搜档网
当前位置:搜档网 › 结构动力学:理论及其在地震工程中的应用4.doc

结构动力学:理论及其在地震工程中的应用4.doc

结构动力学:理论及其在地震工程中的应用4.doc
结构动力学:理论及其在地震工程中的应用4.doc

结构动力学:理论及其在地震工程中的应用

4

5章动力反应的数值计算

如果激励[作用力)(t p 或地面加速度)(t u

g ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。这类问题可以通过数值时间步进法对微分方程进行积分来处理。在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。

然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。

5.1 时间步进法

对于一个非弹性体系,欲采用数值求解的运动方程为

)(),(t p u u f u c u

m s =++ 或者)(t u m g - (5.1.1) 初始条件

)0(0u u = )0(0u u

= 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i

到N 。时间间隔

i i i t t t -=?+1 (5.1.2)

图5.1.1 时间步进法的记号

通常取为常数,尽管这不是必需的。在离散时刻i t (表示为i 时刻)确定反

应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。假定这些值是已知的,它们在i 时刻满足方程

i i s i i p f u c u

m =++)( (5.1.3)式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。将要介绍的数值方

法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻

1111)(++++=++i i s i i p f u c u

m (5.1.4)对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,…

所有瞬时所需的反应。已知的初始条件)0(0u u =)0(0u u =和提供了起动该方法的必要信息。

从i 时刻到i +1时刻的步进一般不是精确的方法,许多在数值上可以实现的近似方法是可能的。对于数值方法,有三个重要的要求:(1)收敛性一随着时间步长的减少,数值解应逼近精确解;

(2)稳定性一在存在数值舍入误差的情况下,数值解应是稳定的;

(3)精度一数值方法应提供与精确解足够接近的结果。这些重要的问题在本书中均作简要的讨论,全面的论述可在着重微分方程数值解法的书中找到。

本章介绍三种类型的时间步进法:(1)基于激励函数插值的方法;(2)基于速度和加速度有限差分表达的方法;(3)基于假设加速度变化的方法。前两类中各

只介绍一种方法,第三类中介绍两种方法。

5.2 基于激励插值的方法

对于线性体系,通过在每个时间间隔里对激励进行插值,并利用第4章的方法进行精确求解,能推导出一种非常有效的数值方法。如果时间间隔较短,则线性插值是令人满意的。图5. 2.1所示的时间间隔1+≤≤i i t t t ,激励函数为

ττi

i

i t p p p ??+

=)( (5.2.1a )其中

i i i p p p -=?+1 (5.2.1b )

时间变量τ从0到i t ?变化。为数学上简单起见,我们首先考虑无阻尼体系,后面再将该方法扩展到有阻尼体系。待求解的方程为

τi

i

i t p p ku u

m ??+=+ (5.2.2)在时间间隔i t ?≤≤τ0内,反应)(τu 为三部分之和:(1) τ=0时刻的初位移i

u 和初速度i u

引起的自由振动;(2)零初始条件下对阶跃力i p 的反应;(3)零初始条件下对斜坡力τ)(i i t p ??的反应。对这三种情况分别采用来自§2.1、§4.3和§4.4中已有的解答,得

)sin ()cos 1(sin cos )(i n n i i n i n n

i n i t t k p k p u

u u ?-??+-+

+=ωτ

ωττωτωωτωτ(5.2.3a ))cos 1(1

sin cos sin )(τωωτωτωωτωωτn i

n i n i n n

i n i n

t k p k p u

u u

-??++

+

-= (5.2.3b )计算i t ?=τ时的这些等式,得i +1时刻的位移1+i u 和速度1+i u :

[][])sin(1)cos(1)sin()cos(1i n i n i n i i n i

i n n

i i n i i t t t k p t k p t u

t u u ?-???+?-+

?+

?=+ωωωωωωω(5.2.4a)

[])cos(11

)sin()cos()sin(1

i n i

n i

i n i i n n

i i n i n

i t t k p t k p t u

t u u ?-??+?+

?+

?-=+ωωωωωωω

(5.2.4b)

