搜档网
当前位置:搜档网 › 第七讲变压器的运行特性

第七讲变压器的运行特性

第七讲变压器的运行特性
第七讲变压器的运行特性

第七章 变压器

第五节 变压器运行特性

外特性和电压变化率 (1)外特性

变压器带上负载后,由于变压器存在漏阻抗,负载电流通过漏阻抗会造成漏阻抗压降,使副边电压2U 随负载的变化而变化,这种变

化规律,可用外特性来描述。外特性是指原边加额定电压,负载功率因数2cos ?一定时,副边电压2U 随负载电流变化的关系,即

)(22I f U =,如图所示。变压器在纯电阻和感

性负载时,副边电压2U 随负载增加而降低,容性负载时,副边电压2U 随负载增加而可能升高。

(2)电压变化率

电压变化率来表示副边电压的变化程度,它反映了变压器供电电压的稳定性,是变压器运行性能的重要数据之一。电压变化率是指当原边接额定电压,副边空载电压与给定负载下副边实际电压的算术差除以副边额定电压。即

%10022

20?-=

?N

U U U U

用变压器的简化相量图可推导出电压变化率的参数表达式

)sin cos (2*

2*??βk k x r U +=?

式中 *

222I I I N

==

β称为负载系数,直接反映负载的大小,如0=β,表示空载;1=β,

U 2

滞后)

1= U 图 变压器的外特性

表示满载,2cos ?为负载功率因数。

电压变化率的大小与负载的大小成正比。在一定的负载系数下,短路阻抗的标么值越大,电压变化率也越大。当负载为感性时,2?为正值,U ?为正值,说明副边电压比空载电压低;当负载为容性时,2?为负值,2sin ?为负值,U ?有可能为负值。当U ?为负值时,说明副边电压比空载电压高。

常用的电力变压器,当1=β,8.0cos 2=?(滞后)时,U ?为5%~8%。为了保证变压器的副边波动在%5±范围内,以免给用户造成不良影响,通常采用改变高压绕组匝数的办法来调节副边电压,称为分接头调压。高压绕组的抽头常有%5±和%5.22?±两种。分接开关分成两类,一种是要在断电状态才能操作的分接开关,称为无励磁分接开关;另一种是在变压器带电时也能操作的分接开关,称为有载分接开关。相应的变压器也就分为无励磁调压变压器和有载调压变压器两种。

2.4.2 变压器的损耗和效率 (1)变压器的损耗

变压器负载运行时原边从电网吸收有功功率1P ,其中很小部分功率消耗在原绕组的电阻上(1211r mI p Cu =)和铁心损耗上(m Fe r mI p 20=)。其余部分通过电磁感应传给副边,副边绕组获得的电磁功率中有很小部分消耗在副边绕组的电阻上(2222r mI p Cu =),其余的传输给负载,即输出功率2222cos ?I mU P =。所以,变压器的损耗包括铁耗Fe p 和铜耗Cu p 两大类。铁耗Fe p 不随负载大小变化,也称为不变损耗,铜耗Cu p 随负载大小变化,也称为可变损耗。

(2)变压器的效率 变压器的效率定义为

%100%10022

12?++=?=

Fe

Cu p p P P P P η () 变压器的效率可用直接负载法通过测量输出功率2P 和输入功率1P 来确定。但工程上常

用间接法来计算变压器的效率,即通过空载试验和短路试验,测出变压器的空载损耗0p 和短路损耗kN p ,就可以方便的计算出任意负载下的效率。

式中0p p Fe =,由于铜耗与负载电流的平方成正比,所以实际铜耗

kN kN N Cu

p p I I p 22

22β=???

? ??=,22222222cos cos cos ?β?β?N N N S I mU I mU P =≈=,可得 %100cos cos %100202212

?++=?=

kN

N N p p S S P P β?β?βη 变压器效率的大小与负载大小、性质及空载损耗和短路损耗有关。对已制成的变压器,效率与负载大小、性质有关。当2cos ?一定时,效率特性)(βηf =如图所示。最大效率出现在

0=β

η

d d 的地方,此时的负载系数为kN

m P P 0

=β,即当铁耗(不变损耗)等于铜耗(可变损耗)时效率最大。

由于变压器总是在额定电压下运行,但不可能

长期满负载。为了提高运行的经济性,设计时,铁耗应设计得小些,一般取6.05

.0~m =β,对应的Cu p 与Fe p 之比为3~4。变压器额定时的效率比较高,一般在(95~98)%之间,大型可达99%以上。

习 题

试比较变压器主磁通和漏磁通的性质、大小和作用。 变压器激磁电抗大好,还是小好,为什么

变压器空载运行时,是否要从电网中取得功率,起什么作用为什么小负荷的用户使用大容量的变压器无论对电网还是对用户都不利

电源电压降低对变压器铁心饱和程度、激磁电流、激磁阻抗、铁耗和铜耗等有何影响 画出变压器的“T ”形、近似和简化等效电路。

η

ηm 图 变压器的效率曲线

为什么变压器的空载损耗可以近似看成铁耗,而短路损耗可以近似看成铜耗 变压器的效率与哪些因素有关何时效率最高 变压器短路电压对运行性能有何影响

变压器电压一定,当负载(阻感性)电流增大,原边电流如何变化,副边电压如何变化当副边电压偏低时,降压变压器如何调节分接头,升压变压器又如何调节

一台三相电力变压器型号为SL -750/10,Y,yn 接线,750=N S kVA ,

400/10000/21=N N U U V 。在低压侧做空载试验,测得数据为4000=U V ,600=I A ,38000=p W 。在高压侧做短路试验,测得数据为440=k U V ,3.43=k I A ,10900=k p W 。室

