搜档网
当前位置:搜档网 › 组串式逆变器选型对照表

组串式逆变器选型对照表

组串式逆变器选型对照表
组串式逆变器选型对照表

组串式逆变器选型表

集中式和组串式逆变器方案对比

集中式和组串式逆变器方案对比 1.方案介绍 兆瓦级箱式逆变站解决方案:1MV 单元采用一台兆瓦级箱式逆变站, 2台500kW 併网逆变器(集成直流配电柜)、交流配电箱等设备,该箱式逆变站箱 体防护等级可达IP54,可直接室外安装,无需建造逆变器室土建房 兆瓦级箱式逆变站解决方案 集中式解决方案:1MV 单元需建设逆变器室,内置2台500kW 并网逆变器(集成直 内部集成 1 1 1 1 1 -------------- I 1 1 1 1 1 1 * > 1 1 1 I 1 1亠 79 世纪新能源网 w ww, NG21 ,com Vi am

流配电柜)、1台通讯柜等设备。现场需要建造逆变器土建房 组串式解决方案:1MV 单元采用40台28kW 组串式并网逆变器,组串式逆变器防护 等级IP65,可安装在组件支架背后。 iL 朴 盅出材. " .'I 世纪新能源网 2.方案对比 2.1投资成本对比 组串式解决方案: 单位 数审 曲梢1万元) 0汇1交湍■「斋箱 曽 5 0i 45X5^X25 阴画组串式谨变养 40 1. LL 1. 11. L- 霞鏡组升压变压器 台 1 怡 pvfi^iJE.交瘵践绩 1 15 合计 y&. sb ■ 世? W AT ■ 集中式解决方案: 单奋 价格(万元1 16汇】直流汇盜箝 14 0,3X14=4,2 E03kW A 伏井网逆变器 台 15>:2-30 世纪新能源网 N€21

备注:以上价格来源于各设备厂商及系统集成商,此报价仅供参考。设备数量均 按照1MV单元计算。 2.2可靠性对比 (1)元器件对比 集中式解决方案:1MV配置2台集中式并网逆变器,单台设备采用单级拓扑设计,共用功率模块6个,2台并网逆变器共12个。单兆瓦配置设备少、总器件数少,发电单元更加可靠。另外,集中式逆变器采用金属薄膜电容,MTBF超过10万小时,保证25年无需更换。 组串式解决方案:1MW配置40台组串式并网逆变器,单台设备采用双级拓扑设计,共用功率模块12个,40台并网逆变器共480个。功率器件电气间隙小,不适合高海拔地区。组串式逆变器采用户外安装,风吹日晒很容易导致外壳和散热片老化;且单兆瓦配置设备数量多、总器件数多,可靠性低;采用铝电解电容,MTBF仅为数千个小时,且故障后无法现场更换。 (2)应用业绩对比 集中式解决方案:集中式并网逆变器在大型地面电站中应用广泛,国内目前99%的光伏电站均采用该类型并网逆变器,市场占有率高,认可度高。 组串式解决方案:组串式并网逆变器在大型地面电站中的应用极少,国内目前只

集中式与组串式逆变器的优缺点比较

集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势 (1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。

(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。 2、组串式逆变器适用于中小型屋顶光伏发电系统,中型地面光伏电站。 主要优势 (1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 (2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在阴雨天,雾气多的部区,发电时间长。 (3)组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。组串式还具有自耗电低、故障影响小、更换维护方便等优势。 主要缺点 (1)电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大。(2)功率器件电气间隙小,不适合高海拔地区。户外型安装,风吹日晒很容易导致外壳和散热片老化。

组串式逆变器与集中式逆变器优缺点PK

组串式逆变器与集中式逆变器优缺点PK 方案对比 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势

(1)便于维护管理; (2)逆变器集成度高,功率密度大,成本低; (3)逆变器各种保护功能齐全,电站安全性高; (4)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点 (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