将式(5.2.1b )代入后,可将这些等式重写为如下的递推公式:

11+++++=i i i i i Dp Cp u

B Au u (5.2.5a) 11++'+'+'+'=i i i i i p D p

C u B u A u

(5.2.5b) 对于欠临界阻尼体系(即1

因为递推公式是从运动方程的精确解推导出的,因此对时问

步长t ?大小的唯一限制条件是,允许它对于激励函数有一个接近的逼近,并以较密的时间间隔提供反应结果,以使反应峰值不会被漏掉。这种数值方法对于激励由紧密的时间间隔定义的情况(例如对于地震地面加速度的情况)特别有用,从而使得线性捕值即可得到较完美的结果。如果时间步长t ?是常数,则系数A ,B ,…,D '仅需计算一次。

这种数值方法所要求的运动方程精确解答仪对线性体系是可行的。如上所述,这种方法用于单白由度体系较便利,但是对于多自由度体系则是不切实际的,除非它们的反应由振型反应的叠加(第12章和第13章)来获得。

5.3 中心差分法

这种方法是基于对位移时间导数(即速度和加速度)的有限差分近似进行的。步长t t i ?=?,则时刻的速度和加速度的中心差分表达式为

t u u u

i i i ?-=-+211 t

u u u u i i i i ?+-=-+221

1 (5.3.1)

将速度和加速度的这些近似表达式代人方程(5.1.3)中,对线弹性体系,得i i i i i i i p ku t u u c t u u u m

=+?-+?+--+-+2)(21

12

11 (5.3.2)

在这个方程中,i u 和1-i u 假定是已知的(来自于前面时间步内方法的执行)。将这些已知量移到右侧,导得

112

222()2()2()i i i i m c m c m u p u k u t t t t t +-??????

+=----?????????????????(5.3.3) 或写成

1??i i ku p += (5.3.4) 其中

()

2

?2m

c

k

t

t =+

??(5.3.5)()()1222?2i i i i

m c m p p u k u t t t -????

=----???????????????

(5.3.6)则未知的1+i u 由下式给出1??i i p

u k

+=

(5.3.7)i +l 时刻的解答是1+i u 根据i 时刻的平衡条件即方程(5.1.3)确定的,而不是以

时刻i +1的平衡条件式(5.1.4)确定的,这种方法称为显式方法。

观察(5.3.6),为了计算1+i u ,需要已知的位移1-i i u u 和因而,为了确定i u ,需要0u 和1-u 。特定的初始位移0u 是已知的,为了确定1-u ,我们将式(5.3.1)专门用于i =0的情况,得

工程结构抗震题目及答案

填空题(每空1分,共20分) 1、地震波包括在地球内部传播的体波和只限于在地球表面传播的面波,其中体波包括纵波(P)波和横(S)波,而面波分为瑞雷波和洛夫波,对建筑物和地表的破坏主要以面波为主。 2、场地类别根据等效剪切波波速和场地覆土层厚度共划分为IV类。3.我国采用按建筑物重要性分类和三水准设防、二阶段设计的基本思想,指导抗震设计规范的确定。其中三水准设防的目标是小震不坏,中震可修和大震不倒4、在用底部剪力法计算多层结构的水平地震作用时,对于T1>1.4T g时,在结构顶部附加ΔF n,其目的是考虑高振型的影响。 5、钢筋混凝土房屋应根据烈度、建筑物的类型和高度采用不同的 抗震等级,并应符合相应的计算和构造措施要求。 6、地震系数k表示地面运动的最大加速度与重力加速度之比;动力系数 是单质点最大绝对加速度与地面最大加速度的比值。 7、在振型分解反应谱法中,根据统计和地震资料分析,对于各振型所产生的地震作用效应,可近似地采用平方和开平方的组合方法来确定。 名词解释(每小题3分,共15分) 1、地震烈度: 指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。 2、抗震设防烈度: 一个地区作为抗震设防依据的地震烈度,应按国家规定权限审批或颁发的文件(图件)执行。 3、反应谱: 地震动反应谱是指单自由度弹性体系在一定的地震动作用和阻尼比下,最大地震反应与结构自振周期的关系曲线。 4、重力荷载代表值: 结构抗震设计时的基本代表值,是结构自重(永久荷载)和有关可变荷载的组合值之和。 5 强柱弱梁: 结构设计时希望梁先于柱发生破坏,塑性铰先发生在梁端,而不是在柱端。 三简答题(每小题6分,共30分) 1.简述地基液化的概念及其影响因素。 地震时饱和粉土和砂土颗粒在振动结构趋于压密,颗粒间孔隙水压力急剧增加,当其上升至与土颗粒所受正压应力接近或相等时,土颗粒间因摩擦产生的抗剪能力消失,土颗粒像液体一样处于悬浮状态,形成液化现象。其影响因素主要包括土质的地质年代、土的密实度和黏粒含量、土层埋深和地下水位深度、地震烈度和持续时间 2.简述两阶段抗震设计方法。?

