对地铁直流牵引供电系统保护进行简要的概述,并将重点阐述牵引变电所内的直流主保护、死区的形成以及地铁直流牵引供电系统保护的方式。 关键词:地铁;直流牵引供电;系统保护 前言: 随着地铁在各个城市的广泛普及,如何更好的保证地铁行驶过程中供电的安全性和可靠性成为相关研究人员以及广大公民非常关注的问题。目前地铁上广泛使用的供电方式为地铁直流牵引供电,因此为了对地铁供电有更好的了解,更进一步的促进我国地铁供电系统的发展,对于直流牵引供电系统的故障形式、存在的问题、死区的形成进行深度的学习至关重要,并且要对地铁牵引变电所内的直流主保护和地铁直流牵引供电系统保护的方式有深入的了解。 1.地铁直流牵引供电系统保护概述 1.1 牵引变电所内的直流系统的故障形式 牵引变电所内的直流系统发生的故障的形式主要包括短路故障、过压故障以及过负荷故障等,其中短路故障是最基本的一种故障形式,对于地铁直流牵引供电系统的运行产生着非常大的影响。一般来说,在地铁运行的过程中,为了保障地铁运行的安全性和可靠性,要尽可能的消除故障,这就要求在短路故障发生时,要采取合理及时的措施将短路区域的死区尽可能的消除,并且要关闭短路地区的电源。由于牵引变电所内的直流系统是多电源多死区的,这就给地铁运行过程中的短路故障的消除增加了难度,因此,如何快速准确的消除短路故障成为地铁直流牵引供电系统保护故障消除的关键问题。 1.2 地铁直流牵引供电系统保护存在的问题 目前我国的地铁直流牵引供电系统保护已经发展的非常的成熟,在很大程度上促进了我国地铁的发展,但是其仍然存在着一些问题需要解决。比如,当多辆地铁在相隔较短的时间内启动时,地铁直流牵引供电系统保护可能会出现跳闸现象,其主要原因是因为当一辆地铁启动时,地铁直流牵引供电系统保护中的电流会上升,这时地铁直流牵引供电系统保护会进行限流保护,如果在限流保护的时间段内另一辆地铁开始启动,则可能因为电流过大而造成地铁直流牵引供电系统保护跳闸。目前这个问题得到了相关研究人员的广泛关注,但是还没有找到合适的解决方案。 2.牵引变电所内的直流主保护 2.1 电流上升率保护 在地铁牵引变电所内的直流主保护中,电流上升率保护是非常关键的一项。所谓电流上升率保护,是一种广泛的应用在中端短路主保护和远端短路主保护中的保护方式,其能够准确的辨别出地铁运行过程中的中端电流、远端电流和正常电流,因此广泛的应用在中端短路故障和远端短路故障的消除过程中,为地铁的正常运行发挥着重要的作用。一般来说,随着地铁运行时间的增加,近端短路电流、中端短路电流、远端短路电流以及受电弓过接触网分段都会增加,但是增加的速度不尽相同,这也是牵引变电所内的直流主保护判断是否发生跳闸的主要依据。 2.2 大电流脱扣保护 除了电流上升率保护外,在地铁牵引变电所内的直流主保护中还有非常关键的一项就是大电流脱扣保护。一般来说,大电流脱扣保护主要应用在近端短路故障中,其工作的主要原理是在断路器内设置相应的短路故障保护系统,即设置一种脱扣方式来对短路故障进行判断和保护,当流经的电流超过相应的设定值时,脱扣器会判定出电流故障,然后进行跳闸来保护供电系统。在脱扣器工作的过程中,设置的跳闸设定值一般是根据实验和计算分析得到的比较合理的数值,这样才能够保证脱扣器跳闸的合理性。 3.死区的形成 3.1 大双边供电死区发生在中点附近 在地铁的直流牵引供电系统保护中,由于供电的方式、供电的保护方式等的不同,地铁直流牵引供电系统保护的死区的形成也是不相同的,其中主要的一种形成的死区就是发生在中点附近的大双边供电死区。实际上,由于双边供电的本身特性,大双边供电一般是不会发生死区的,因为当其中的一边发生故障时,另一边就会自动进行保护跳闸,从而防止了大双边供电死区的发生。但是,如果采用大电流双边供电,跳闸保护装置的反应时间不足就容易导致大双边供电死区的发生,并且这个供电死区一般发生在中点附近。 3.2 单边供电死区发生在末端 在地铁的直流牵引供电系统保护中,另外一种常见的死区就是发生在末端的单边供电死区。一般来说,单边供电死区的范围与地铁直流牵引供电的供电距离以及开关的整定值有关,并且是正相关的关系,即当地铁直流牵引供电的供电距离较小时,单边供电死区的范围就较小,当地铁直流牵引供电的供电距离较大时,单边供电死区的范围就较大;当地铁直流牵引供电的开关的整定值较小时,单边供电死区的范围就较小,当地铁直流牵引供电的开关的整定值较大时,单边供电死区的范围就较大。因此,在地铁的直流牵引供电系统保护中,要注意对于地铁直流牵引供电的供电距离以及开关的整定值的设置 3.3 地铁主保护不能断弧形成的死区 除了以上两点外,在地铁的直流牵引供电系统保护中还有一个非常常见的死区形式就是地铁主保护不能断弧形成的死区。地铁主保护不能断弧形成的死区的范围为整个地铁空间,所以这种死区的形成对于乘客的生命安全会造成很大的威胁,因此在地铁运行的过程中,要尽可能的采取措施来避免这种死区的产生,这就要求地铁直流牵引供电系统保护中各个单元的相互协调和配合。一般来说,地铁直流牵引