温20℃。求:

(1)以高压侧为原边的“T ”形等效电路参数的实际值和标么值; (2)短路电压百分值及其电阻分量和电抗分量的百分值。

一台三相电力变压器,已知024.0*=k r ,0504.0*

=k

x 。试计算额定负载时下列情况变压器的电压变化率U ?:(1)8.0cos 2=?(滞后);(2)0.1cos 2=?(纯电阻负载);(3)8.0cos 2=?(超前)

。 一台三相电力变压器,100=N S kVA ,6000=p W ,1920=kN p W 。求: (1)额定负载时且功率因数8.0cos 2=?(滞后)时的效率;

(2)最大效率时的负载系数m β及8.0cos 2=?(滞后)时的最大效率。

变压器运行特性分析报告

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

变压器空载特性试验的目的及注意事项

变压器空载特性试验的目的及注意事项 变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示。 1、变压器空载试验的电源容量的选择:保证电源波形失真不超过5%,试品的空载容量应在电源容量的50以下;采用调压起加压,空载容量应小于调压器容量的50%;采用发电机组试验时,空载容量应小于发电机容量的25%。空载试验的试验电压是低压侧的额定电压,变压器空载试验主要测量空载损耗。空载损耗主要是铁损耗。铁损耗的大小可以认为与负载的大小无关,即空载时的损耗等于负载时的铁损耗,但这是指额定电压时的情况。如果电压偏离额定指,由于变压器铁芯中的磁感应强度处在磁化曲线的饱和段,空载损耗和空载电流都会急剧变化,因此,空载试验应在额定电压下进行。 注意:在测量大型变压器的空载或负载损耗时,因为功率因数很低,可达到cosφ小于和等于0.1。所以一定要求采用低功率因数的

瓦特表。 2、空载试验是测量额定电压下的空载损耗和空载电流,试验时高压侧开路,低压侧加压,试验电压是低压侧的额定电压,试验电压低,试验电流为额定电流百分之几或千分之几。 3、通过空载试验可以发现变压器以下缺陷:硅钢片间绝缘不良。铁芯极间、片间局部短路烧损,穿芯螺栓或绑扎钢带、压板、上轭铁等的绝缘部分损坏、形成短路,磁路中硅钢片松动、错位、气隙太大,铁芯多点接地,线圈有匝间、层间短路或并联支路匝数不等、安匝不平衡等,误用了高耗劣质硅钢片或设计计算有误。

变压器运行方式

变压器运行方式

1主题内容与适用范围 本规程规定了电力变压器(下称变压器)运行的基本要求、运行方式、运行维护、不正常运行和处理,以及安装、检修、试验、验收的要求。 本规程适用于电压为1kV及以上的电力变压器。 2引用标准 GB1094.1~1094.5电力变压器 GB6450干式电力变压器 DL400继电保护和安全自动装置技术规程 SDJ7电力设备过电压保护设计技术规程 SDJ8电力设备接地设计技术规程 SDJ9电气测量仪表装置设计技术规程 SDJ2变电所设计技术规程 DL/T573-95电力变压器检修导则 3基本要求 3.1保护、测量、冷却装置 3.1.1变压器应按有关标准的规定装设保护和测量装置。 干式变压器有关装置应符合相应技术要求。 3.1.2装有气体继电器的油浸式变压器,无升高坡度者,安装时应使顶盖沿气体继电器方向有1%~1.5%的升高坡度。 3.1.3变压器的冷却装置应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.风扇的附属电动机应有过负荷、短路及断相保护;

3.1.4变压器应按下列规定装设温度测量装置: a.应有测量顶层的温度计(柱上变压器可不装),无人值班变电站内的变压器应装设指示顶层最高值的温度计; b.干式变压器应按制造厂的规定,装设温度测量装置。 3.2有关变压器运行的其它要求 3.2.1变压器应有铭牌,并标明运行编号和相位标志。 3.2.2变压器在运行情况下,应能安全地查看顶层温度。 3.2.3室内安装的变压器应有足够的通风,避免变压器温度过高。 3.2.4变压器室的门应采用阻燃或不燃材料,并应上锁。门上应标明变压器的名称和运行编号,门外应挂“止步,高压危险”的标志牌。 3.3技术文件 3.3.1变压器投入运行前,应保存好技术文件和图纸。 a.制造厂提供的说明书、图纸及出厂试验报告; 3.3.1.2检修竣工后需交: a.变压器及附属设备的检修原因及检修全过程记录; 3.3.2每台变压器应有下述内容的技术档案: a.检修记录; b.预防性试验记录; c.变压器保护和测量装置的校验记录; 4变压器运行方式 4.1一般运行条件 4.1.1变压器的运行电压一般不应高于该运行分接额定电压的105%。对于特殊的使用情况,允许在不超过110%的额定电压下运行。

