搜档网
当前位置:搜档网 › 同步自修2-5 矩阵的初等变换与初等方阵

同步自修2-5 矩阵的初等变换与初等方阵

同步自修2-5 矩阵的初等变换与初等方阵
同步自修2-5 矩阵的初等变换与初等方阵

同步自修2-5

第五讲 矩阵的初等变换与初等方阵

一、温故而知新(微课后练习)

1. 实现目标

(1) 矩阵初等变换的定义

对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为矩阵的初等变换:

(ⅰ) 交换A 的某两行(列);

(ⅱ) 用一个非零数k 乘A 的某一行(列);

(ⅲ) 把A 中某一行(列)的k 倍加到另一行(列)上.

(2) 矩阵等价

若矩阵A 经过若干次初等变换变为B ,则称B 与A 等价,记为?A B . 即 A 经过若干次初等变换 B ??A B .

注意:矩阵之间的等价关系具有反身性、对称性和传递性三条性质.

(3) 初等方阵的定义

由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,分别依次记为P ij ,D i (k )和T ij (k )

(ⅰ) 变换E 的第i , j 两行(列)(i ≠ j ),得到的初等方阵记为P ij ,以三阶为例 23100100010001001010???? ? ?= ? ? ??? ????②③P ,23100100010001001010???? ? ?= ? ? ??? ????

②③P . (ⅱ) 用非零数k 乘E 的第i 行(列),得到的初等方阵记为D ()i k ,以三阶为例 10010001000001001k k ????? ? ? ? ? ? ?????②= D 2(k ),10010001000001001k k ????? ? ? ? ? ? ?????

②= D 2(k ).

(ⅲ) 将E 的第j 行的k 倍加到第i 行上(或第i 列的k 倍加到第j 列上)(i < j ),得到的初等方阵记为T ij (k ),以三阶为例

10010001001000101k k ???? ? ? ? ?+ ? ??????③②= T 32(k ),10010001001001001k k ???? ? ? ? ?+ ? ??????

③②= T 23(k ). (4) 矩阵的初等变换与初等方阵之间的关系

定理2.5.1 P ij 左(右)乘A 就是互换A 的第i 行(列)和第j 行(列); D ()i k 左(右)乘A 就是用非零数k 乘A 的第i 行(列);

T ij (k )左乘A 就是把A 中的第j 行的k 倍加到第i 行上;

T ij (k )右乘A 就是把A 中的第i 列的k 倍加到第j 列上.

由定理2.5.1可知,设A 为任一个矩阵,当在A 的左边乘一个初等方阵时相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵时相当于对A 作同类型的初等列变换.

2. 巩固练习

(一) 单项选择题

(1) 下列矩阵中,不是初等方阵的是( )

A.001010100?? ? ? ???

B.100020001?? ? ? ???

C.100000010?? ? ? ???

D.10001

2001?? ?- ? ??

? (2) 下列矩阵中,是初等矩阵的为( )

A .111010001?? ? ? ???

B .200020002?? ? ? ???

C .108010001?? ? ? ???

D .1080

18001?? ? ? ??

? (3) 下列矩阵中不是..

初等矩阵的是( ) A .101010000?? ? ? ??? B .001010100?? ? ? ??? C .1000

30001?? ? ? ??

? D .100010201?? ? ? ??? (4) 下列矩阵中,是初等矩阵的为( )

A .???? ??0001

B .011101001-?? ?- ? ???

C .100010101?? ? ? ???

D .010003100?? ? ? ???

(5) 下列矩阵中不是..

初等矩阵的为( ) A .????? ??101010001 B .????? ??-101010001 C .????

? ??100020001 D .????? ??101011001

(6) 设A 为3阶矩阵,P =100210001?? ? ? ???

,则用P 左乘A ,相当于将A ( )

A .第1行的2倍加到第2行

B .第1列的2倍加到第2列

C .第2行的2倍加到第1行

D .第2列的2倍加到第1列

(7) 已知A =111213212223313233?? ? ? ???a a a a a a a a a ,B =11121321222331

3233333a a a a a a a a a ?? ? ? ???,P =100030001?? ? ? ???,Q =100310001?? ? ? ???,则B =( )

A .PA

B .AP

C .QA

D .AQ

(8) 设矩阵A =11

122122a a a a ?? ???,B =211122121112a a a a a a ++?? ???,P 1=0110?? ???,P 2=1011?? ???