框架故障保护与轨电位限制装置

框架故障保护与轨电位限制装置 每座牵引变电所在负极柜内设一套低阻抗框架泄漏保护装置,用于防止直流设备内部绝缘损坏闪络时造成人身危险。其原理示意图见图1。由图可知,框架故障保护主要由一个测量泄露电流的元件和一个电压监视元件组成。 用于漏电流监测的分流器—端接地,通过隔离放大器测量漏电流在其两端产生的电压;电压监视通过隔离放大器测量回流钢轨与保护地之间的电位差,可设定报警和触发跳闸参数 在漏电流监测中,采用绝缘方式安装的直流开关设备通过一分流器后接保护地,分流器允许通过的短路电流值按可达100kA考虑。触发跳闸保护的门限值应可调。

在电位差监视中,触发断路器跳闸所遵循的允许接触电压特性曲线符合相关规定;框架故障保护系统的响应比电压继电器陕得多,响应时间与被监视电压的幅度大小无关。 如果另外还有一单独的钢轨电位限制装置将运行轨与保护地短接,则电位差监视选件跳闸信号将延时产生,以使能在二者之间进行选择。 一般要求所有的直流设备(包括整流器和迷流收集装置)机柜安装与地绝缘,通过一个分流器接地,通过采集该分流器的电流值作为框架故障保护的启动条件。 钢轨电位限制装置主要用于保护乘客和运营管理人员的安全,使他们免受存在于车体(运行轨道)和建筑物(车站、车场和梁体)之间的高接触电压的伤害。当发生超出安全许可的接触电压时,钢轨电位限制装置就将钢轨与大地短接,从而保证人员和设施的安全。 钢轨电位限制装置主要由多级电压测量元件和短路复合开关组成,其保护原理示意图见图2。短路复合开关电路由直流接触器和晶闸管并联组成。