集中式、组串和散式逆变器比较专题

集中式、组串式和集散式逆变器比 较 技术专题

目前适用于大型光伏电站的逆变器主流产品包括集中式、组串式和集散式逆变器,各有利弊和优缺点。为更好的为本项目选择合适的逆变器,做此逆变器比较专题报告。集中式、组串式和集散式逆变器的主要优缺点、适应场合和比选结论详述如下: 1集中式、组串式和集散式逆变器概述 集中式逆变器:国内主流设备功率一般不超过630kW,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般不低于IP20。体积较大,室内立式安装。系统方案为采用直流汇流箱进行一级汇流,采用集中式逆变器(带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 组串式逆变器:功率一般不大于60kW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外壁挂式安装。系统方案为采用组串式逆变器(带多路MPPT跟踪功能)进行一级汇流及逆变,采用交流汇流箱进行二次汇流,最后输入升压箱变。 集散式逆变器:分布式多MPPT,独立跟踪,精度高,发电效率高;分布式DC/DC升压,直流传输电压800V左右、交流并网电压500V左右,传输损耗降低;传输及并网电压高、电流小,逆变器、电缆和箱变的投资都有所下降。系统方案为采用直流汇流箱进行一级汇流(直流汇流箱带多路MPPT跟踪功能),再采用大容量逆变器(不带MPPT跟踪功能)进行二级汇流及逆变,最后输入升压箱变。 光伏场区使用主要器件对比: 集中式逆变方案:光伏组件,直流电缆,直流汇流箱,直流电缆,直流配电柜,直流电缆,集中式逆变器,交流电缆,双分裂箱变。 组串式逆变方案:光伏组件,直流电缆,组串式逆变器,交流电缆,交流汇流箱,交流电缆,双绕组箱变。 集散式逆变方案:光伏组件,直流电缆,智能型带MPPT直流汇流箱,直流电缆,直流配电柜,直流电缆,集散式逆变器,交流电缆,双绕组箱变。

华为组串式逆变器

华为组串式逆变器 智能 ●最多8路高精度智能组串检测,减少故障定位时间80%; ●多机并联智能电网自适应,电能优质,更好地满足电网接入要求; ●华为专用无线通信技术,无需专用通讯线缆。高效 ●最高效率99%,中国效率98.49%; ●无N线,可节省20%交流线缆投资; ●最多4路MPPT,适应复杂的屋顶环境,发电量提升5%以上。 安全 ●安全的规避PID效应,主动防止触电并隔离; ●无熔丝设计,避免直流侧故障引起的火灾隐患; ●零电压穿越,满足电网接入要求。可靠 ●25年设计使用寿命; ●自然散热,IP65防护等级; ●内置交直流防雷模块,全方位雷击保护。

1、做工精细 华为SUN2000组串式光伏逆变器采用最优质的材料和最先进的工艺制造,通讯只需连接普通网线(RS485线)即可实现;操作简单,容易上手,三相接线简单,接上铜鼻子即可。 2、顶级配置 华为逆变器最多4路MPPT ,比很多其他品牌逆变器多1~2路,更好地解决了电池板的朝向及遮挡问题,提升发电量5%以上;最多配有2个直流开关,在检测或维修时保证绝对安全;最高效率99%,显著提升发电量。 3、屏显简洁 =[表示直流,]~表示交流,第三个图标表示485通讯,第四个图标表示工作状态;第一、二个指示灯绿时,表示逆变器工作正常,可以并网发电;第三个指示灯绿时,表示通讯正常。 4、自然散热 采用全密闭自然散热设计,利用热隔离、热屏蔽技术,将发热器件和热敏感器件分腔合理布局,确保整机无局部热点,提升散热可靠性,解决了因风扇失效散热能力降低导致的功率降低,发电量减少的问题。

5、安装方便 华为逆变器体积小、重量轻,每台逆变器尺寸约550*700*250mm ,重量<60kg ,两个人10分钟就可完成安装;且支持整机更换,故障设备返厂维修,现场无需专家;单台逆变器故障对光伏系统发电影响小。 6、蓝牙监控 华为独有的蓝牙模块可通过逆变器下端的USB 接口与移动设备连接,实现近端的发电数据采集与分析,以及逆变器操作系统的更新升级。移动端监控软件APP 可在华为应用商店下载: 恒通源公司作为华为智能光伏电站解决方案授权经销商,可为您提供华为智能光 伏逆变器等配套产品。咨询热线:400-609-6233 华为逆变器适用于小型屋顶项目(<100kw )、大中型屋顶项目(>100kW )、 地面电站项目(>1MW )。 1、小型屋顶项目(<100kW ) SUN2000组串式逆变器在小型屋顶项目场景中,应用如下图所示:

集中式、组串式、集散式逆变器的区别

集中式、组串式、集散式逆变器的区别 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳

定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在于集散式逆变器中。

组串式逆变器解决方案

组串式逆变器解决方案:针对屋顶光伏电站 在2014年全国能源工作会上,国家能源局敲定2014年国内光伏新增装机14GW,其中分布式电站8GW、地面电站6GW。分布式电站有80%主要建于东部沿海经济发达地区,同时因受限于东部土地资源的稀缺,其中又有80%的电站只能建在屋顶。 近年,国家政策从初始投资补贴转向度电补贴,如何降低电站运维成本、提高发电量、提升电站整体收益率,成为我们面临的新课题,需要我们在电站建设形式上深入探索。 一、传统集中式方案弊端 经过实际项目的调研,并与EPC,设计院以及光伏专家的研讨,在屋顶电站设计、建设及运维过程中,我们对集中式逆变器组网方案所遇到的问题进行了分析总结。比较突出的是以下6类问题: 1、电站建设中最重要的是安全问题。集中式方案中采用直流汇流箱,由于内置直流支路熔丝,存在融不断起火的风险,因为只要有光照太阳能板就会处于工作状态。对于分布式屋顶厂房来说,带来严重的安全隐患。不仅电站本身经济收益受影响,更关键会影响到厂房的其他设备。给业主带来非常大的损失。 2、不规则屋顶,采用单个500KW逆变器无法充分利用屋顶面积。逆变器经常处于过载或轻载或者超配、欠配的情况。 3、多个朝向的屋顶,电池板有部分阴影遮挡导致组串的不一致性,单路MPPT 导致发电量相对较低;同时,各路组串的失配损失也将导致发电量的损失。 4、逆变器需要专业工程师维护,单个逆变器故障对发电量影响较大,对维护人员的安全也带来巨大挑战,同时,备件种类较多,故障定位及修复3天以上,严重影响客户发电收益。直流汇流箱故障率高,无法监控到每路组串,增加故障定位时间,由于熔丝挥发,故障率、维护成本高,需要定期更换维护;线路复杂,现场加工的接头多,故障率高;部份项目运行1~2年后,有效发电率低于90%;下图就是某电站直流汇流箱烧毁。 5、集中式方案需要逆变器房和相应土建工程,同时需配套相应的风机,风道,烟感,温感等设备,增加施工复杂度,初始投资和运维成本。 6、集中式逆变器需强制风冷,机房消耗电力大,平均至少300W以上,需要定期扫灰,风扇维护和防尘网更换。 二、组串式解决方案优势 结合欧美等光伏电站建设发达地区屋顶电站的成功经验,组串式已经成为屋顶电站的首选解决方案。

……关于集中式光伏逆变器和组串式逆变器选型之比较

集中式光伏逆变器和组串式逆变器选型之比较国家能源局下放通知,2014年国内光伏新装总容量达14G,其中分布式8G,地面电站6G。分布式光伏电站将迎来一个前所未有的发 展机会。国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入 380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏电站逆变器 选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组 串式逆变器,50KW以上的项目,可以根据实际情况选用组串式逆变 器和集中式逆变器。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用 大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥 逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大, 室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比:

集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: 1.逆变器数量少,便于管理; 2.逆变器元器件数量少,可靠性高; 3.谐波含量少,直流分量少电能质量高; 4.逆变器集成度高,功率密度大,成本低; 5.逆变器各种保护功能齐全,电站安全性高; 6.有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有:1.直流汇流箱故障率较高,影响整个系统。 2.集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多的部区,发电时间短。

集中式逆变器和组串式逆变器之比较

集中式逆变器和组串式逆变器之比较 ——深圳恒通源 1、逆变器方案对比 (1)集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 (2)组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 2、系统主要器件对比 (1)集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 (2)组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 3、主要优缺点和适应场合 (1)集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: ●逆变器数量少,便于管理; ●逆变器元器件数量少,可靠性高; ●谐波含量少,直流分量少电能质量高; ●逆变器集成度高,功率密度大,成本低; ●逆变器各种保护功能齐全,电站安全性高; ●有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有:

●直流汇流箱故障率较高,影响整个系统。 ●集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴 雨天,雾气多的部区,发电时间短。 ●逆变器机房安装部署困难、需要专用的机房和设备。 ●逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 ●集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功 率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 ●集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发 电。 (2)组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。 主要优势有: ●组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最 大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 ●组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在 阴雨天,雾气多的部区,发电时间长。 ●组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业 工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。组串式还具有自耗电低、故障影响小、更换维护方便等优势。 主要缺点有: ●电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大, 可靠性稍差。 ●功率器件电气间隙小,不适合高海拔地区。户外型安装,风吹日晒很容易导 致外壳和散热片老化。