,则必有( ) A .P 1P 2A =B B .P 2P 1A =B C .AP 1P 2=B D .AP 2P 1=B

(二) 填空题

(1) 设矩阵A =4321?? ???

,P =0110?? ???,则PAP 2_________. (2) 设矩阵A =???? ??4321,P =???

? ??1011,则AP T =____________. (3) 设矩阵A =1324-??

?-??,P =1101?? ???,则AP 3=______________.

二、拓展与延伸(自修新知识)

1. 矩阵的初等变换

矩阵的初等变换与行列式的初等变换有本质区别. 计算行列式是求值过程,前后用等号连接. 对矩阵施行初等变换则是变换过程,除恒等变换以外,一般来说变换前后的两个矩阵是不相等的,因此,我们用箭号“→”连接变换前后的矩阵,而且不需要将矩阵改号或提取公因数. 行变换标示写在箭头的上方,列变换标示写在箭头的下方,熟练后变换标示可以省略,不用写出.

初等变换是矩阵理论中一个常用的运算方法,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,进一步化为简化行阶梯形矩阵(行最简形矩阵).

2. 初等方阵的逆矩阵

初等方阵是单位矩阵E 只经过一次初等变换所得到的矩阵. 因为由行列式的性质易得 |P ij |= ?1,|D i (k )|= k ,|T ij (k )|=1,所以三类初等方阵都是可逆矩阵,且有

P ij ?1 = P ij ,D i (k )?1 = D i (1k ),T ij (k )?1 = T ij (?k ).

以二阶为例 P 12?1 =1

0101,1010-????= ? ?????

D 1(k )?1 =()110,11k k k -???? ?=≠ ? ? ????? T 12(k )?1 =111.0101k k --????= ? ????? 由公式可知:任意一类初等方阵的逆矩阵仍然是同一类的初等方阵. 第一类初等方阵的逆矩阵还是本身;第二类初等方阵的逆矩阵是将原矩阵中的k 取倒数;第三类初等方阵的逆矩阵是将原矩阵中的k 取相反数. 初等方阵的逆矩阵公式是要求大家掌握的,利用可逆矩阵满足矩阵乘法的同侧消去律,可以求解一些简单的矩阵方阵. 这在真题中是一个十分重要的考点.

例 已知A =1021?? ???,B =111112-?? ???

,若矩阵X 满足AX =B ,则X = .

解 因为A 是初等方阵,并且11021-??

= ?-??

A ,所以 AX =

B ?1111011111121112130-----??????=?=== ??? ?--??????A AX A B X A B . (将矩阵B 的第一行元素乘以?2后加到第二行即得未知矩阵X .)

3. 矩阵的初等变换与初等方阵的关系

由定理2.5.1可知,若对一个矩阵施行初等变换,可用初等方阵与其乘积的形式进行表示. 同样,若是初等方阵与一个矩阵相乘,结果就是对这个矩阵施行相应的初等变换. 实现矩阵的初等变换和初等方阵与矩阵相乘的相互表示. 该

知识作为真题考点最近常出现.

例 设A 为3阶矩阵,将A 的第1列与第2列互换得到矩阵B ,再将B 的第2列加到第3列得到矩阵C ,求满足关系式AQ = C 的矩阵Q .

解 根据初等变换与初等方阵的关系,可得

12010100001?? ?== ? ???AP A B ,23100(1)011001?? ?== ? ???

BT B C .

从而,有1223(1)=AP T C . 令1223(1)=Q P T ,则有=AQ C . 因此

1223010100011(1)100011100.001001001?????? ??? ?=== ??? ? ??? ???????

Q P T

5. 趁热打铁

(一) 单项选择题

(1) 设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )

A .A -1C

B -1 B .CA -1B -1

C .B -1A -1C

D .CB -1A -1

(2) 设矩阵A ,X 为同阶方阵,且A 可逆,若()-=A X E E ,则矩阵X =( )

A .1E A -+

B .E A -

C .E A +

D .1

E A --

(3) 设A 为3阶矩阵,将A 的第3行乘以12

-

得到单位矩阵E ,则||=A ( ) A .2- B .12- C .12 D .2 (4) 设A 为n 阶方阵,将A 的第1列与第2列交换得到方阵B ,若≠A B ,则必有( )

A .0=A

B . 0+≠A B

C . 0≠A

D . 0-≠A B

(二) 填空题

(1) 设A 为2阶矩阵,将A 的第1行加到第2行得到B ,若B =1234?? ???