变压器运行特性分析

课程设计名称:电机与拖动课程设计 # 题目:变压器运行特性分析计算 专业: ( 班级: 姓名: 学号:

课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

、 1 变压器结构及其组成部分 (1) 变压器的基本结构 (1) 铁芯 (1) 绕组 (1) 油箱和冷却装置 (2) 绝缘套管 (2) 其他构件 (2) 变压器的额定值 (2) 2变压器的变换关系 (4) ' 电压变换 (4) 电流变换 (4) 阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13) |

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

常用变压器的种类及特点

常用变压器的种类及特点 (1)按相数分: (1)单相变压器:用于单相负荷和三相变压器组。 (2)三相变压器:用于三相系统的升、降电压。 (2)按冷却方式分: (1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。 (2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。 (3)按用途分: (1)电力变压器:用于输配电系统的升、降电压。 (2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。 (3)试验变压器:能产生高压,对电气设备进行高压试验。 (4)特种变压器:如电炉变压器、整流变压器、调整变压器等。 (4)按绕组形式分: (1)双绕组变压器:用于连接电力系统中的两个电压等级。 (2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。 (3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。 (5)按铁芯形式分:

(1)芯式变压器:用于高压的电力变压器。 (2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。 (3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。 电力变压器的日常维护及故障的预防方法 发布时间:09-12-24关注次数:363 简介:本文介绍电力变压器的日常维护及故障的预防方法:当前的世界范围内,不间断的电力供应已成为工业生产、国防军事、科技发展及人民生活中至关重要的因素。人们对能源不间断供应的依赖性常常是直到厂房里的生产设备突然停止工作时才意识到各种断路器、布线及变压器的重要性。 变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则可能仅仅是机器停转,照明完全熄灭,严重时会发生重大火灾乃至造成人身伤亡事故。因此如何确保变压器的安全运行受到了世界各国的广泛关注。 一、变压器故障的统计资料 (一)、各类型变压器的故障 根据相关部门对变压器类型显示的变压器故障统计数据人们可以看出,电力变压器故障始终占据主导位置。 (二)、不同用户的变压器故障 变压器使用在不同的部门,故障率是不同的。为了分析变压器发生故障

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

(完整word版)变压器运行中的各种异常及故障原因分析

变压器运行中的各种异常及故障原因分析 (一)声音异常 正常运行时,由于交流电通过变压器绕组,在铁芯里产生周期性的交变磁通,引起硅钢片的磁质伸缩,铁芯的接缝与叠层之间的磁力作用以及绕组的导线之间的电磁力作用引起振动,发出的“嗡嗡”响声是连续的、均匀的,这都属于正常现象。如果变压器出现故障或运行不正常,声音就会异常,其主要原因有: 1. 变压器过载运行时,音调高、音量大,会发出沉重的“嗡嗡”声。 2. 大动力负荷启动时,如带有电弧、可控硅整流器等负荷时,负荷变化大,又因谐波作用,变压器内瞬间发出“哇哇”声或“咯咯”间歇声,监视测量仪表时指针发生摆动。 3. 电网发生过电压时,例如中性点不接地电网有单相接地或电磁共振时,变压器声音比平常尖锐,出现这种情况时,可结合电压表计的指示进行综合判断。 4. 个别零件松动时,声音比正常增大且有明显杂音,但电流、电压无明显异常,则可能是内部夹件或压紧铁芯的螺钉松动,使硅钢片振动增大所造成。 5. 变压器高压套管脏污,表面釉质脱落或有裂纹存在时,可听到“嘶嘶”声,若在夜间或阴雨天气时看到变压器高压套管附近有蓝色的电晕或火花,则说明瓷件污秽严重或设备线卡接触不良。 6. 变压器内部放电或接触不良,会发出“吱吱”或“劈啪”声,且此声音随故障部位远近而变化。 7. 变压器的某些部件因铁芯振动而造成机械接触时,会产生连续的有规律的撞击或磨擦声。 8. 变压器有水沸腾声的同时,温度急剧变化,油位升高,则应判断为变压器绕组发生短路故障或分接开关因接触不良引起严重过热,这时应立即停用变压器进行检查。 9. 变压器铁芯接地断线时,会产生劈裂声,变压器绕组短路或它们对外壳放电时有劈啪的爆裂声,严重时会有巨大的轰鸣声,随后可能起火。 (二)外表、颜色、气味异常 变压器内部故障及各部件过热将引起一系列的气味、颜色变化。 1. 防爆管防爆膜破裂,会引起水和潮气进入变压器内,导致绝缘油乳化及变压器的绝缘强度降低,其可能为内部故障或呼吸器不畅。