组串式逆变器优势

“调查显示,过去一年大型商业光伏系统对组串式逆变器的接受度不断增加,验证了IHS对于组串式逆变器在几个主要光伏市场份额将会增加的预期。”IHS高级光伏分析师Gilligan表示,“大型商业光伏系统更多地选用组串式逆变器,因为组串式逆变器的系统设计更灵活、故障发生时的损失较低且生命周期维护成本更低。” 针对这项调研报告,固德威总结出以下两点原因,这应该是目前选择组串式逆变器最常见的原因,希望可以给那些正在踌躇到底是选择集中型还是组串型逆变器的潜在用户一些建议。 原因一:组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 第一,避免了集中型逆变器电站的木桶效应(如下图)。集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。所以当电池组件受到遮挡时,集中型电站会受到较大的影响,组串型电站只有被遮挡的一串对应的一路MPPT受到影响。而正常情况下,各个组件之间的安装间距,安装角度各异,一天中一定时间内不可避免会产生局部遮挡,特别是早晚时刻太阳高度角较低的时候,或者出现一些植被遮挡一些电池片。若一个500KW方阵的电池板使用一路MPPT来跟踪,会损失一定的发电量。该情况同样适用于当电池组件发生脏污、阴影、老化、升温、热斑的情况下。

第二,使用组串式逆变器的电站可以在同一个项目中使用不同朝向的组件。像在山地项目中,由于地区地形复杂,平地很少,无法做土地平整,朝向正南的地形也有限,因此为保证容量必须充分利用东南、西南坡以及东向、西向坡。此时电池板的安装朝向无法完全朝南布置。若一个500KW方阵的电池板使用一路MPPT来跟踪,会损失一定的发电量。 第三,使用组串式逆变器的电站可以在同一个项目中使用不同类型的组件,这是在传统集中型逆变器电站中无法实现的。 原因二:组串式逆变器还具有自耗电低、故障影响小、更换维护方便的优势。集中型逆变器自身耗电以及机房通风散热耗电大,系统维护相对复杂,出现故障时,整个电站会瘫痪,组串型逆变器出现故障时,只有一串组件会停止发电,整个电站可以照常运作,从而很大程度上降低了损失。另外,组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。这就意味着组串型逆变器的修复时间周期要比集中式逆变器的修复周期短,下图为集中型和组串型逆变器的修复时间周期对比。

组串式逆变器的发展趋势和挑战-无风扇设计

随着全球煤炭、石油资源的衰竭和世界各国对环境污染的重视,太阳能等可再生能源并网发电技术及应用成为热点。其中光伏逆变器作为太阳能发电系统的核心设备,其可靠性决定着光伏系统的安全运行,而影响光伏逆变器可靠性的重要因素之一就是逆变器的散热性能。逆变器的核心器件功率开关对温度比较敏感,温度的变化会影响其开通和关断过程,当温度过高时会导致功率开关性能衰减甚至损坏,因此逆变器的散热方案优劣决定着产品的性能和质量。 近年来,组串式地面电站在全球得到广泛应用。相比集中式电站,组串式电站有明显优势,具体体现在以下几点:发电量高,占地面积小,无需机房,运行可靠,维护方便简单。特别是针对分布式屋顶、山地丘陵项目,组串式方案有着无可比拟的优势。 光伏电站一般选在沙漠、高原等阳光充足的地方,这些区域冬季温度极低,夏季温度非常高,风沙大,海拔高,光照强,有些站点甚至位于海边,腐蚀性强。在这些应用场景中,组串式逆变器通过挂墙、挂光伏板支架或者挂独立安装架等方式直接暴露在室外,外部部件被雨水、沙尘腐蚀和老化风险严重。如何做到既能适应恶劣环境,又能满足逆变器的散热,成为了大家最关心的问题。 一.组串式逆变器业界常用散热方式及问题逆变器散热主要 有自然散热和风冷散热两种方式,影响散热能力的关键因素是对流换热系数。一般情况下,风冷散热的换热系数比自然对流高一个数量级,因此在组串式逆变器外部增加风扇可以大大提升散热能力,行业厂商