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

地球物理学专业

地球物理学专业人才培养方案 教研室主任: 系主任: 教学副院长: 院长:

一、专业代码:070801 二、专业名称:地球物理学 三、标准修业年限:四年 四、授予学位:理学学士 五、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美等方面全面发展,具有良好的思想政治素质、人文素质、创新精神与实践能力,具有扎实的数理基础,掌握基本的地质学原理与方法,系统掌握地球物理学的基本理论、基本知识和基本技能,具有从事地震监测预测,地质矿产、煤田和油气资源勘查,道路桥梁的工程地球物理检测等方面的实际工作和研究工作初步能力的应用型人才。 六、基本要求: (一)知识要求: 1.具有基本的人文社科理论知识和素养,在哲学、经济学、法律等方面具备必要的理论知识,对社会有较强的适应能力; 2.具有扎实的数学、物理基础; 3.掌握基本的地质学原理与方法; 4.掌握地球物理场论、数字信号分析、水文地质学等专业基础知识; 5.系统地掌握固体地球物理学和勘探地球物理学的基本理论和基本知识; 6.掌握地震监测预测的基本理论与方法。 (二)能力要求: 1.具有较强的人际交往意识和初步的人际交往能力; 2.具有良好的自学能力和终身学习的意识; 3.具有独立思考问题、分析问题、解决问题的能力; 4.具有独立设计实验,并能对实验数据进行分析评价的能力; 5.具有独立地利用计算机进行文字和图像信息处理及进行科学计算的能力; 6.具有创新意识和创新精神,对特优学生要求具有质疑和挑战传统的理论、方法、假设的意识和能力; 7.了解全球自然灾害现状及防灾减灾体系研究发展趋势,具备综合防灾减灾意识及防震减灾宣传教育能力; 8.具有一定的提出新的问题和新的方法,分析、推断、解释新问题的能力; 9.得到从事基础研究和应用研究的初步训练。 (三)素质要求: 1.热爱祖国,具有高尚的民族气节、良好的道德品质和中华民族的传统美