变压器特性

第 6 章?? 变压器的基本理论 1.分析变压器内部的电磁过程。 2.分析电压、电流、磁势、磁通、感应电势、功率、损耗等物理量之间的关系。 3.建立变压器的等效电路模型和相量图。 4.利用等效电路计算分析变压器的各种性能。 6-1?? 变压器的空载运行 一.空载运行物理分析 一次侧接额定电压U1N,二次侧开路的运行状态称为空载运行(i2=0)。 空载时一次侧绕组中的电流i0为空载(或叫激磁)电流,磁势F0=I0N1叫励磁磁势。 F0产生的磁通分为两部分,大部分以铁心为磁路(主

磁路),同时与一次绕组N1和二次绕组N2匝链,并在两个绕 组中产生电势e1和e2,是传递能量的主要媒介,属于工作磁通,称为主磁通Ф。 另一部分磁通仅与原方绕组匝链,通过油或空气形成闭路,属于非工作磁通,称为原方的漏磁通Ф1σ。 铁心由高导磁硅钢片制成,导磁系数μ为空气的导磁系数的2000倍以上,所以大部分磁通都在铁心中流动,主 磁通约占总磁通的99%以上,而漏磁通占总磁通的1%以下。 问题6-1:主磁通和漏磁通的性质和作用是什么 规定正方向:电压U1与电流I0同方向,磁通Ф正方向与电流I0正方向符合右手螺旋定则。电势E与I0电流的正 方向相同。 由于磁通在交变,根据电磁感应定律: e1= -N1 dΦ/dt e2= -N2 dΦ/dt e1σ= -N1 dФ1σ/dt 二.电势公式及电势平衡方程式推导 空载时,主磁通Ф在一次侧产生感应电势E1,在二次侧产生感应电势E2,一次侧的漏磁通Ф1σ在一次侧漏抗电 势E1σ。 假设磁通为正弦波Ф=Фm sin ωt??? 则

e1= -N1 dΦ/dt=-N1 dФm sin ωt/dt = -N1Фmωcosωt=N1Фmωsin (ωt-90°) =E1m sin (ωt-90°) 电势在相位上永远滞后于它所匝链的磁通90o。?? 其最大值:E1m= ω N1Фm? = 2π f N1Фm 其有效值:E1=E1m/sqrt(2) = 2π f N1Фm/ = f N1Φm 这就是电机学最重要的“”公式。说明了感应电势E1与磁通Φm、频率f、绕组匝数N1成正比。 同样可以推出e2和e1σ的公式: e2=E2m sin(ωt-90°) E2m=N2Φmω E2= f N2 Φm e1σ=-N1dΦ1σ/dt =N1Φ1σmωsin(ωt-90°)? E1σm=ω N1Φ1σm E1σ= f N1Φ1σm 由于漏磁路的磁导率μo为常数,Φ1σm=L1σI I0,故E1σ= N12L1σI0=X1σI0,即E1σ可用漏抗压降的形式表示。 以上推导涉及到的电磁量均为正弦变化,可以用相量来表示。用相量时可同时表示有效值和相位。 E1σ=-jX1σI0

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 ''22 k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。为归算到二次侧的短路为相数;'' R k m 变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=?η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器的运行特征

一、变压器的运行特征 变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。 1、电压变化率 1)外特性 变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。 2)电压变化率 负载电流变化,变压器副边端电压将随着发生变化。电压调整率是变压器负载时副边端电压变化程度的一种程度。假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示 即 ⊿U*=(U20-U2)/U2N 式中U20—副边空载电压 U2—时的副边端电压 由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成 ⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N 电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。 综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。 为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。但采用最多、最普遍的还是变压器调压。电力变压器的调压方式有两种:一种是无载调压,即在切断负载(或停电)后,用无励磁分接开关改变高压绕组分接头调压;另一种是有载分接开关调压,后者调压速度快,调压范围可达到额定电压的20%。中小型电力变压器一般三个 分接头,记作U N±2×2.5%或U N ±8×1.25%等。 2、效率 1)变压器的功率 变压器的额定容量是由额定电压和额定电流的乘积即视在功率表示的S=UI,所以变压器的整体尺寸决定视在功率,其中,额定电压决定于变压器铁芯磁通的多少,因而决定铁芯的截面。 变压器的输出功率P2=U2I2cosφ2是与φ2有关的,所以在同样的容许发热情况下,输出功率的大小取决于负载的性质(cosφ2),负载功率因数cosφ2愈高,输出功率愈大,如