正常情况下,直流接触的触头是开断的,晶闸管元件也处于不导通状态。钢轨与大地之间的电压宜由三级独立的电压测量元件(分别用u>、u>>,和u>>>,符号代表)来检测、显示和判断。 在装置检测到的电压小于电压测量元件的整定跳闸值,钢轨电位限制装置的短路复合开关将保持开断状态。当检测到的接触电压大于或等于电压测量元件u>的阀值,则经过一段可调整的延时后,该装置短路复合开关的闭合即将钢轨与大地进行有效短接。如果检测到的接触电压大于或等于电压测量元件u>>的阀值,则该装置短路复合开关将无延时合闸。一旦检测到的接触电压大于或等于电压测量元件u>>的阀值,则复合开关将通过晶闸管元件加速合闸,直流接触器也将无延时合闸。 当钢轨电位限制装置达到预先设定的连续短路次数后,该装置进入闭锁状态(恒定合闸状态)。

地铁牵引供电系统运行仿真的研究

地铁牵引供电系统运行仿真的研究 发表时间:2017-10-23T14:11:00.087Z 来源:《电力设备》2017年第17期作者:何涛李培强[导读] 摘要:介绍了地铁牵引供电系统的构成,并阐述了24脉波整流器的工作原理,并基于Matlab/Simulink仿真软件,对系统进行电气建模。所建模型包括牵引变压器、接触网、制动斩波、逆变电路等单元,控制方法采用恒压频比的V/F方法,通过列车在不同的运行状态下,列车牵引电机的转速和牵引变电站的取流的变化规律验证模型的准确性和有效性。 (福建工程学院信息科学与工程学院福建福州 350118) 摘要:介绍了地铁牵引供电系统的构成,并阐述了24脉波整流器的工作原理,并基于Matlab/Simulink仿真软件,对系统进行电气建模。所建模型包括牵引变压器、接触网、制动斩波、逆变电路等单元,控制方法采用恒压频比的V/F方法,通过列车在不同的运行状态下,列车牵引电机的转速和牵引变电站的取流的变化规律验证模型的准确性和有效性。关键词:牵引供电系统;24脉波整流;V/F控制 引言 由于地铁牵引供电系统的特殊性,输电线路以及机车运行方式多样,采取大规模的试验研究方法不仅会消耗大量的财力和物力,而且往往会受各方面因素的制约而难以实施。计算机仿真软件不仅可以降低研发的危险性和开支,还可以模拟试验无法进行的列车运行状态,为研究整个系统提供了有力的支持。 地铁牵引供电系统主要包括:牵引变电所、牵引网和电动车组,其中牵引网由馈电线、接触网、走行轨及回流线等构成。牵引变电所是地铁牵引供电系统的核心,将35KV或者10KV三相高压交流电变成1500V或者750V低压直流电。馈电线将牵引变电所的直流电送到接触网上,电动车辆通过其受电弓与接触网的直接接触而获得电能,走行轨构成牵引供电回路的一部分,回流线将轨道回流引向牵引变电所。 1.地铁牵引供电系统建模 1.1牵引变电所建模 牵引变电站的交直流变换过程是地铁牵引供电系统中的关键环节。它一般采用两台牵引变压器和四台整流器构成整流机组将外部电源接入的中压35KV或者10KV交流电转换成1500V或者750V直流电。本文以地铁牵引供电系统中的10KV等级牵引变压器为例,其连接方式是Dy11d0:将一次侧绕组接成三角形分别移相+7.5°和-7.5°,二次侧绕组分别接成星型和三角形。 目前为了提高直流电的供电质量,尽可能的减少谐波对电网的影响,地铁大多数采用等效12脉波或者24脉波整流器。每台整流变压器由两个6脉波桥式整流器以并联方式来构成12脉波桥式整流器。而24脉波整流器则由两个12脉波整流器并联组成。通过在Matlab/Simulink 环境下建立牵引变压器模型和整流器模型,采用两台整流机组并联运行构成二十四脉波整器,通过牵引变压器空载输出电压可计算整流机组输出的空载直流电压为: Ud-整流机组空载输出电压;p-整流器脉波数;U2-牵引变压器空载输出电压。空载电压波形在一个交流周期内脉动24次,每个波动的间隔为15°。整流机组输出的空载直流电压为825V,与计算所得的输出电压基本相符。 1.2接触网建模 在Matlab/Simulink仿真模型中,一般利用Pi Section Line模块来构建作为直流输电线路的接触网。本文通过改变列车受电弓与牵引变电所之间接触网的阻值来模拟列车的运行动态。 1.3地铁机车及传动系统建模 地铁机车负荷主要包括机车牵引负荷(三相交流牵引电机)、机车辅助负荷、车厢负荷三部分构成。由于机车牵引负荷占总负荷的约80%,因此本文的列车模型以牵引电机为主体,它还包括逆变电路单元、滤波单元、以及制动单元模块。 1.4基于稳态模型的恒压频比的控制策略 基于文章篇幅的限制,本文采用交流电机变频调速最基本的控制方式----恒压频比控制。为了在调速中有效利用电机,在整个调速范围内的电机的气隙磁场都应保持适当的强度。磁场过弱或者过于饱和都不能充分利用电机。三相异步电机定子绕组每相感应感应电动势的有效值为 式中Ψg为气隙磁链。由式(3)可知气隙磁链与Eg/ f1成正比,也就是说只要协调好控制电压和频率便达到控制气隙磁场的目的。本文只考虑基频以下的调速,此刻定子阻抗压降较小时可认定电压幅值Us≈Eg,因此Us/f1=常值时便可近似的认为气隙磁链不变。 2.地铁牵引供电系统仿真模型 地铁牵引变电站的站间距离一般为0.8km-3km左右,机车通过该距离所需要的时间在1min-5min。在此区间内,机车首先启动加速行驶,在达到一定速度时采用惰行方式滑行,最后采用制动方式停车进站。地铁机车在稳态运行时采用双边供电回路,因此基于之前介绍的各个模块单元,通过Matlab/Simulink搭建成电路单元并进行封装,最后组成能够模拟列车稳态运行的直流牵引供电系统。 3.仿真结果及分析 3.1 仿真结果 由于实际情况和研究重点的限制,本文在仿真中做了如下假设:

地铁直流牵引供电系统

地铁直流牵引供电系统 地铁直流牵引供电系统GB 10411--89 1 主题内容与适用范围 1.1 主题内容 本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电 在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压 指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式 指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所 供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组 整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级 根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流 在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。 3.10 接触网最大短路电流 在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 未端电压 接触网中离馈入点最远端的电压。 3.12 馈线 从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电 一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。

浅谈地铁直流牵引供电系统保护

浅谈地铁直流牵引供电系统保护 ◆岳宏波 南京地下铁道运营分公司 【摘 要】随着地铁系统的快速发展,直流牵引供电系统得到了越来越广泛的应用,研制高性能和可靠的直流保护是十分紧迫的。本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法。 【关键词】直流 保护 地铁 随着我国国民经济的持续发展,城市交通日趋紧张。而地铁成为解决大中城市交通拥挤问题的最佳方案。在地铁牵引供电系统中有以下几种主要的直流馈线保护:大电流脱扣保护、di/dt电流上升率及电流增量保护、过流保护、双边联跳保互、接触网热过负荷保护、自动重合闸保护。针对目前国内地铁直流馈线保护方法不是很成熟,本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法,详细分析了大电流脱扣保护。di/dt电流上升率及电流增量保护、过流保护、双边联跳保护、接触网热过负荷保护,自动重合闸保护的基本保护原理,并举例说明了如何通过对电流上升率,电流增量I和电流上升持续时间t的测量来区分故障情况和正常运行情况。地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。所谓多电源,既当牵引网发生短路时,并非仅双边供电两侧的牵引变电所向短路点供电,而是全线的牵引变电所皆通过牵引网向短路点供电。所谓多死区,是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。任何保护的最基本要求就是当发生短路故障时,首先要迅速“切断电源”、“消除死区”,针对这两点,牵引供电系统除交流系统常用的保护外,还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt△I等特殊保护措施,这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。 一、大电流脱扣保护 牵引供电系统可能发生各种故障和不正常运行状态,最常见的、同时也是最危险的故障就是发生各种形式的短路。当被保护线路上发生短路故障时,其主要特征就是电流增加和电压降低。利用这两个特征,可以构成电流电压保护。本文重点介绍馈线保护的主保护及后备保护。该保护属于开关自带,用于切断大的短路电流。大的短路电流对线路会造成巨大的损坏,故大的短路电流一出现应立即切断,其切断时刻应在其达到电流峰值之前。 二、电流上升率保护(di/dt)和电流增量保护(A I) 该保护作为地铁馈线保护的主保护,他既能切除近端短路电流,也能切除大电流脱扣保护不能切除的故障电流较小的远端短路故障。