工程结构抗震选择填空

一.选择题(每题1.5分,共21分。只有一个选择是正确的,请填在括号中) 1.实际地震烈度与下列何种因素有关?( B ) A.建筑物类型 B.离震中的距离 C.行政区划 D.城市大小 2.基底剪力法计算水平地震作用可用于下列何种建筑? ( C ) A.40米以上的高层建筑 B.自振周期T1很长(T1>4s)的高层建筑 C. 垂直方向质量、刚度分布均匀的多层建筑 D. 平面上质量、刚度有较大偏心的多高层建筑 3.地震系数k与下列何种因素有关?(A ) A.地震基本烈度 B.场地卓越周期 C.场地土类别 D.结构基本周期 5.框架结构考虑填充墙刚度时,T1与水平弹性地震作用F e有何变化?( A ) A.T1↓,F e↑ B.T1↑,F e↑ C.T1↑,F e↓ D.T1↓,F e↓ 6.抗震设防区框架结构布置时,梁中线与柱中线之间的偏心距不宜大于(A )A.柱宽的1/4 B.柱宽的1/8 C.梁宽的1/4 D.梁宽的1/8 7. 土质条件对地震反应谱的影响很大,土质越松软,加速度谱曲线表现为(A ) A.谱曲线峰值右移B.谱曲线峰值左移 C.谱曲线峰值增大D.谱曲线峰值降低 8.为保证结构“大震不倒”,要求结构具有 C A.较大的初始刚度 B.较高的截面承载能力 C.较好的延性 D.较小的自振周期T1 9、楼层屈服强度系数 沿高度分布比较均匀的结构,薄弱层的位置为(D ) A.最顶层 B.中间楼层 C. 第二层 D. 底层 10.多层砖房抗侧力墙体的楼层水平地震剪力分配 B A.与楼盖刚度无关 B.与楼盖刚度有关 C.仅与墙体刚度有关 D.仅与墙体质量有关 11.场地特征周期T g与下列何种因素有关?( C ) A.地震烈度 B.建筑物等级 C.场地覆盖层厚度 D.场地大小

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

工程结构抗震学习指南试卷

工程结构抗震-学习指南 .一、名词解释 1.地震震级: 2.地震烈度: 3.震中烈度: 4.地震烈度: 5.特大地震: 6.震中烈度: 7.地震作用: 8.抗震概念设计: 9.场地覆盖层厚度: 10.场地土的卓越周期: 11.“三水准” : 12.抗震构造措施: 13.双共振现象: 14.隔震设计: 15.消能减震设计: 二、选择题 1.地震是()的结果。 A. 地球内部构造运动 B. 地下水过度开采 C. 天气突然变化 D.不确定 2.地震引起的直接灾害是()。 A.建筑物倒塌、火灾、瘟疫 B.地面变形、建筑物倒塌、管道断裂 C.洪水、火灾、气候异常 D.不确定 3.我国的自然灾害,造成死亡人数最多的是()。

A.洪水 B.雪灾 C.地震 D.不确定 4.地震对某一地区的影响和破坏程度称地震烈度,简称为烈度。下面不是影响烈度的因素是()。 A、震级 B、震中距 C、基础埋深 D、地质构造 5. 世界上最主要的两大地震带是()。 A、环太平洋地震带、欧亚地震带 B、欧亚地震带、海岭地震带 C、海岭地震带、台湾地震带 D、台湾地震带、环太平洋地震带 6.在抗震设计的第一阶段,() A.计算结构构件的承载能力 B.验算结构的弹塑性变形 C.采用大震作用效应 D.验算是否满足“大震不倒”的要求 7.下列叙述中,错误 ..的是() A.一次地震有多个烈度 B.一次地震有多个震级 C.地震震级是衡量一次地震所释放能量大小的尺度 D.震源在地面上的垂直投影点,称为震中 8.地球上天天都有地震发生,而且多到一天就要发生一万多次,一年约有五百万 次。其中能造成破坏的约有一千次。一般情况下,()以上才感觉,称为有感地震。 A、2级

结构动力学读书报告

《结构动力学》 读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1. (1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi (它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: @7710 二送 结构动力学 (1)式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划 分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案 思考练习题1 1.解答:设每秒从上能级跃迁到下能级的粒子数为n 。 单个光子的能量:λνε/hc h == 连续功率:εn p = 则,ε/p n = a. 对发射m μλ5000 .0=的光: ) (10514.2100.31063.6105000.01188346 个?=?????= =--hc p n λ b. 对发射MHz 3000=ν的光 )(10028.51030001063.6123634个?=???= = -νh p n 2.解答:νh E E =-12……………………………………………………………………..(a) T E E e n n κ121 2--=……………………………………………………………………….(b) λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得: 11 2==-T h e n n κν (2)由(a ),(b ),(c)式可得: )(1026.6ln 31 2 K n n hc T ?=- =κλ 3.解答: (1) 由玻耳兹曼定律可得 T E E e g n g n κ121 12 2//--=, 且214g g =,20 2110=+n n 代入上式可得: ≈2n 30(个)