,则A =__________. (2) 设A 为2阶矩阵,将A 的第2列的(-2)倍加到第1列得到矩阵B ,若B =1234?? ???

,则A =________. (3) 设矩阵B 1234??= ???,P 1002??= ???

,若矩阵A 满足PA =B ,则A = ________. (4) 已知矩阵方程B XA =,其中???

? ??-=???? ??=0111,1201B A ,则=X _____________. (三) 计算题

(1) 设A 为3阶矩阵,将A 的第1列与第2列互换得到矩阵B ,再将B 的第2列加到第3列得到单位矩阵E ,求矩阵A .

(2) 设A 为3阶矩阵,将A 的第1行的2倍加到第3行得到矩阵B ,再将B 的第2列与第3列得到单位矩阵E ,求矩阵A .

(3) 设2阶矩阵A 可逆,且A -1=1

212a a b b ?? ???,对于矩阵P 1=1201?? ???,P 2=0110?? ???

,令B =P 1AP 2,求B -1. (4) 设矩阵A =111213212223313233a a a a a a a a a ?? ? ? ???,B =212223113112321333313233333a a a a a a a a a a a a ?? ?--- ? ???

,求可逆矩阵P ,使得PA =B .

三、更上一层楼(展望未知)

1. 在概念图中标出本次课自己掌握的内容;

2. 通过第一章的学习,我们知道行列式的初等变换是计算行列式最主要的一种方法. 现在学习的矩阵初等变换也是求解矩阵一些性质或未知量的基础方法,可用于求可逆矩阵的逆矩阵、矩阵方程、矩阵的秩,以及求解线性方程组等,后面我们会相续进行学习. 因此矩阵的初等变换法在矩阵理论中占有着举足轻重的地位,每一位同学都要认真学习,一定要掌握该运算方法。甚至,有的学生说,“线性代数会了初等变换,一切都变得简单了”.

3. 由定理2.5.1可知,矩阵的初等变换和初等方阵与矩阵相乘的可以相互表示,实现了矩阵变换这一过程的具体和抽象的相互转化,为矩阵理论的探讨和研究提供了很好的方法.

4. 到此,我们已经知道了矩阵的三种初等变换,并知道变换过程还可用初等方阵与矩阵乘积的形式进行表示. 那么,矩阵的初等变换法到底可以帮助我们求解哪些未知量呢?在下一讲中,先与大家介绍,矩阵的初等行变换法求解逆矩阵和矩阵方程. 为了让求解过程变得简单,大家先回顾下初等变换法求解行列式的过程. 是怎样将一个行列式化为三角形行列式的?步骤是什么?

第三章 矩阵的初等变换与线性方程组习题.

第三章矩阵的初等变换与线性方程组 3.4 独立作业 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解;

(C 仅有零解; (D 一定无解. 8.求解线性方程组 (1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时,

3.设是矩阵,且,而,则 . 4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的 通解为 . 9.设,,

,其中可逆,则 . 10.设阶矩阵与等价,则必有(). (A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把 的第二列加到第三列得到,则满足的可逆矩阵为().

(A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则(). (A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件 . 16.设方程组有无穷多个解,则 . 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解

用矩阵的初等变换求逆矩阵

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求 A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即 211211111111 12112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=? 11121m R R R A E ---= 111121m R R R A ----= ()()122n n n n A E E A -???????→ 1*1A A A -=()()()1111A A E A A A E E A ----==111121m A R R R ----= ()()111121m R R R A E E A ----=

矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

矩阵与线性方程组 问题1:矩阵的初等变换与矩阵的秩有什么关系? 答:对矩阵施行初等变换后得到的矩阵与原矩阵等价,而等价的矩阵有相同的等价标准型,从而有相同的秩。换言之,对矩阵施行初等变换不改变秩。于是利用这一性质,可以求出矩阵的秩。其过程可以描述为A 经过一系列初等变换化为阶梯形,阶梯形中非零行的行数即为矩阵的秩。 问题2: 线性方程组解的判定与矩阵的秩之间有何关系? 答:齐次线性方程组0=?x A n m 必有解: 当n A r =)(时,只有零解; 当n A r <)(时,有非零解。 非齐次线性方程组b x A n m =?分有解和无解的情况,有解时分有唯一解还是无穷多解: b x A n m =?无解)~()(A r A r ≠? b x A n m =?有解)~()(A r A r =? 有解的情况下:b AX n A r A r =?==)~()(有唯一解; b AX n A r A r =?==)~()(有无穷多解。 其中),(~ b A A = 为增广矩阵。 问题3:已知A 是n m ?矩阵,B 是s n ?矩阵,且O AB =,证明:.)()(n B r A r ≤+ 分析:由于齐次线性方程组的基础解系中解向量的个数和系数矩阵的秩有直接关系,因此关于矩阵的秩的问题可以转化为齐次线性方程组的问题来处理。 证明:将B 按列分块),...,,(21s b b b B =,则由题可知 O Ab Ab Ab b b b A AB s s ===),...,,(),...,,(2121 即s i Ab i ,...,2,1,0== 换言之,B 的每个列向量均是齐次线性方程组0=Ax 的解,即s b b b ,...,,21均可由0=Ax 的一组基础解系线性表示,设r A r =)(,则r n -ξξξ,...,,21为0=Ax 的一组基础解系。

考研数学:用初等变换求逆矩阵及乘积的方法

考研数学:用初等变换求逆矩阵及乘积的方法 来源:文都教育 在考研数学线性代数中,初等变换是一种非常重要的方法,被广泛地用于很多题型的求解之中,如行列式的计算、矩阵的求逆、线性方程组的求解、矩阵秩的计算、化二次型为标准型等。初等变换包括初等行变换和初等列变换,具体说有三种:互换两行(列)、某行(列)乘以一个非零数、某行(列)乘以一个数加到另一行(列)。下面我们对初等变换在矩阵求逆及乘积中的应用做些分析总结,供各位考研的学子参考。 一、用初等变换求逆矩阵及乘积的方法 1、用初等行变换求逆矩阵1A -:对(,)A E 作初等行变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1(,)(,)r A E E A -→,由此即求得1A -; 2、用初等列变换求逆矩阵1A -:求1A -也可用初等列变换,对A E ?? ??? 作初等列 变换,将其中的A 变为单位矩阵E ,这时单位矩阵E 就变为1 A -,即1c A E E A -???? → ? ????? , 由此即求得1A -; 3、用初等行变换求1A B -:对(,)A B 作初等行变换,将其中的A 变为单位矩阵E ,这时矩阵B 就变为1 A B -,即1(,)(,)r A B E A B -→,由此即求得1A B -; 4、用初等列变换求1BA -:对A B ?? ??? 作初等列变换,将其中的A 变为单位矩阵 E ,这时矩阵B 就变为1 BA -,,即1c A E B BA -???? → ? ????? ,由此1BA -此即求得1BA -.

上面的1)和2)实际上是3)和4)的特殊情况,只要取B E =即得1)和2)。 下面只要证明3)和4)即可。 证:3)由于作一次初等行变换相当于左乘一个初等矩阵,所以对A 作一系列的初等行变换得到单位矩阵E 相当于A 左乘一个可逆阵P ,使PA E =,这时 1 P A -=,1 (,)(,)(,)(,B)P A B PA PB E PB E A -===,即1(,)(,)r A B E A B -→; 4)同3)类似,由于作一次初等列变换相当于右乘一个初等矩阵,所以对A 作一系列的初等列变换得到单位矩阵E 相当于A 右乘一个可逆阵P ,使A P E =, 这时1 P A -=,1A AP E P B BP BA -??????== ? ? ??????? ,即1c A E B BA -???? → ? ?????. 二、典型实例 例1.设011111112A -?? ? =- ? ?--?? ,求1A -. 解:作初等行变换: 011100111010(,)111010011100112001021011r r A E --???? ? ?=-→-→ ? ? ? ?----???? 11110101003120111000 10111(,)0012110 1 211r r E A -----???? ? ?→--→-= ? ? ? ?----??? ? ,故1312111211A --?? ?=- ? ?-?? . 例2.解矩阵方程211113210432111X -?? -?? ?= ? ??? ?-?? .

