搜档网
当前位置:搜档网 › 硫酸

硫酸


硫酸,化学式为H2SO4。是一种无色无味油状液体,是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。硫酸是基本化学工业中重要产品之一。它不仅作为许多化工产品的原料,而且还广泛地应用于其他的国民经济部门。



编辑本段简介
硫酸是化学六大无机强酸(硫酸、硝酸(HNO3)、盐酸(HCl,学名氢氯酸)、氢溴酸(HBr)、氢碘酸(HI)、高氯酸(HClO4)之一,也是所有酸中最常见的强酸之一。
管制信息
硫酸(*)(腐蚀)(易制毒-3)(易制爆) 本品根据《危险化学品安全管理条例》、《易制毒化学品管理条例》受公安部门管制。
性状
无色澄清油状液体。无气味。能与水和乙醇混溶,并放出大量热而猛烈溅开,宜将酸渐渐加入水中。暴露空气中迅速吸收水分,也能夺取有机物如糖、纸、布、木等中的水分子而使其碳化变黑。无水酸在10℃,98%酸在3℃时凝固。在340℃时分解为三氧化硫和水。相对密度约1.84。沸点约290℃。低毒,半数致死量(大鼠,经口)2140mg/kg。有强腐蚀性。
储存
密封干燥保存。 (若不密封则会吸收空气中的水分而导致质量分数降低。)
用途
为分析和实验室广泛使用的试剂,可使分析物质变为可溶性状态。钡、锶和铅的沉淀剂。能取代硅酸和挥发性酸。用于干燥器和熔点测定仪。有机分析和合成中吸收水分。磺化反应。缩合反应。与硝酸混合液用于硝化反应。
安全措施
密闭包装,并贮于干燥通风处。与食用化学品、碱类、还原剂、易(可)燃物分储。注意个体防护,严禁身体直接接触。皮肤(眼睛)接触,用流动清水冲洗。
编辑本段编码信息
CAS号
7664-93-9
EINECS号
231-639-5
编辑本段理化常数(实验室规定)
成分/组成信息
浓硫酸98.0%(浓)<70%(稀)
密度
98%的浓硫酸1.84g/mL
摩尔质量
98g/mol
物质的量浓度
98%的浓硫酸18.4mol/L
中心原子杂化方式
sp3
编辑本段物理性质
浓硫酸溶解时放出大量的热,因此浓硫酸稀释时应该“酸入水,沿器壁,慢慢倒,不断搅。”若将水倒入浓硫酸中,温度将达到173℃,导致酸液飞溅,造成安全隐患。若将浓硫酸中继续通入三氧化硫,则会产生"发烟"现象(部分生成焦硫酸),这样含有SO3的硫酸称为"发烟硫酸"。 硫酸是一种无色黏稠油状液体,是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。73 100%的硫酸熔沸点: 熔点10℃ 沸点290℃ 但是100%的硫酸并不是最稳定的,沸腾时会分解一部分,变为98.3%的浓硫酸,成为338℃(硫酸水溶液的)恒沸物。加热浓缩硫酸也只能最高