普遍采用这种方式散热。但组串式逆变器应用环境较差,其对外部风扇的防护性能要求较高。当前室外型风扇防护等级一般只能达到 IP54/IP55,外部有风扇设计导致整体系统防护等级无法达到IP65。同时为了避免雨水直接冲刷风扇,设计散热方案时,风道会变得很复杂,风道形式受限,一旦风扇失效,散热能力衰减严重,这样会使得逆变器输出功率降额,发电量减少,严重影响客户利益。更为关键的是,因风扇常年暴露在雨水和沙尘中,腐蚀严重,寿命急剧下降,逆变器生命周期内需要多次更换风扇,维护成本极高。 下图为某户外环境电站,逆变器运行一年后,风扇积灰和腐蚀的剖析图片,从图片可以看出,腐蚀情况非常严重。 图1 某户外电站逆变器风扇积尘腐蚀示意图 二.组串式逆变器散热问题的应对解决方案 无外部风扇设计方案虽然散热能力不如强迫风冷方案,但由于逆变器外部无需安装风扇,防护等级可以达到IP65,而且噪声低,可靠性高,消除因风扇失效散热能力衰减导致的功率降额,易维护,成本低。

组串式逆变器和集中式逆变器优缺点

前言:国家能源局下放通知,2014年国内光伏新装总容量达14G,其中分布式8G,地面电站6G。分布式光伏电站将迎来一个前所未有的发展机会。国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。 体积较小,可室外臂挂式安装。 系统主要器件对比: 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统 中,系统总功率大,一般是兆瓦级以上。 主要优势有: (1)逆变器数量少,便于管理; (2)逆变器元器件数量少,可靠性高;

(3)谐波含量少,直流分量少电能质量高; (4)逆变器集成度高,功率密度大,成本低; (5)逆变器各种保护功能齐全,电站安全性高; (6)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有: (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨 天,雾气多的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。 2、组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。 主要优势有: (1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功 率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。 (2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。在阴雨天,雾气多的部区,发电时间长。

华为组串式逆变器和其它组串逆变器对比总结

华为组串式逆变器和其它组串逆变器对比总结 ——深圳恒通源 一、华为智能光伏解决方案独特价值 1)发电量高:华为方案每两路组串一路MPPT,相较于其他友商平均高3%。40MW 项目一年发电量增值收益为120万。 2)施工周期短:PLC通讯无需RS485线缆,减少施工量,且减少线缆投资0.01元/W;无线通讯,无需光纤布放,缩短施工周期,且设备成本优于光纤环网。整体方案优势确保630并网目标。 3)智能运维,降低运维成本:组串智能监测、快速诊断和修复,集中运维、远程运维,智能清洗,提高运维效率,降低运维成本。 5)安全可靠:无熔丝和风险等易损器件,减少运维成本,提高发电量。 二、市场应用 华为组串式逆变器15年发货10.5GW全球排名第一。阳光组串式逆变器应用业绩很少,阳光生产逆变器18年,至今组串式逆变器应用1GW左右,古瑞瓦特应用业绩则更少。 单体电站超过40MW的项目阳光仅3个,华为则至少100个以上,且单体100MW 项目10个以上。 华为组串式应用广泛,商用成熟,值得客户信赖。 三、与友商逆变器现场对比 1)华为与SG组串式现场对比: 项目1:中电建攀枝花万家山30MW项目,华为25MW,SG5MW,6-9月份三个月,

华为组串式逆变器发电量高3.38%。YG其中一台设备降额运行,问题定位三个月未解决,服务跟不上。 项目2:黄河上游水电格尔木三期200MW,华为组串式130MW,SG组串式5MW,华为组串式逆变器发电量高2.94%。 项目3:中广核海宁尖山项目,采用阳光组串式逆变器,逆变器还未并网运行,就出现严重的烧机事故!

项目四:湖北华电随县殷店一期项目,采用阳光组串式逆变器,并网不久逆变器出现批量烧机情况,现在15MW项目需要全部退回整改。业主发电量损失严重。 2)华为与GR组串式现场对比: 中山格兰仕项目:华为组串式15MW,GR组串式37MW,2015年9月17日并网,并网一月华为逆变器仅有1起,故障故障率为0.2%,发电损失仅为145度;截止11月9日GR设备共有故障10+起,故障率高达2.2%,发电损失10000度。华为逆变器在粉尘污染严重、遮挡严重的情况下发电量依然高1.14%。通过对逆变器每天发电量分析发现,因受粉尘影响,10月10日至11月7日发电量降低1.81%,考虑在现有状况下华为逆变器对应子阵高过GR1.14%,故在对比时间段内,华为逆变器对应子阵实际发电量应高于GR对应子阵发电量2.95%。 ?古瑞瓦特逆变器故障频发,截止11月9日共发生10+故障,华为仅发生1起故障。 ?发电量比较,10月10日至11月7日华为逆变器发电量比古瑞瓦特高2.95%。 ?古瑞瓦特解决方案中,通讯调节繁琐,华为通讯设置方面操作简便,可应用性高。 ?古瑞瓦特解决方案中,使用风扇,熔丝等易损部件,造成后续运维成本增加。 ?格兰仕项目中,业主对古瑞瓦特质量非常担忧,拟将古瑞瓦特剔除合格供应商名单。