变压器外特性与效率特性

一、变压器的外特性及电压变化率 变压器空载运行时,若一次绕组电压U 1不变,则二次绕组电压U 2 也是不变的。 变压器加上负载之后,随着负载电流I 2的增加,I 2 在二次绕组内部的阻抗压降也 会增加,使二次绕组输出的电压U 2 随之发生变化。另一方面,由于一次绕组电 流I 1随U 2 增加,因此I 2 增加时,使一次绕组漏阻抗上的压降也增加,一次绕组 电动势E 1和二次绕组电动势E 2 也会有所下降,这也会影响二次绕组的输出电压 U 2。变压器的外特性是用来描述输出电压U 2 随负载电流I 2 的变化而变化的情况。 当一次绕组电压U 1和负载的功率因数cosφ 2 一定时,二次绕组电压U 2 与负载电 流I 2 的关系,称为变压器的外特性。它可以通过实验求得。功率因数不同时的 几条外特性绘于图2—17中,可以看出,当cosφ 2=1时,U 2 随I 2 的增加而下降 得并不多;当cosφ 2降低时,即在感性负载时,U 2 随I 2 增加而下降的程度加大, 这是因为滞后的无功电流对变压器磁路中的主磁通的去磁作用更为显著,而使 E 1和E 2 有所下降的缘故;但当cosφ 2 为负值时,即在容性负载时,超前的无功 电流有助磁作用,主磁通会有所增加,E 1和E 2 亦相应加大,使得U 2 会随I 2 的增 加而提高。以上叙述表明,负载的功率因数对变压器外特性的影响是很大的。 图2-17 变压器外特性 在图2—17中,纵坐标用U 2/U 2N 之值表示,而横坐标用I 2 /I 2N 表示,使得在坐 标轴上的数值都在0~1之间,或稍大于1,这样做是为了便于不同容量和不同电压的变压器相互比较。 一般情况下,变压器的负载大多数是感性负载,因而当负载增加时,输出电压U 2 总是下降的,其下降的程度常用电压变化率来描述。当变压器从空载到额定负 载(I 2=I 2N )运行时,二次绕组输出电压的变化值ΔU与空载电压(额定电压) U 2N 之比的百分值就称为变压器的电压变化率,用ΔU%来表示。

变压器基本原理及应用介绍

变压器基本原理及应用介绍 1.1基本要求 1.了解变压器的基本构造、工作原理、铭牌数据和外特性。 2.掌握变压器的三个变换功能及其用途。 3.理解阻抗匹配的意义。 1.2基本内容 1. 变压器主要由铁心、原绕组(一次绕组)和副绕组(二次绕组)组成。铁心构成磁路,原绕组 和副绕组(副边开路时仅原绕组)产生的磁通由磁路闭合而实现能量或信号的传递。 2.变压器的功能可由三个变换来表述: 电压变换──主要用途是电源升降压。原绕组电压与副绕组电压的比值近似为原绕组匝数与副绕 组匝数的比值称为变比,即:1 12 2 U N U N k = = 电流变换──主要用途是电流互感器。原绕组电流与副绕组电流的比值近似为变比的倒数,即: 122 1 1 I N I N k = = 阻抗变换──主要用途是电路耦合及阻抗匹配。副绕组的负载阻抗Z 折合到原绕组(电源)端 可表示为该阻抗与变比平方的乘积,即:2k Z Z '= 3.变压器铭牌数据通常包括: ①一次侧额定电压1N U 和二次侧额定电压N U 2 ②一次侧额定电流N I 1和二次侧额定电流N I 2 ③额定容量N S 变压器的额定容量之所以用视在功率N S 表示是因为变压器输出的有功功率与负载的功率因数有关。例如在额定电压和额定电流下,负载的功率因数为1时,kVA 100的变压器可输出kW 100的功率,而当负载的功率因数5.0时则只能输出kW 50的功率。 4.变压器阻抗变换的一个重要用途是实现阻抗匹配,即采用不同的匝数比将负载阻抗变换为所需要的、比较合适的数值,这通常可以使负载从信号源或电源获得最大的信号幅度或功率值。 1.3重点和难点 1. 变压器是按照电磁感应原理来实现电能转换的,当变压器的输入端接直流电源时,副边将无 法产生感应电势,因此变压器不能用于直流场合。 2. 变压器的额定容量和输出功率通常是分相等的,它们的表达式分别是: 22112222 ()cos N N N N N N N S U I U I V A P U I ?=≈= 2N 2P S cos ?= 即:式中2cos ?为负载的功率因数,上式表达的变压器的输出与负载的功率因数有关。

变压器特性介绍

1、电力变压器的工作原理及工作特点 1.1 初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加,这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标,画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。这种磁化曲线一般如下图中曲线所示: 1.2 磁滞回线 当铁磁质达到磁饱和状态后,如果减小磁化场H,介质的磁化强度M(或磁感应强度B)并不沿着起始磁化曲线减小,M(或B)的变化滞后于H的变化。这种现象叫磁滞。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。如下图:

1.3 基本磁化曲线 铁磁体的磁滞回线的形状是与磁感应强度(或磁场强度)的最大值有关,在画磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线叫基本磁化曲线。 如下图: B B m A B r R H e e H ' H -H m O H m R ' r B ' A '