达到98.3%的浓度。 98.3%硫酸的熔沸点: 熔点:10℃; 沸点:338℃
编辑本段浓硫酸化学性质
1.脱水性
脱水指浓硫酸脱去非游离态水分子或脱去有机物中氢氧元素的过程。 (1)脱水性简介 就硫酸而言,脱水性是浓硫酸的性质,而非稀硫酸的性质,浓硫酸有脱水性且脱水性很强。 (2)可被脱水的物质 物质被浓硫酸脱水的过程是化学变化的过程,反应时,浓硫酸按水分子中氢氧原子数的比(2:1)夺取被脱水物中的氢原子和氧原子或脱去非游离态的结晶水,如五水合硫酸铜(CuSO4·5H2O)。 (3)炭化 可被浓硫酸脱水的物质一般为含氢、氧元素的有机物,其中蔗糖、木屑、纸屑和棉花等物质中的有机物,被脱水后生成了黑色的炭。 浓硫酸如C12H22O11=浓硫酸=12C+11H2O (4)黑面包反应 在200mL烧杯中放入20g蔗糖,加入几滴水,水加适量,搅拌均匀。然后再加入15mL质量分数为98%的浓硫酸,迅速搅拌。观察实验现象。 可以看到蔗糖逐渐变黑,体积膨胀,形成疏松多孔的海绵状的炭,还会闻到刺激性气味气体。 (5)络合反应 将SO3通入浓H2SO4中,则会有“发烟”现象。 H2SO4+SO3═H2S2O7(亦写为H2O·SO3·SO3)
2.强氧化性
(1)跟金属反应 ①常温下浓硫酸能使铁、铝等金属钝化。 ②加热时,浓硫酸可以与除金、铂之外的所有金属反应,生成高价金属硫酸盐,本身一般被还原成二氧化硫 Cu+2H2SO4(浓)=加热=CuSO4+SO2↑+2H2O 2Fe+6H2SO4(浓)=加热=Fe2(SO4)3+3SO2↑+6H2O 在上述反应中,硫酸表现出了强氧化性和酸性。 (2)非金属反应 热的浓硫酸可将碳、硫、磷等非金属单质氧化到其高价态的氧化物或含氧酸,本身被还原为二氧化硫。在这类反应中,浓硫酸只表现出氧化性。 C+2H2SO4(浓)=加热=CO2↑+2SO2↑+2H2O S+2H2SO4(浓)=加热=3SO2↑+2H2O 2P+5H2SO4(浓)=加热=2H3PO4+5SO2↑+2H2O (3)跟其他还原性物质反应 浓硫酸具有强氧化性,实验室制取硫化氢、溴化氢、碘化氢等还原性气体不能选用浓硫酸。 H2S+H2SO4(稀)=S↓+SO2↑+2H2O 2HBr+H2SO4(稀)=Br2↑+SO2↑+2H2O 2HI+H2SO4(稀)=I2↑+SO2↑+2H2O
3.难挥发性(高沸点)
制氯化氢、硝酸等(原理:高沸点酸制低沸点酸)如,用固体氯化钠与浓硫酸反应制取氯化氢气体 NaCl(固)+H2SO4(浓)═NaHSO4+HCl↑(常温) 2NaCl(固)+H2SO4(浓)═加热═Na2SO4+2HCl↑(加热) Na2SO3+H2SO4═Na2SO4+H2O+SO2↑ 再如,利用浓盐酸与浓硫酸可以制氯化氢气体。 酸性:制化肥,如氮肥、磷肥等 2NH3+H2SO4═(NH4)2SO4 Ca3(PO4)2+2H2SO4═2CaSO4+Ca(H2PO4)2 稳定性:浓硫

酸与亚硫酸盐反应 Na2SO3+H2SO4═Na2SO4+H2O+SO2↑
4.强酸性
纯硫酸是无色油状液体,10.4°C时凝固。加热纯硫酸时,沸点290°C,并分解放出部分SO3直至酸的浓度降到98.3%为止,这时硫酸为恒沸溶液,沸点338°C。无水硫酸体现酸性是给出质子的能力,纯硫酸仍然具有很强的酸性,98%硫酸与纯硫酸的酸性基本上没有差别,而溶解三氧化硫的发烟硫酸就是一种超酸体系了,酸性强于纯硫酸。 但是广泛存在一种误区——稀硫酸的酸性强于浓硫酸,这种想法是错误的。的确,稀硫酸第一步电离完全,产生大量的水合氢离子H3O+;但是浓硫酸和水一样,自身自偶电离会产生一部分硫酸合氢离子H3SO4+,正是这一部分硫酸合质子,就导致纯硫酸具有非常强的酸性,虽然少,但是酸性却要比水合质子强得多,所以纯硫酸的哈米特酸度函数高达-12.0(越小酸性越强)。 纯硫酸是无色、粘稠,导电性能极高的油状液体,并不易挥发,但是加热沸腾前会产生大量的白雾状硫酸酸雾。纯硫酸是一种非常极性的液体,其介电系数大约为100。因为它分子与分子之间能够互相质子化对方,造成它极高的导电性,这是由于它发生自偶电离生成的两种离子所致,这个过程被称为质子自迁移。这种反应机理是和纯磷酸以及纯氢氟酸所同出一辙的。但纯硫酸达成这种反应平衡所需要的时间则比以上两者快得多,差不多是即时性的。 2H2SO4==H3SO4++HSO4- Kap(25°C)=[H3SO4+][HSO4-]=2.7×10^-4 在硫酸溶剂体系中,(H3SO4+)经常起酸的作用,能质子化很多物质产生离子型化合物:NaCl+H2SO4→NaHSO4+HCl【不加热都能很快反应】 KNO3+H2SO4→(K+)+(HSO4-)+HNO3 HNO3+H2SO4→(NO2+)+(H3O+)+2(HSO4-) CH3COOH+H2SO4→〔CH3C(OH)2+〕+(HSO4-) HSO3F+H2SO4→(H3SO4+)+(SO3F-)【氟磺酸酸性更强】 上述与HNO3的反应所产生的(NO2+),有助于芳香烃的硝化反应。
编辑本段稀硫酸化学性质
化学性质
1.可与多数金属(比铜活泼)和绝大多数金属氧化物反应,生成相应的硫酸盐和水 2.可与所含酸根离子对应酸酸性比硫酸根离子弱的盐反应,生成相应的硫酸盐和弱酸; 3.可与碱反应生成相应的硫酸盐和水; 4.可与氢前金属在一定条件下反应,生成相应的硫酸盐和氢气; 5.加热条件下可催化蛋白质、二糖和多糖的水解。 6.强电解质,在水中发生电离H2SO4=2H++SO4 2-
常见误区
稀硫酸在中学阶段,一般当成H2SO4=2H++SO4 2-,两次完全电离,其实不是这样的。 根据硫酸酸度系数 pKa1:-3.00 pka2:1.99 其二级电离不够充分pka2:1.99,在稀硫酸中HSO4-═可逆