组串式逆变器项目可行性研究报告

组串式逆变器项目可行性研究报告 xxx(集团)有限公司

摘要 组串式逆变器是最适合大规模应用的分布式光伏逆变器。光伏逆 变器将太阳能电池组件产生的直流电转化为符合电网电能质量要求的 交流电,其直接影响到太阳能光伏发电系统的发电效率及运行稳定性;同时,也是整个光伏发电系统中多种信息传递与处理、实时人机交互 的信息平台,是连接智能电网、能源互联网的智能化关键设备。 光伏逆变器一般将其分为三类:集中式逆变器、组串式逆变器和 微型逆变器:1)集中式:将很多并行的光伏组串连到同一台集中逆变 器的直流输入端,做最大功率峰值跟踪以后,再经过逆变后并入电网。500kW以上,主要应用于集中式电站,单体功率高,成本低,电网调节性好,但要求光伏组串之间要有很好的匹配,一旦出现多云、部分遮 阴或单个组串故障,将影响整个光伏系统的效率和电产能。集中式逆 变器最大功率跟踪电压范围较窄,组件配置灵活性较低,发电时间短,需要具备通风散热的专用机房,主要适用于光照均匀的集中性地面大 型光伏电站等。代表企业有国内的阳光电源、上能电气、特变电工、 科士达等企业。2)组串式:对几组(一般为1-4组)光伏组串进行单 独的最大功率峰值跟踪,再经过逆变以后并入交流电网,一台组串式 逆变器可以有多个最大功率峰值跟踪模块。组串式逆变器的单体容量

一般在100kW以下,其优点是不同的最大功率峰值跟踪模块的组串间 可以有电压和电流的不匹配,当有一块组件发生故障或者被阴影遮挡,只会影响其对应的最大功率峰值跟踪模块少数几个组串发电量,对系 统整体没有影响。逆变器最大功率跟踪电压范围宽,组件配置灵活, 发电时间长;可直接安装在室外。相较于集中式逆变器,组串式逆变 器价格略高,大量组串式逆变器并联时需要在技术上抑制谐振的发生,主要应用于分布式发电系统,在集中式光伏发电系统亦可应用。代表 企业主要是锦浪科技、古瑞瓦特、固德威、三晶电气。3)微型:对每 块光伏组件进行单独的最大功率峰值跟踪,再经过逆变以后并入交流 电网。微型逆变器的单体容量一般在1kW以下。其优点是可以对每块 组件进行独立的最大功率跟踪控制,在碰到部分遮阴或者组件性能差 异的情况提高整体效率。此外,微型逆变器仅有几十伏的直流电压, 全部并联,最大程度降低了安全隐患,其价格高昂,出现故障后较难 维护。代表企业:欧姆尼克、SolarEdge等。 组串式逆变器占比持续提升。目前,光伏逆变器市场主要以集中 式逆变器和组串式逆变器为主,微型和其他类型逆变器占比极小。在 市场构成中,集中式逆变器原占比最高,近年来由于组串式逆变器快 速发展,占比已经反超。随着技术的不断进步,组串式逆变器成本迅

光伏组串式逆变器故障类型

光伏组串式逆变器故障类型 逆变器:故障类型共有以下21种,分别是: 1、直流过压保护 2、直流欠压保护 3、PV极性反接保护 4 、电网过压保护 5 、电网欠压保护 6 、频率异常保护 7、交流过流保护 8 、并网电流不平衡保护 9、孤岛保护 10、模块过温保护 11、温度异常保护 12 、电抗器过温保护 13、交流主接触器保护 14、风扇故障 15 、漏电流保护 16、防雷器故障保护 17、直流熔断器故障保护 18、交流熔断器故障保护 19、模块故障(PDP保护) 20、控制电源异常保护 21、绝缘阻值低 主要故障类型: 一、直流过压保护 保护条件:直流采样电压大于1000V时逆变器保护。需手动恢复,不可自动恢复。可能原因:1、实际配置电池板电压过高 2、逆变器直流电压采样电路损坏导致(实际电压正常) 3、逆变器后端双分裂变压器隔离效果较差,导致两台逆变器并网时互相影响,其中一台逆变器并网时报直流过压。(此种故障现场比较常见) 处理措施:1、检查现场电池板配置。