该保护克服了单独di/dt保护受干扰而误动,以及保护存在拒动现象的缺点。保护动作特性分为两部分,瞬时跳闸和延时跳闸,其中谁较早激活就由谁决定跳开高速直流断路器。延时跳闸元件主要起识别远端短路电流并跳闸的作用。保护原理是在运行当中,保护装置不断检测电流上升率。当电流上升率在给定的时间T1内高于保护设定的电流上升率F时,di/dt保护启动,进入延时阶段。若在整个延时阶段,电流的上升率都高于保护的整定值,则保护动作;若在延时的阶段,电流上升率回落到保护整定值之下,则保护返回。在di/dt保护启动的同时△I保护也启动进入保护延时阶段,从△I保护启动的时刻开始继电器以启动时刻的电流作为基准点计算相对电流增量。若电流上升率一直维持在di/dt保护整定值之上,在达到△I延时值后,电流增量达到△I保护整定值,则保护动作。在计算电流增量的过程中允许电流上升率在相对较短的时间内回落到di/dt保护整定值之下。只要这段时间不超过di/ dt返回延时整定值,则保护不返回;反之保护返回。是保护的动作特性。为△I延时整定值。当检测到的电流增量小于K时,可以肯定不是故障情况;若大于K则有可能是故障情况,需检测其他参数(如t或)来进一步判断。对于远端故障电流由于其上升的速率比近端的慢,峰值也小很多,通常与列车启动或通过接触网分段时的电流瞬时峰值相近,甚至小于该电流。所以远端故障电流与列车启动电流的区分是变电所直流保护的难点。 三、过流保护 可作为上述两种保护的后备保护。在保护控制单元预先整定电流值和时间值。当通过直流馈线短路的电流值在预先设定的时间内超过预订值时,过流保护装置动作使直流馈线断路器跳闸来清除故障。 四、双边联跳保护 双边联跳保护是为了更加安全的向接触网供电,在故障情况下确保相邻变电所可靠跳闸而增设的后备跳闸装置。在无故障的情况下,两变电所同时向接触网供电,如果有短路情况发生,则距离短路点较近变电所A的馈线保护的出/dt瞬时保护或速断保护先动作,同时向本站联跳装置发一个跳闸信号,并通过站间联络向另一变电所联跳装置发送跳闸信号,较远变电所B经过一段延时,通过di/df延时保护或过流保护也动作,但是比联跳装置的跳闸信号先动作。这种情况联跳作为后备保护。在故障情况下,变电所B退出运行并通过隔离开关由相邻变电所C越区供电时,同样还是上述情况,变电所A的保护先动作,由于短路点距变电所C较远,该变电所相应保护可能不动作(视短路情况),而联跳装置则比较可靠,只要变电所A保护跳闸,变电所C经变电所B接收跳闸信号,使开关跳闸,此时双边联跳保护就比较重要。 五、接触网热过负荷保护 该保护作为电流上升率保护的辅助保护,当直流线路处于过负荷状态时,即使没有任何短路故障发生,接触线或进线电缆的温度也会上升,当热过负荷电流流过时,该电流虽不至引起巨大的破坏,但此电流持续时间长了,其产生的热量会超过某些薄弱设备所允许的发热量,引起这些设备不同程度的损坏。动作原理是接触网热过负荷保护主要是根据接触网的电阻率、电阻率修正系数、长度、横截面积、电流,计算出接触网的发热量,再根据接触网和空气的比热等热负荷特性及通风量等环境条件,由经验公式给出接触网的电缆温度。当测量的电缆温度超出规定值便发出报警,跳闸命令,从而达到保护接触网的目的。该保护的对象是接触网。接触线有其自身固有的热特性,是一条以电流为变量的反时限曲线。这就要求保护装置整定的曲线与接触线的固有曲线进行配合。同时,保护装置的整定曲线还应与馈线的电流保护进行配合。 六、自动重合闸 使用自动重合闸的目的是为了在瞬时性故障消除后使线路重新投入运行,从而在最短的时间内恢复整个系统的正常运行状态。对于直流牵引系统,经常会发生短路而使过流脱扣器经常动作。但由于大部分短路故障是短暂的,所以使用自动重合闸系统可提高系统的可靠性。断路器每隔一段时间(时间长短可调节)重合闸一次。如果重合闸的次数超过预定的次数,合闸仍不成功,则认为是永久性故障,闭锁重合闸回路。 综上所述,地铁直流馈线保护还可能有框架泄漏保护、定时限过流DMT保护,反时限过流保护、低电压保护、过电压保护、AU保护等。对于一个具体的直流牵引供电系统,应根据系统的实际情况考虑各种因素来设计直流馈线保护方案。 参考文献: [1]张秀峰.王毅非.地铁馈线电流增量保护[J]西南(上转337页)