初等变换与初等矩阵

2.3 初等变换与初等矩阵 授课题目 2.3 初等变换与初等矩阵 授课时数:4课时 教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵 教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵 教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵 教学过程: 用初等变换化简矩阵A B B A 的性质来探讨通过为,的性质,这是研究矩阵的重要手段。为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。 一.初等变换与初等矩阵 1. 初等变换 (1)定义 定义1 矩阵的初等行(列)变换是指下列三种变换: 1)换法变换:交换矩阵某两行(列)的位置; 2)倍法变换:用一个非零数乘矩阵的某一行(列); 3)消法变换:把矩阵的某一行(列)的k 倍加到另一行(列)上去,k 为任意数。 矩阵的初等行变换和初等列变换统称为初等变换。 (2)记法 分别用)]([)],([],,[k j i k i j i +表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。或者行变换用i j i i j R R ,kR ,R kR ?+, 列变换用i j i i j C C ,kC ,C kC ?+ 例1 [][] ???? ? ??--??→?????? ??---???→?????? ??--=+-+131123302001121123302101121121322101)1(13)2(12A . 2. 初等矩阵 (1)初等矩阵的定义

定义2 由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵 ij j i n P j i I =???? ? ?? ? ????? ??? ? ? ????→?行行 1101111011] ,[ [] )(1111)(,k D i k I i j i n =? ???????? ?? ????→?行 [] )(1111)(k T j i k I ij k itj n =? ???? ????? ? ????→?行行 列i 列j

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 讲授内容§3.1 矩阵的初等变换;§3.2 初等矩阵 教学目的和要求:(1)理解矩阵的初等变换,理解初等矩阵的性质和矩阵等价的概念. (2)掌握用初等变换求逆矩阵的方法. (3)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 教学重点:矩阵的初等变换和用矩阵的初等变换求逆矩阵的方法 教学难点:矩阵的初等变换、初等矩阵的性质. 教学方法与手段:从解线性方程组的消元法的三种重要运算入手,引出矩阵的初等变换的定义;初等矩阵与矩阵的初等变换密切相关,三种初等变换对应着三种初等矩阵;从分析初等矩阵的性质出发,推理出用矩阵的初等变换求逆矩阵的方法.传统教学,教练结合 课时安排:2课时 教学过程 §1 矩阵的初等变换 本节介绍矩阵的初等变换,它是求矩阵的逆和矩阵的秩的有利工具。 一、矩阵的初等变换 在利用行列式的性质计算行列式时,我们对其行(列)作过三种变换——“初等变换”. 定义1 对矩阵的行(列)施以下述三种变换,称为矩阵的行(列)初等变换. 初等变换 行变换 列变换 ① 对调 j i r r ? j i c c ? ② 数乘)0(≠k i r k i c k ③ 倍加 j i r k r + j i c k c + 矩阵的行初等变换与列初等变换统称为矩阵的初等变换. n m A ?经过初等变换得到n m B ?, 记作n m n m B A ??→. 定义2 等价矩阵:若n m n m B A ??→有限次 , 称n m A ?与n m B ?等价, 记作n m n m B A ???. 矩阵之间的等价关系有下列性质: (1) 自反性:A A ? (2) 对称性:n m n m B A ???n m n m A B ???? (3) 传递性:n m n m B A ???, n m n m C B ???n m n m C A ???? 定义3 在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即 是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元.若非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0,则称矩阵为行最简形矩阵.

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

第三章知识点总结矩阵的初等变换与线性方程组

第三章知识点总结矩阵的初等变换与线性方程组 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则

第3讲矩阵的秩与矩阵的初等变换.