1.4 变压器 1.4.1 定义:变压器(英语:Transformer)是应用法拉第电磁感应定律而升高或降低电压的装置。变压器通常包含两组或以上的线圈和铁心。主要用途是升降交流电的电压、改变阻抗及分隔电路。如下图: 1.4.2 基本原理:一个简单的单相变压器由两块导电体组成。当其中一块导电体有一些不定量的电流(如交流电或脉冲式的直流电) 通过,便会产生变动的磁场。根据电磁的互感原理,这变动的磁场会使第二块导电体产生电势差。假如第二块导电体是一条闭合电路的一部份,那么该闭合电路便会产生电流。电力于是得以传送。在通用的变压器中,有关的导电体是由(多数为铜质的) 电线组成线圈,因为线圈所产生的磁场要比一条笔直的电线大得多。变压器的原理是由

变压器的运行特性习题(精)

第2章 变压器的运行原理 第4节 变压器的运行特性 一、填空题 1、引起变压器电压变化率变化的原因是 。 2、变压器电源电压一定,其二次端电压的大小决定于 、 和 。 3、变压器短路阻抗越大,电压变化率 ,稳态短路电流 ,突然短路电流 。 4、变压器在其他条件不变的情况下,电源频率下降,则0Φ ,0I ,Fe p ,σ1x , u ? 。 (填变化情况) 5、变压器原边额定电压U 1N =220V ,副边额定电压U 2N =330V ,当副边接负载后,实际的副边电压U 2=300V ,则电压变化率△U=_________。 6、变压器运行时的效率与 、 和 、 有关,当 变压器的效率最大。 7、变压器运行时基本铜耗可视为 ,基本铁耗可视为 。 8、变压器的空载损耗p 0=600W ,短路损耗p k =1920W ,则最大效率时的负载系数m β=_________。 二、单项选择题 1、一台变压器在( )时效率最高。 (A )1=β (B )常数=K p p /0 (C )Fe Cu p p = (D )N S S = 2、某三相电力变压器带阻感性负载运行,在负载电流相同的条件下2cos ?越高,则( )。 (A )U ?越大,效率越高; (B )U ?越大,效率越低; (C )U ?越小,效率越低; (D )U ?越小,效率越高。 3、变压器绕组和铁芯在运行中会发热,其发热的主要因素是( )。 (A )电流 (B )电压 (C )铁损和铜损 (D )电感 4、变压器一次侧为额定电压时,其二次侧电压( )。 (A )必然是额定值; (B )随着负载电流的大小和功率因数的高低而变化; (C )随着所带负载的性质而变化; (D )无变化规律。 5、变压器所带的负荷是电阻、电感性的,其外特性曲线呈现( )。 (A )上升形曲线;(B )下降形曲线;(C )近于一条直线;(D )无规律变化。 6、变压器负载呈容性,负载增加时,副边电压( )。 (A )呈上升趋势; (B )不变; (C )可能上升或下降。

变压器产品介绍

變壓器產品介紹 一.何為變壓器? 所謂變壓器就是以互感現象為基礎﹐隔離電阻﹑耦合電容為目的的一種電磁裝置。二.變壓器的分類﹕ 其類型主要有電源變壓器﹑間頻變壓器﹑中頻變壓器﹑高頻變壓器﹑低頻變壓器﹑音頻變壓器等。 中頻變壓器又稱中周﹐與電容器相互組成諧振﹐以改變線圈的電感量。 間頻變壓器主要作用是阻抗匹配﹐耦合﹑倒相等﹐可以推動放大級的輸出阻抗與放大功率。 三.變壓器的組成﹕ 由鐵芯﹑漆包線和絕緣材料三部分組成。 A.漆包線﹕本公司常用的漆包線的原材料﹐常用的規格Φ0.10 mm 0UEW Φ0.08 mm 0UEW Φ0.14 mm 0 UEW 其中﹕ 線的直徑表示油漆膜 B.鐵芯(即磁的裝置) 型號有﹕T型N型M型E型 常用到的鐵芯規格是36T0153-20P 36T0148-21P 35T0100-00P L82-4F/2H-1F1P L52-4F2H-1F/1P等。 涂膜材料與耐壓﹕ P------油漆膜耐壓1000Vrms Q------油漆膜耐壓1500Vrms G------環氣樹脂耐壓1000Vrms 材質﹕鐵芯常使用的材質是高導磁系數材料﹐優點是降低磁阻并可減少激磁電流。四.變壓器的作用﹕ 主要作用是隔離﹑耦合兩大作用。 五.變壓器的外形﹕ 以本公司生產產品為例﹐主要常見的外形系列有PT系列﹑ST系列﹑LAN-MATE系列﹐以及有待即將以后開發的PCM薄片等新品種。

V2=N2 d t 而互感值M12 N2 Φ12 M12= i1 可整理為﹕ d Φ12 d i1 V2=N2 (N2Φ12=M12i1)=M12 d t d t