2、检查直流电压采样通道。 3、检查两台逆变器同时运行时直流电压有无爬升现象。 二、直流欠压保护 保护条件:逆变器运行过程中直流采样电压小于250V时逆变器保护。可自动恢复。 可能原因:1、逆变器采样电路损坏导致(实际电压正常) 2、逆变器震荡导致 处理措施:该故障现场不常见,如遇到主要检查现场采样是否正常。 三、孤岛保护 保护条件:电网瞬时值超过额定电压峰值的1.4倍或者交流电网电压没有时保护可自动恢复 可能原因:1、逆变器交流电压采样电路损坏导致 2、逆变器震荡导致 3、交流电网没电 处理措施:1、检查现场电网配置。 2、检查逆变器交流电压通道。 四、温度异常保护 保护条件:环境温度超过55℃逆变器降额运行,超过65℃时保护,可自动恢复。每天超过10次后不再自动恢复,需检查现场情况后手动恢。 可能原因:1、逆变器环境温度采样电路损坏导致 2、环境温度过高导致 处理措施:1、检查温度采样电路板。 2、检查现场逆变器运行环境 五、交流主接触器保护 保护条件:主接触器节点代表的状态与逆变器运行状态不一致。可自动恢复。 每天超过10次后不再自动恢复,需检查现场情况后手动恢。可能原因:1、继电器板节点检测通道损坏 2、辅助接触器损坏 3、主接触器损坏 4、接触器控制电异常 处理措施:1、检查继电器板。2、检查辅助接触器。 3、检查主接触器。 4、检查LVRT开关电源及供电情况。

浅谈组串式逆变器的历史及认识的误区

浅谈组串式逆变器的历史及认识的误区 一、组串式逆变器的定义 早期的光伏电池板价格很高,光伏电站的功率都不大,几块电池板组成一个组串,功率为几百瓦到上千瓦,接入小功率单相逆变器,这种逆变器称为组串式逆变器。 经过多年的发展,现在的组串型逆变器指的是能够直接跟组串连接,用于室外挂式安装的单相或者三相输出逆变器,功率为几千瓦到几十千瓦。它形成了一些固定的特性:防护等级高,多为IP65,能够直接在室外安装;直流输入为光伏专用的MC4防水端子,能够直接与电池板相连,不需要经过直流汇流箱;输出电压范围宽,输出交流相电压多为180~280V之间,能够直接接入本地单相或者三相电网;MPPT路数通常为2个或者3个,MPPT控制更精细,效率高,设计灵活,能够适应各种不同应用场景如地面电站,山地,楼面等环境的需求。 二、并网光伏逆变器的发展历程 并网光伏逆变器的发展是和光伏电池板及光伏电站的发展紧密相连的,逆变器的功率完全是由光伏电站设计的需求决定的。德国的SMA是逆变器的代表公司,从它的产品发展历史可以反映出光伏逆变器发展历程: 1991年,推出第一台光伏逆变器产品,室内安装,有LCD显示,能与计算机通信; 1995年,推出组串式逆变器Sunny Boy产品,室外安装; 2002年,推出集中式逆变器Sunny Central产品,功率100kW; 2006年,推出组串式逆变器Sunny Mini Central系列产品,效率达到98%,广泛用于欧洲的地面电站;