═H++SO4 2- 并未完全电离,1Mol/L的硫酸一级电离完全,二级电离大概电离10%左右,也就是溶液中仍存在大量的HSO4-。而即使是NaHSO4溶液O.1Mol/L时,硫酸氢根也只电离了30%左右。
编辑本段物理性质
吸水性
它是良好的干燥剂。用以干燥酸性和中性气体,如CO2,H2,N2,NO2,HCl,SO2等,不能干燥碱性气体,如NH3,以及常温下具有还原性的气体,如H2S。 吸水是物理变化过程 吸水性与脱水性有很大的不同:吸水原来就有游离态的水分子,水分子不能被束缚。 将一瓶浓硫酸敞口放置在空气中,其质量将增加,密度将减小,浓度降低,体积变大,这是因为浓硫酸具有吸水性。
编辑本段一般制法
实验室硫酸制法
可以用FeSO4.7H2O加强热,用冰水混合物+U型管冷凝即可,用NaOH吸收SO2,理论可得29.5%的H2SO4。 关键在于尾气吸收。
酸雨与硫酸
酸雨能产生硫酸,酸雨中的二氧化硫(SO2)与大气中的水反应,生成亚硫酸(H2SO3),亚硫酸又与大气中的氧反应,生成硫酸(H2SO4),落到地面。
硫酸与碳酸氢铵反应
硫酸与碳酸氢铵反应生成硫酸铵、二氧化碳和水,可以在冬天为蔬菜大棚补充二氧化碳。
其他硫酸制备工艺
(1)氨酸法增浓低浓度二氧化硫气体生产硫酸方法 (2)采用就地再生的硫酸作为催化剂的一体化工艺 (3)草酸生产中含硫酸废液的回收利用 (4)从芳族化合物混酸硝化得到废硫酸的纯化与浓缩工艺 (5)从氧化钛生产过程中排出的废硫酸溶液的再生方法 (6)从稀硫酸中分离有机磷化合物和其它杂质的方法 (7)从制备2-羟基-4-甲硫基丁酸(MHA)工艺的含硫副产物中回收硫酸的方法 (8)催化氧化回收含有机物废硫酸的方法 (9)电瓶用硫酸生产装置 (10)二氧化硫源向硫酸的液相转化方法 (11)沸腾炉焙烧硫磺制备硫酸的方法 (12)沸腾炉掺烧硫磺生产装置中稀酸的回收利用 (13)高浓二氧化硫气三转三吸硫酸生产方法 (14)高温浓硫酸液下泵耐磨轴套 (15)高效阳极保护管壳式浓硫酸冷却器 (16)节能精炼硫酸炉装置 (17)精苯再生酸焚烧制取硫酸的方法 (18)利用废硫酸再生液的方法和装置 (19)利用含硫化氢的酸性气体与硫磺联合制取高浓度硫酸 (20)利用含硫化氢的酸性气体制取高浓度硫酸
编辑本段工业制法
生产硫酸的原料有硫黄、硫铁矿、有色金属冶炼烟气、石膏、硫化氢、二氧化硫和废硫酸等。硫黄、硫铁矿和冶炼烟气是三种主要原料。
1.制取二氧化硫(沸腾炉)
燃烧硫或高温处理