其中M12為N1線圈時N2線圈的互感系數﹐也可稱為互感﹐若我們將線圈N2接上負載形成通路時﹐則感應動勢會產生感應電流i2﹐此為變壓器的基本原理。 當交流電壓正接上一次側線圈上﹐則有電流i1產生交變磁通﹐Φ在鐵芯周圍流動﹐因此在二次側線圈分別有感應電壓V1及V2。 d Φ d Φ V1=N1 (A-1) V2=N2 (B-1) d t d t 由(A-1)與(B-1)式之相除可得﹕ V1 N1 = = a V2 N2 (注﹕習慣上我們把接有電源的線圈稱為一次線圈或初級線圈﹐而將負載接的線圈稱為二次線圈或次級線圈。) 我們定義a為匝數比﹐即我們所講的圈比﹕ N1 a= N2 因此﹐理想變壓器的一次側與二次側電壓比等于線圈的匝數比。 理想情況下﹐輸入功率等于輸出功率﹐故﹕ V1*I1=V2*I2 V1 I2 N1 = = V2 I1 N2 也因而使得電流比為﹕

变压器的损耗和效率

变压器的损耗和效率 一、变压器简介 变压器是利用电磁感应原理传输电能或电信号的器件,它具有电压变换、电流变化和阻抗变换及电气隔离的作用。 1、理想变压器工作原理 理想变压器基于下述两个假设: 1、变压器效率等于1,无任何能量损耗。即忽略了实际铁芯变压器线圈的电阻以及铁芯在交变磁场作用下所产生的能量损耗。 2、铁芯的磁导率μ趋近于无穷大,没有漏磁通。线圈的互感磁通等于自感磁通,耦合系数K为1,线圈自感系数L1、L2趋于无穷大,但是,L1/L2为常数,数值上等于原副边匝数比的平方。 理想变压器的工作原理如下: 图1理想变压器工作原理(变压器) 变压器的主要部件是一个铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电连接。在一次绕组中施加交变电压,交变电压产生交变电流,交变电流产生交链一、二次绕组的交变磁通Φ,在一次和二次绕组中分别感应出电动势E1、 E2。 理想变压器的绕组电阻为零,有:

E1=-U1,E2=-U2 假设一次和二次线圈的匝数分别为N1和N2,一次和二次绕组铰链的磁链分别为Ψ1和Ψ2,根据电磁感应定律,下述方程组成立: U1=-E1=-dΨ1/dt=d(N1Φ)/dt=N1dΦ/dt(a) U2=-E2=-dΨ2/dt=d(N2Φ)/dt=N2dΦ/dt(b) (a)式除以(b)式,可得: U1/U2=N1/N2(1) 理想变压器效率等于1,一次与二次绕组之间在能量传输过程中没有损耗,可知: U1I1=U2I2 联立式(1)可得: I1/I2=N2/N1(2) (1)式除以(2)式,可得: (U1/I1)/(U2/I2)=(N1/N2)2 U1/I1及U2/I2分别为一次和二次绕组的阻抗,分别记为Z1和Z2,则: Z1/Z2=(N1/N2)2(3) (1)、(2)、(3)三式分别表示了理想变压器的电压变换、电流变换和阻抗变换关系。 2、实际变压器工作原理 实际变压器绕组电阻不为零; 实际变压器交变磁通在铁芯中会产生涡流损耗和磁滞损耗; 实际变压器铁芯磁导率为有限值,一次绕组产生的磁通会有部分与空气形成磁路,不与二次绕组铰链,称为漏磁通Φσ1,同样,二次绕组也会产生漏磁通Φσ2。 因此: E1≠U1、E2≠U2。 同时铰链一次绕组和二次绕组的磁通称为主磁通Φ。由于空气的磁滞很大,一般主磁通远远大于漏磁通。 实际变压器效率小于1,其工作原理如下:

变压器运行维护注意事项

变压器的运行维护注意事项 一、变压器油的运行与维护 要想了解变压器油的运行与维护,首先要了解变压器油的作用,其作用主要以下几种: ?电气绝缘;不同电压等级的变压器,其电气强度要求是不一样的。 ?传输热能冷却作用; ?消弧作用; ?通过变压器油色谱分析,含气量分析,油样试验,诊断变压器是否存在故障提供信息。 变压器油一般分为:DB-10,DB-25,DB-45三种型号。在我国一直是以变压器油的凝点为基础的,凝点低于—10℃的变压器油牌号为DB-10,凝点低于—25℃的变压器油牌号为DB-25,凝点低于—45℃的变压器油牌号为DB-45。对变压器油的基本要求: ?电气强度:750~1000kV电压等级变压器(电抗器、换流变)要求:≧70kV/2.5mm;500kV电压等级:≧60Kv/2.5mm;220kV电压等级:≧50kV/2.5mm;110kV电压等级:≧40kV/2.5mm。 ?微水含量:750~1000kV电压等级≦8ppm;500kV电压等级≦10ppm;220kV电压等级≦15ppm;110kV电压等级≦20ppm。 ?介质损耗tan(δ):≦0.5%. ?变压器油含气量:750~1000kV电压等级≦0.5%,500kV电压等级≦1%,220kV电压等级≦2%。 ?颗粒度(≦5μm):≦2000/100ml(换流变的要求)。750~1000kV电压等级≦1500/100ml或更高.