§1.3 矩阵的秩与矩阵的初等变换 主要问题:1. 自由未知数个数的唯一性 2. 相抵标准形的唯一性 3. 矩阵秩的性质 4. 满秩矩阵的性质 一、矩阵的秩 定理矩阵用初等行变换化成的阶梯形矩阵中,主元的个数(即非零行的数目)唯一。 定义矩阵A 用初等行变换化成的阶梯形矩阵 中主元的个数称为矩阵A的秩,记为秩(A)或r(A)例求下述矩阵的秩 2 1 0 3 12 3 1 2 1 01 A 4 1 6 3 58 2 2 2 6 16

2 1 0 3 1 2 3 1 2 1 0 1 A 4 1 6 3 5 8 2 2 2 6 1 6 R4 ( 1)R1 2 1 0 3 1 2 R3 ( 2)R1 R2 ( 1)R1 1 2 2 2 1 1 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R1 2 1 0 3 1 2 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 ( 2)R1 0 5 4 7 3 4 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R4 0 1 2 3 2 8 0 3 6 9 3 4 0 5 4 7 3 4

所以秩(A) = 4 o | 性质 (1) 秩(A) = 0当且仅当 A = 0 ⑵秩(A m n ) min{ m , n} (3)初等行变换不改变矩阵的秩。 定义设A 是n 阶方阵。若秩(A) = n ,则称A 是满秩方阵;若 秩(A) < n ,则称A 是降秩方阵。 定理 满秩方阵只用初等行变换即可化为单位 方阵。 R 4 ( 5)R 2 R 3 3R 2 1 2 2 2 1 0 1 2 3 2 0 0 0 0 3 1 8 20 0 0 6 8 13 44 01 0 0 6 8 13 44 0 0 0 0 3 20 R 3

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

第三章 矩阵的初等变换与线性方程.

第三章矩阵的初等变换与线性方程组 3.1 目的要求 1.掌握矩阵的初等变换及用矩阵的初等变换求逆矩阵的方法。了解矩阵等价的概念. 2.理解矩阵秩的概念并掌握其求法. 3.理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件. 4.掌握用行初等变换求线性方程组通解的方法. 3.2 重要公式和结论 3.2.1 矩阵的秩 1.若,则. 2.对于任意矩阵,总可以通过初等行变换将其化为行阶梯形,的行阶梯形中非零 行的行数就等于矩阵的秩. 3.矩阵秩的性质: ①; ②; ③若,则; ④若、可逆,则; ⑤; ⑥;

⑦; ⑧若,则. 3.2.2 初等矩阵与矩阵求逆 1.三种初等变换对应着三种初等矩阵,且初等矩阵具有以下性质: ,,, ,, . 2.设是一个矩阵,对施行一次初等行变换,相当于在的左边乘以相应的阶初等矩阵;对施行一次初等列变换,相当于在的右边乘以相应的阶初等矩阵; 3.方阵可逆的充分必要条件是存在有限个初等矩阵,使得 . 4.方阵可逆的充分必要条件是. 5.阵的充分必要条件是存在阶可逆矩阵及阶可逆矩阵,使. 6.对于方阵,若,则(1)可逆;(2). 7.设有阶矩阵及阶矩阵,若,则(1)可逆;(2). 3.2.3 线性方程组的解 1.元线性方程组, ① 无解的充分必要条件是;

② 有解的充分必要条件是; ③ 有唯一解的充分必要条件是; ④ 有无穷多解的充分必要条件是. 2.元齐次线性方程组有非零解的充分必要条件是. 3.3例题分析 例3.1 设,求. 分析对于一个具体的矩阵求秩问题,先对矩阵进行初等行变换化为行阶梯形,根据行阶梯形的非零行数判断矩阵的秩. 解,故. 例3.2设,则的秩( . (A 必为2 (B 必为3 (C 可能为2,也可能为3 (D 可能为3,也可能为4. 分析先将化成行阶梯形,再确定矩阵的秩. 解因为,可知,当时,,否则.

第三章 矩阵的初等变换与线性方程组习题 含答案.

第三章矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解; (C 仅有零解; (D 一定无解. 8.求解线性方程组

(1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时, 3.设是矩阵,且,而,则 .

4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的通解为 . 9.设,, ,其中可逆,则 . 10.设阶矩阵与等价,则必有().

(A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把的第二列加到第三列得到,则满足的可逆矩阵为(). (A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则().

(A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件. 16.设方程组有无穷多个解,则. 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解 19.求的值,使齐次线性方程组 有非零解,并求出通解.

矩阵求逆方法大全-

求逆矩阵的若干方法和举例 红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的 读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积 A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ??? ? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ???? ? ??-100012001210010411 →??? ? ? ??----123200124010112001→?? ???? ? ?----21123100124010112001

相关主题