(2))(10028.5)(1091228W E E n p -?=-= 4.解答: (1) 由教材(1-43)式可得 31733 634 3/10860.3/) 106000.0(1063.68200018q m s J m s J h q ??=??????=?=---πλπρν自激 (2)9 34 4363107.59210 63.68100.5)106328.0(8q ?=?????==---ππρλνh q 自激 5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-?=cm ρ,发射波 长m 6 106943.0-?=λ,巨脉冲宽度ns T 10=?则输出最大能量 )(304.2)(106943.0100.31063.684.0102)(6 8 342 182 J J hc L r E =?????????==--πλπρ 脉冲的平均功率: )(10304.2)(10 10304 .2/89 W W T E p ?=?=?=- (2)自发辐射功率 )(10304.2)(10106943.0)84.0102(100.31063.6) (22 621883422 W W L r hc hcN Q ?=??????????== ---πλτ πρλτ = 自 6.解答:由λν/c =,λλνd c d 2 =及λρνρλd d v =可得 1 1 85 -== kT hc e hc d d λνλλ πλνρρ 7.解答: 由 0) (=ννρd d 可得: 31 =-kT h kT h m m m e e kT h υυυ; 令 x kT h m =υ,则)1(3-=x x e xe ;解得:82.2=x 因此:11 82.2--=kh T m ν 同样可求得: 96.4=kT hc m λ 故c m m 568.0=λν

工程结构抗震习题答案

工程结构抗震习题答案 一、填空题 1.地震按其成因可划分为(火山地震)、(陷落地震)、(构造地震) 和(诱发地震)四种类型。 2.地震按地震序列可划分为(孤立型地震)、(主震型地震)和(震 群型地震)。 3.地震按震源深浅不同可分为(浅源地震)、(中源地震)、(深源地 震)。 4.地震波可分为(体波)和(面波)。 5.体波包括(纵波)和(横波)。 6.纵波的传播速度比横波的传播速度(快)。 7.造成建筑物和地表的破坏主要以(面波)为主。 8.地震强度通常用(震级)和(烈度)等反映。 9.震级相差一级,能量就要相差(32)倍之多。P5 10.一般来说,离震中愈近,地震影响愈(大),地震烈度愈(高)。11.建筑的设计特征周期应根据其所在地的(设计地震分组)和(场地类别) 来确定。 12.设计地震分组共分(三)组,用以体现(震级)和(震中距)的影响。 13.抗震设防的依据是(抗震设防烈度)。 14.关于构造地震的成因主要有(断层说)和(板块构造说)。15.地震现象表明,纵波使建筑物产生(垂直振动),剪切波使建筑物产生(水平振动),而面波使建筑物既产生(垂直振动)又产生(水平振动)。 16.面波分为(瑞雷波 R波)和(洛夫波 L波)。 17.根据建筑使用功能的重要性,按其受地震破坏时产生的后果,将建筑分为 (甲类)、(乙类)、(丙类)、(丁类)四个抗震设防类别。 18.《规范》按场地上建筑物的震害轻重程度把建筑场地划分为对建筑抗震(有利)、(不利)和(危险)的地段。 19.我国《抗震规范》指出建筑场地类别应根据(等效剪切波速)和(覆盖层 厚度)划分为四类。 20.饱和砂土液化的判别分分为两步进行,即(初步判别)和(标准贯入度试 验判别)。 21.可液化地基的抗震措施有(选择合适的基础埋置深度)、(调整基础底面积, 减小基础偏心)和(加强基础的整体性和刚度)。详见书P17 22.场地液化的危害程度通过(液化等级)来反映。 23.场地的液化等级根据(液化指数)来划分。 24.桩基的抗震验算包括(非液化土中低承台桩基抗震验算)和(液化土层的 低承台桩基抗震验算)两大类。 25.目前,工程中求解结构地震反应的方法大致可分为两种,即(底部剪力法)和(振型分解反应谱法)。 26.工程中求解自振频率和振型的近似方法有(能量法)、(折算质量法)、(顶点位移法)、(矩阵迭代法)。