地铁直流牵引供电系统(GB10411--89)

地铁直流牵引供电系统 GB 10411--89 1 主题内容与适用范围 1.1 主题内容本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。 1.2 本标准适用于城市地铁德直流牵引供电系统。 2 引用标准 GB 5951 城市无轨电车供电系统 GBJ 54 低压配电装置及线路设计规范 GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范 GBJ 64 工业与民用电力装置德电压保护设计规范 3 术语 3.1 供电、馈电在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为 馈电。 3.2 系统最高电压 指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.3 系统最低电压指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。不包括系统德暂时状态和异常电压。 3.4 设备最高电压指系统正常运行时,设备所承受德最高运行电压。 3.5 供电制式指系统中采用的电流制、馈电方式及电压等级等。 3.6 牵引变电所供给地铁一定区段内直流牵引电能的变电所。 3.7 整流机组整流器与牵引变压器组合在一起的电流变换设备。 3.8 整流机组负荷等级根据负荷曲线的性质特征所划分的整流机过载能力等级。 3.9 接触网最小短路电流在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。3.10 接触网最大短路电流在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。 3.11 末端电压接触网中离馈入点最远端的电压。 3.12 馈线从牵引变电所向接触网输送直流电的馈电线。 3.13 双边馈电一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。 3.14 单边馈电一个馈电区间由相邻两牵引变电所各经一路馈线同时馈电。 3.15受电器 电动客车上用以从接触网上取得电流的装置。 3.16接触网 经过受电器向电动客车供给电能的导电网。 3.17架空接触网 置于车辆限界的上限平面以上(或位于改平面),通过受电弓向电动客车输送电能的接 触网。 3.18接触轨 用金属轨条制成的向电动客车供给电能的刚性导电体,其标高通常与走行轨的标高相接 近。 3.19回流电路 用以供牵引电流返回变电所的电路。 3.20均流线 连接上、下行回流轨,使其均匀回流的跨越导线。