黄铁矿,制取二氧化硫 S+O2═点燃═SO2 4FeS2+11O2═高温═8SO2+2Fe2O3
2.接触氧化为三氧化硫(接触室)
2SO2+O2═2SO3(用五氧化二钒做催化剂该反应为可逆反应)
3.用98.3%硫酸吸收
SO3+H2SO4═H2S2O7(焦硫酸)
4.加水(吸收它)
H2S2O7+H2O═2H2SO4
提纯工艺
可将工业浓硫酸进行蒸馏,便可得到浓度95%-98%的商品硫酸. 其他方法 磷酸反应后,利用磷石膏,工业循环利用,使用二水法制硫酸。
编辑本段硫酸新成员
固体硫酸
是粉末制剂的固体酸类,可以替代硫酸的常规酸洗工艺,主要用于清除各种钢铁、不锈钢、铜、铝等金属零件及其设备表面的锈、氧化皮、水垢、灰垢等污物,特别是钢铁热扎、冷扎过程中生成的高温能清除氧化皮,清洗效果可以跟硫酸酸洗相媲美,最终使产品表面清洁干净;清洗过程中没有烟雾产生,大大改善生产环境;对金属的几乎没有腐蚀,对操作人员、设备、环境没有任何危害。
发烟硫酸
H2SO4.XSO3即硫酸的三氧化硫溶液 无色至浅棕色粘稠发烟液体,其密度、熔点、沸点因SO3含量不同而异。 当它暴露于空气中时,挥发出来的SO3和空气中的水蒸汽形成硫酸的细小露滴而冒烟,所以称之为发烟硫酸。 一般含SO3的质量分数有20%、40%、60%、66%等。若折合成硫酸的质量分数则发烟硫酸中H2SO4可超过100%。有人认为发烟硫酸中主要含焦硫酸(H2S2O7)。具强氧化性和吸水性,脱水性及腐蚀性。用于合成染料、药物。常用做磺化剂和吸水及脱水剂。 发烟硫酸中的物质成分复杂,除了硫酸和三氧化硫外,还有焦硫酸(H2S2O7)、二聚硫酸(H4S2O8)三聚硫酸(H6S3O12)及H4S3O(15)H2S3O(10)(H2SO4)20等各种各样的硫酸聚合物。 20%发烟硫酸可在接触法的硫酸厂中生产,就是在98.3%硫酸吸收塔前设置发烟硫酸吸收塔,以20%发烟硫酸吸收转化后含三氧化硫7%~10%的气体,同时向循环酸中补加98.3%硫酸,使其浓度保持不变。65%发烟硫酸可由20%发烟硫酸和液体三氧化硫混合而得,或仿照20%发烟硫酸的制造方法,建立以65%发烟硫酸循环喷淋的吸收塔,吸收100%三氧化硫气体,并补加20%发烟硫酸,以调节循环酸浓度。 缓慢加入纯碱-消石灰溶液中,并不断搅拌,反应停止后,用大量水冲入废水系统。 注:这是工业俗称,准确的化学语言应该是挥发出雾。应该叫发雾硫酸。
编辑本段实验室制取
SO2+H2O2===H2SO4 SO3+H2O===H2SO4
编辑本段化学品的检验
所需药品
经过盐酸酸化的氯化钡溶液
检验方法
使用经过盐酸(HCl)酸化的的氯化钡(BaCl2)。向待测物溶液滴入几滴经过盐酸酸化的

氯化钡溶液,震荡,如果产生白色沉淀,则证明它是硫酸。
注意
先滴加盐酸,清除溶液中的银离子与亚汞离子及各类干扰检验的阴离子(如碳酸根离子等),否则会干扰检验,也不可以用硝酸钡检验,硝酸根离子在酸性条件下可以将亚硫酸根离子氧化为硫酸根离子,干扰检验。
反应原理
◆硫酸根离子跟钡离子能生成不溶于硝酸(或盐酸)的白色硫酸钡沉淀。例如: H2SO4+BaCl2═BaSO4↓+2HCl Na2SO4+BaCl2═BaSO4↓+2NaCl Ba2++SO42-═BaSO4↓(离子方程式) ◆其他阴离子也有跟钡离子生成白色沉淀的。例如: Na2CO3+BaCl2═BaCO3↓+2NaCl BaCO3外观为白色沉淀与BaSO4不易区分,但它能跟盐酸(HCl)反应而溶解。 BaCO3+2HNO3═Ba(NO3)2+CO2↑+H2O BaCO3+2HCl═BaCl2+CO2↑+H2O

相关主题