2009年,推出大功率集中式逆变器Sunny Central系列产品,功率达到500kW; 2010年,推出三相组串式逆变器Tripower系列产品,最大功率17Kw, 从SMA的产品发展历史我们可以看到光伏逆变器发展的几个阶段: 1)组串式逆变器是最早出现的逆变器,几乎是伴随着光伏电站发展的历史发展起来的。SMA 的组串式产品从1995年开始面世,当时的光伏电站容量很小,多为1~2kW左右; 2)随着光伏电池板的发展,光伏电站容量越来越大,2002年SMA推出了集中式逆变器,但功率并不大,仅为100kW左右; 3)2006年,电站容量进一步变大,SMA推出的SMC(Sunny Mini Central)系列产品由于效率高,室外防护,安装方便,在屋顶电站及地面电站中都占据了相当大的市场份额。2008年随着德国的并网法规越来越完善,欧洲各国的补贴政策陆续出台,光伏电站在欧洲蓬勃发展,此时由于大功率的集中式逆变器不多,SMC系列产品用三台单相机外加控制器组成的三相系统成为地面电站配置的主流,组串式逆变器开始广泛应用于大型的地面电站; 4)由于组串式逆变器价格较高,SMA2009年推出大功率的集中式逆变器产品,满足大型的地面电站的要求。但同样是2009年,Danfoss推出了10~15kW三相组串式系列产品,由于MPPT 数量多,防护等级高,设计更加灵活,安装维护方便,受到市场追捧,广泛用于大型地面电站中。2010年SMA推出的三相组串式产品STP系列迅速成为其主力发货产品,在欧洲广受欢迎。此后在欧洲的大型地面电站中,集中式逆变器由于成本上占有优势而应用较多,但组串式逆变器也占有一定的市场份额; 5)自2013年以来,组串式逆变器由于竞争激烈,价格下降很快,采用用组串式逆变器方案的地面电站系统成本正在逐步接近采用集中式逆变器方案的电站。国际咨询公司IHS在2014年4月发布了一个重要的调查结果:通过对300家太阳能安装商、经销商及设计、采购和施工(EPC)公司调查的结果表明,在规模超过1MW的大型光伏发电站中,组串式逆变器的接受程度越来越高。根据IHS调查,40%的逆变器买家目前考虑组串式逆变器而非集中式逆变器,由于它们可以提供更好的灵活性,并减少电力损失。IHS资深光伏市场分析师科马克。吉利根(CormacGilligan)表示:“该调查证实,过去一年大型系统对组串式逆变器的接受不断增加,反映出IHS预期的这些产品将

组串式逆变器超配能力调查

作者:原中国电力工程顾问集团华东电力设计院副总工程师林利民(教授级高工) 组串式逆变器超配能力调查 1、引言 光伏系统由于组件功率的衰减、灰尘遮挡以及线路损耗的存在,再加上不同地区的光照条件差异,为了最优化系统收益,有经验的设计工程师会把光伏组件的总容量配得比逆变器容量大一些,这种情况被称为超配。适当的超配可以提高电站系统整体收益。在超配设计中,集中式大型逆变器由于单机功率大,每路组串的功率相对单机额定功率非常小,在直流输入配置时非常灵活,因此很容易进行超配设计,这已为电站业主所接受并广泛应用。 在小型屋顶电站和小型山丘电站使用组串式逆变器有优势,这些组串逆变器能否满足超配设计要求以及超配设计能力如何?笔者对国内外一些主流组串式逆变器厂家进行了调查分析,发现绝大部分厂家组串式逆变器都可达到1.1倍、甚至更高的超配能力,但同时也发现个别组串式逆变器厂家的产品在设计上存在严重缺陷,不仅不具备超配能力,甚至无法用足逆变器的额定功率。逆变器实际可用功率大打折扣,直接导致用户初始投资的增加。 2、组串式逆变器超配设计要求 组串式逆变器由于单机功率小,具有多路MPPT的特点,适用于小型屋顶、小型山丘等复杂分布式电站,可以有效解决组件布局不规则、不同朝向、局部遮挡等问题。随着国内分布式应用发展,组串式逆变器的应用也不断增加。 在超配设计中,除了考虑系统损耗以外,最优容配比(组件容量:逆变器容量)主要是由电站所处位置的光照条件决定的。国内分布式电站大多数分布在我国东南部地区,根据国家气象局风能太阳能评估中心的资源区域分类,多数处于II,III, IV类光照资源区,光照条件相对较差。在此类地区,容配比至少需要在1.1倍以上,才能达到最优的系统度电成本,投资者的收益才能最大化。在超配设计时,对组串式逆变器有哪些具体要求呢? 2.1 需要评估逆变器实际可用交流侧功率 超配是光伏电站的组件容量相对交流侧容量而言的。对于一个光伏电站,其容量应该以交流功率侧容量来标定。例如一个20MW电站,是指其交流侧输出功率可以达到20MW,而非直流侧组件功率是20MW。对于逆变器来讲,也是同样的,首先要关注其交流额定功率参数,然后分析其“实际可用交流侧功率”。借用那句“别看广告,看疗效”的经典台词,组串式逆变器“实际可用交流侧功率”才是对超配真正有意义的。如某个组串式逆变器,其交流侧额定功率参数是36kW,但按照其直流侧真实最大可配置到的功率只有34KWp,考虑逆变器自身损耗,其“实际可用交流侧额定功率”一定是小于34KW,从超配系数1.1的角度看,现实版“实际可用交流侧额定功率”可能仅仅是30KW。因此,“实际可用交流侧功率”是系统进行超配设计的前提。

相关主题