钢轨电位限制装置动作现象情况浅析

钢轨电位限制装置动作现象情况浅析 发表时间:2017-12-08T09:20:57.057Z 来源:《电力设备》2017年第23期作者:张文风 [导读] 摘要:随着城市轨道交通的蓬勃发展,地铁成为最佳大众交通运输工具。 (中电建南方建设投资有限公司广东省深圳 518000) 摘要:随着城市轨道交通的蓬勃发展,地铁成为最佳大众交通运输工具。供电系统设置钢轨电位限制装置,确保车站乘客和运营维护人员的人身安全。文章简要分析钢轨电位限制装置在运营过程中易出现的动作分析,希望可以提供一些有价值的参考意见。 关键词:OVPD;Ⅰ段动作;情况分析 城市轨道交通是以走行轨为回流通路的DC1500V牵引供电系统,为确保车站乘客和运营维护人员的人身安全,牵引供电系统在车站变电所、车辆段及停车场检修库内设置了钢轨电位限制装置(OVPD),用来将钢轨的电位限制在预定的人身安全范围内。同时,在直流设备发生框架泄漏或接触导线发生短路的瞬间,通过钢轨电位限制装置提供故障电流的金属通路,使系统快速识别并清除故障。 1、空载期间钢轨电位限制装置动作情况 成都地铁ⅹ号线工程全线共14个车站1个停车场,设置OVPD共16台。钢轨电位限制装置用于室内安装,由短路装置、测量和操作回路、电力监控(SCADA)通信接口模块、防凝露加热器、状态显示及相应的二次回路等组成。 根据统计,空载期间OVPD动作主要集中在正线3个站及停车场,主要为Ⅰ段U>动作。停车场检修库L1#、L11#钢轨电位Ⅰ段电压保护频繁动作尤其突出,高峰时段Ⅰ段U>动作的次数达51次,主要集中在15:00-18:00区段。电压保护Ⅰ段U>动作合闸并闭锁,现场手动复位分闸后,该设备又发生Ⅰ段U>动作合闸并闭锁,复位操作几次,钢轨限位装置才能处于分闸状态。 2、钢轨电位限制装置联锁逻辑图与分析 钢轨电位限制装置联锁逻辑图(一) 钢轨电位限制装置联锁逻辑图(二) 正常情况下接触器的主触头是断开的,晶闸管处于阻断状态,非正常情况下由电压检测系统控制接触器的主触头短接。 当钢轨与保护地之间的电位差大于装置Ⅰ段动作电压U>时,则直流接触器在延时T1后,将钢轨与保护地进行有效短接,并经过延时Toff后自动恢复开断。当在规定的T>内装置连续动作达到规定的次数n次后,接触器不再自动恢复开断而处在持续合闸的闭合状态,可通过手动或远方复归。 当钢轨与保护地之间的电压差大于装置Ⅱ段动作电压U>>时,则直流接触器在延时T2之后将钢轨与保护地长久短接,不再恢复开断,处在持续合闸的闭合状态,可通过手动或远方复归。

地铁直流牵引供电系统常用保护技术研究

地铁直流牵引供电系统常用保护技术研究 随着近年地铁市场业务在各大城市的快速推广,地铁的安全可靠运行也变得尤为重要。由于国内直流供电起步较晚,直流保护技术发展相对较慢。因此,研究和开发本地化的高可靠性、高智能化的保护技术,具有广泛的应用前景。为此,本文围绕地铁供电系统,对常用的电流、电压保护技术进行了分析和研究。 标签:地铁牵引供电;保护;短路 引言:通过检测地铁供电系统中电流、电压等主要参量,根据保护策略来判断地铁供电系统中是否发生故障,如果发现有短路等故障存在,则要在规定的时间周期内,采用系统的控制方法使断路器跳闸,从而达到保护供电系统和自动排除故障的目的。跳闸以后,按照控制要求,系统要能对供电系统进行测试,判定故障是否依然存在,如果故障消失则自动重合闸[1]。 1 地铁直流牵引网短路电流特点及直流保护系统设计要点 1.1 地铁直流牵引供电系统短路电流特点分析 相比地铁列车起动时的电流变化率持续时间,中远端短路电流变化率的持续时间较长,其列车起动电流及瞬时故障短路电流都可以模拟为指数函数。由于地铁列车起动的瞬时跳跃量,末端短路电流的瞬时跳跃量较高,而线路较长时情况可能相反。相比较负荷电流变化率,通常短路电流的变化率要高,而远端短路电流变化率同地铁起动的最高电流变化率相一致,当直流馈线不断延长时,末端故障电流变化率可能要低于负荷电流变化率。若车流密度及直流馈线距离达到一定值时,最高负荷电流可能会高于或等于末端短路电流。 1.2 地铁直流保护系统设计要点 直流牵引供电系统的保护,主要采用直流开关设备实施保护。在系统中,依据功能状况划分为馈线回路与整流器回路。直流馈线回路主要是对馈线侧的牵引供电控制和保护,主要是对变电所接触网及直流电缆出现的故障及时切除;整流器回路主要用于对整流器侧的直流输出进行控制和保护,主要是将整流器出现的直流输出故障及时断开。直流保护系统的设计要点有:其一,分析部分特殊故障形势下的保护,如屏蔽门与接触网的短路故障、隧道电缆支架与接触网的短路、架空接地线与接触网的短路等。其二,直流保护系统应避免误跳闸问题以降低对地铁运行的影响,如:地铁列车在经过接触网分段时的冲击电流影响、地铁起动电流和电压的影响等。其三,各类保护之间的配合,确保直流系统出现短路故障时故障能够有效切除[2]。 2 地铁直流牵引供电系统的馈线保护技术 2.1 大电流脱扣保护