固体地球物理学

固体地球物理学 (学科代码:070801) 一、培养目标 本学科培养德、智、体全面发展,具有坚实的地球物理理论基础和系统的专业知识,了解固体地球物理学和与其相关学科发展的前沿和动态,能够适应二十一世 纪我国经济、科技和教育发展的需要,并具有较熟练的实验技能和较强的动手能力,具有较全面的计算机知识,具有独立从事该学科领域研究和教学能力的高层次人 才。 二、研究方向 1. 地震学、 2. 地球动力学、 3. 岩石物理、 4. 应用地球物理学、 5. 城市地球物理学 三、学制及学分 按照研究生院有关规定。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: GP15201★地球内部物理学★(4) GP15202★ 地球动力学★(4) GP15203★地球物理反演★(4) 专业课:

GP14201 计算地震学(3) GP14202 地球物理学进展(4) GP14203 地震学原理(4) GP15210 地震勘探(3) GP15211 定量地震学(4) GP15212 地震偏移与成像(4) GP15213 工程地震学(4) GP15214 岩石本构理论(4) GP15215 应用地球物理学(3) GP15216 地球内部电性与探测(4) GP15218 现代计算机与网络应用(3) GP15219 固体力学(4) GP15220 城市地球物理学(3) GP15701 地球物理高级实验(2) PI05204 工程中的有限元法(3) GP16201 固体地球物理理论(4) GP16202 地球科学中的近代数学(4) GP16203 地球科学前沿讲座(4) 备注:带★号课程为博士生资格考试科目。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求 按照研究生院有关规定。

地震学原理与应用Chapter5b(1)

二、地震波辐射源的理论模式 1.集中力系点源 (1)集中力 弹性力学中为了分析连续体的运动,引入: Δm为ΔV中之质量;ΔF 为 Δm所受之合力。 1)r点上单位质量所受的体力(密度): 2)r点上单位体积所含质量受到的体力(密度): V r , m Δ F Δ lim )t,r ( X V Δ ∈ = → Δ V Δ r t), ,r ( X t),r (ρ m Δ F Δ V Δ m Δ lim V Δ F Δ lim t),r ( F V V ∈ = = = → Δ → Δ 即运动方程中的体力项。

*如果:???? ?Δ?=Δ∈≠V r 0,V r 0,t),r ( F *如果:(t) g t)dV', r'( F lim V V =∫ Δ→Δ当ΔV 趋于r 点时,积分有限。则称g(t)为作用在r 点上的集中力。 用Dirac δ函数表示: F(r, t)=g(t)δ(r) (2)力场的势函数(用Φ和Ψ表示) *据场论分析,矢量场作Stokes 变换(分解): 0,t),r ( F =Ψ??Ψ×?+Φ?=① *对①式两边分布求散或求旋: Ψ ??=Ψ??Ψ???=Ψ×?×?=×?Φ?=??2 2 2 )(F ;F ②

它们都是泊松方程(非奇次的拉普拉斯方程),有定解 ∫∫ ∞ ∞ ×?= Ψ???=dV' ) r' -r (π 4 t) , r' (F ') t ,r (;dV') r' -r (π 4 t), r' (F ' t),r (Φ③ *求③式的积分:

第二式也可类似导出。力势可由给定的力场表示: ?? ? ? ?? ?×?=Ψ???=Φ∫∫∞∞dV'r t), r' (F 4π1 t),r (dV'r t) , r' (F 4π1 t),r (** ④ (3)几种基本的集中力系点源的弹性波辐射场 (均匀各向同性弹性全空间) 1)单个集中力引起的位移场(基本解)*运动方程: F u μ)u ()μ2(λt u ρ22+×?×?????+=??⑤ *位移矢量场的Stokes 分解(用小写字符?和ψ表示): ψ;ψu =??×?+??=⑥