关于变压器大修或由于其它原因,需要给变压器添加变压器油时。一定要做混油试验,否则,不能随便对变压器添加油,既然是同型号但不同批次的变压器油也要做混油试验。 表1运行中变压器油质量标准

基于Matlab的变压器运行特性仿真专题报告

变压器运行特性数字仿真 专题报告 学生姓名: 班级: 学号: 指导教师: 所在单位:电气工程学院 提交日期:2018

作业评分

一、概述 (一)电压调整率 对于负载来说,变压器相当于一个交流电源,其运行特性主要有外特性和效率特性,电压调整率和运行效率是与之对应的反映变压器运行性能的主要指标。 1、定义 由于变压器一、二次绕组都有漏阻抗,负载电流流过时必然在这些漏阻抗上产生压降,二次侧电压将随负载的变化而变化。为了描述这种电压变化的大小, 引入了电压调整率。电压调整率定义为:变压器一次绕组施加额定电压 , 由空载到给定负载时二次电压代数差与二次额定电压 的比值,即 2、对变压器运行的影响 当一次电压为额定值 ,负载功率因数 不变时,二次电压 与负载 电流的关系称为电压调整特性,也称外特性。当负载为额定值,功 率因数为指定值(通常为0.8滞后)时的电压调整率,称为额定电压调整率,它是变压器的一个重要性能指标,反映了变压器输出电压的稳定性。显然,电压调整率只是对所设计的额定负载而言的,不随负载的改变而改变,换句话说,设计时只考虑额定负载状态那个点。当负载轻时(小于额定负载),输出电压高于设计值,负载重时,输出电压低于设计值。过高的电压调整率会使变压器的温升超过规定值,并使输出电压变化增大,影响负载特性,特别在负载变化较大或工作环境温度变化大的场合。 3、对电力系统的影响及意义 电力系统中负载的变化对运行电压影响较大,在夏季用电高峰期表现得极为突出。电压的变化,在直观上影响电力设施的正常运行,在微观上主要是损耗加大。为了保证供电的电压质量和安全运行,往往采取调压等手段将用户终端电压控制在一定围之。 (二)运行效率 U V 1N U 2N U 20222120000002 2221001001001N N N N N U U U U U U U U U U U * '---= ?=?=?=-V 1N U 2 cos ?2 U 2I ()22U f I =

变压器效率特性

变压器运行特性分析与效率曲线二、理论分析 2.效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 '' 2 2k Fe Cu Fe R mI p p p P+ = + = ∑ 式中,电阻。 为归算到二次侧的短路 为相数;''R k m 变压器的输入有功功率为1P,输出功率为2P,总损耗功率为P ∑,所以效率 为 P P P P P ∑ + = = 2 2 1 2 η 由于电力变压器的效率很高,用直接负载法测量1P和2P在算出效率,很难 得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。此时效率为 kN O N kN O P I P I S P I P P P 2 2 2 2 2 2 1 cos 1 1 * * * + + + - = ∑ - = ? η 给定以上的参数即可绘制效率曲线。

图3.变压器的效率曲线 有数学分析 2 = dI dη 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值 说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。 附程序源代码 3.变压器的效率曲线 function xiaolv1 p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end hold on plot(a,b) xlabel('I2的标幺值 ') ylabel('效率 ') 4.效率曲线的最大值 function xiaolv2 p0=2.4; pk=11.6; sn=1000;

变压器效率特性

变压器运行特性分析与效率曲线 二、理论分析 2. 效率和效率特性 变压器运行时将产生损耗。变压器的损耗分为铜耗和铁耗,每一类又包括基 本损耗和杂散损耗。其中铁耗可视为不变损耗。基本铜耗是指电流流过绕组时所 产生的直流电阻损耗。杂散铜耗主要是指漏磁场引起电流集肤效应, 使绕组的有 效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。 变压器的总损耗为 2 '' P P Fe P cu P Fe ml 2 R k 式中 m 为相数;R ;为归算到二次侧的短路 电阻。 变压器的输入有功功率为P ,输出功率为P2 ,总损耗功率为 P ,所以效率 由于电力变压器的效率很高,用直接负载法测量 R 和P 2在算出效率,很难 得 到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗, 由短路试验测出铜耗在计算效率。此时效率为 给定以上的参数即可绘制效率曲线 4 P 2 P 2 P ~~P P o I 22P ;N S N 12 cos P o I 22 P ;N

图3.变压器的效率曲线有数学分析dI2 可知在变压器的铜耗等于铁耗时,变压器的效率达到最 大。 图4.效率曲线的最大值说明:图中铁耗与铜耗值与对应的坐标值并不一一对应附程序源代码 3. 变压器的效率曲线 fun cti on xiaolvl p0=2.4; pk=11.6; sn=1000; j=0.8; a=zeros(1,1000); b=zeros(1,1000); for i=2:1:1000 a(i)=a(i-1)+0.001; b(i)=1-(p0+(a(i)A2)*pk)/(a(i)*s n*0.8+p0+(a(if2)*pk); end hold on plot(a,b) xlabel( '12 的标幺值') ylabel( '效率') 4. 效率曲线的最大值 fun cti on xiaolv2 p0=2.4; pk=11.6; sn=1000;

相关主题