钢轨电位限制装置

摘要对直流牵引供电系统中钢轨电位限制装置在安全方面所起的作用及与框架保护配合关系进行了分析,对目前框架保护存在的问题进行了探讨。并提出了钢轨电位限制装置主要参数的选取依据。建设在采用晶闸管接触器型钢轨电位限制装置后,框架保护中取消电压元件。 关键词地铁,钢轨电位限制装置,框架保护 城市轨道交通牵引供电系统采用DC1500V架空接触网供电,以走行轨为回流通路。为减少杂散电流对土建结构钢筋、钢轨、设备金属外壳及其它地下金属管线产生腐蚀,轨道交通建设过程中采取了较为完善的杂散电流防护措施。即:直流牵引供电系统设计为不接地系统,对直流供电设备采用绝缘安装,钢轨通过绝缘垫与大地绝缘,以减少杂散电流的泄漏。 当供电区段有起动或运行的列车、或发生系统短路故障时,因钢轨作为牵引回流的通路以及钢轨与地之间过渡电阻的存在,钢轨对地产生一定的悬浮电位差。为防止钢轨对地电位过高造成人身伤害,每个车站和车场都设有钢轨电位限制装置(OVPD)。为满足直流牵引供电系统安全可靠运行及保护乘客安全的要求,须合理选择OVPD的设备参数,并考虑与其它设备之间的配合关系。 1 OVPD动作特性及钢轨对地电位升高原因

1.1 OVPD动作特性 OVPD安装在各个车站及停车场内,监测钢轨与地之间的电压。如果该电压超过整定值时,OVPD动作,将钢轨与地短接。同时,监测流过OVPD中(钢轨与地之间)的电流。当该电流低于整定值时,OVPD将自动复位,断开钢轨与地的连接。 1.2 钢轨对地电位升高的主要因素 正常运行状态下,供电区段内列车运行时,钢轨中流过牵引负荷电流,造成钢轨对地电位的升高(正值或负值)。钢轨对地电位的大小,主要与线路上机车的数量、负荷电流、牵引所间距、钢轨地间的过渡电阻等因素相关。 当发生以下故障时,引起钢轨对电位的陡升:①接触网与钢轨发生短路;②接触网对架空地线(地)发生短路故障;③直流设备发生柜架泄漏故障;④牵引变电所整流变压器二次侧交流系统发生单相接地短路。 直流系统发生故障时,必须在短时间内切除故障或降低钢轨对地电位,以保证人身及设备安全。 2 框架保护装置特性 框架保护装置主要用于当直流设备正极对设备外壳发生短路时,起动相应断路器跳闸,快速切除故障,使供电设备免遭损坏。它主要由电流、电压测量元件组成。电流测量元件一端接设备外壳,另一端接地,用

相关主题