结构动力学:理论及其在地震工程中的应用

5章 动力反应的数值计算 如果激励[作用力)(t p 或地面加速度)(t u g ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。这类问题可以通过数值时间步进法对微分方程进行积分来处理。在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。 然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。 5.1 时间步进法 对于一个非弹性体系,欲采用数值求解的运动方程为 )(),(t p u u f u c u m s =++ 或者 )(t u m g - (5.1.1) 初始条件 )0(0u u = )0(0u u = 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i 到N 。时间间隔 i i i t t t -=?+1 (5.1.2)

图5.1.1 时间步进法的记号 通常取为常数,尽管这不是必需的。在离散时刻i t (表示为i 时刻)确定反 应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。假定这些值是已知的,它们在i 时刻满足方程 i i s i i p f u c u m =++)( (5.1.3) 式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。将要介绍的数值方 法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻 1111)(++++=++i i s i i p f u c u m (5.1.4) 对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,… 所有瞬时所需的反应。已知的初始条件)0(0u u =)0(0u u =和提供了起动该方法的必要信息。 从i 时刻到i +1时刻的步进一般不是精确的方法,许多在数值上可以实现的近似方法是可能的。对于数值方法,有三个重要的要求:(1)收敛性一随着时间步长的减少,数值解应逼近精确解;(2)稳定性一在存在数值舍入误差的情况下,数值解应是稳定的;(3)精度一数值方法应提供与精确解足够接近的结果。这些重要的问题在本书中均作简要的讨论,全面的论述可在着重微分方程数值解法的书中找到。 本章介绍三种类型的时间步进法:(1)基于激励函数插值的方法;(2)基于速度和加速度有限差分表达的方法;(3)基于假设加速度变化的方法。前两类中各

工程结构抗震与防灾

《工程结构抗震与防灾》考试大纲 一、命题范围和基本要求 1、结构抗震基本知识 (1)了解地震的主要类型及其成因;了解地震波的运动规律; (2)掌握震级、地震烈度、基本烈度等术语; (3)了解地震动的三大特性及其规律; (4)了解地震动的竖向分量、扭转分量及其震害现象; (5)掌握建筑抗震设防分类、抗震设防目标和两阶段抗震设计方法; (6)了解多遇地震烈度和罕遇地震烈度的确定方法; (7)了解基于性能的抗震设计的基本思想; (8)掌握建筑场地类别的划分方法; (9)掌握场地土液化的判别方法,并了解抗液化措施。 2、结构抗震计算 (1)了解地震作用的机理和计算基本原则; (2)掌握底部剪力法、振型分解反应谱法的适用范围; (3)掌握设计反应谱和地震影响系数的确定方法; (4)掌握底部剪力法、振型分解反应谱法用于地震作用和地震作用效应的计算; (5)了解时程分析法的原理和要点; (6)了解竖向地震作用的特点和计算方法; (7)掌握地震作用效应和其它荷载效应的组合、截面抗震验算、抗震变形验算的方法和计算公式。 3、结构抗震概念设计 (1)了解结构抗震设计所存在的不确定性因素; (2)掌握结构的抗震概念设计的要点。 4、混凝土结构房屋抗震设计 (1)了解钢筋混凝土结构常见的震害特点; (2)掌握结构的抗震等级的确定; (3)了解框架结构、抗震墙结构和框架-抗震墙结构的受力特点、结构布置原则、屈服机制、基础结构要求和各自适用范围; (4)掌握框架结构内力和变形的计算和验算; (5)掌握框架柱、梁和节点的抗震设计要点及相应的抗震构造措施; (6)了解框架-抗震墙结构和抗震墙结构设计要点和构造措施。 5、砌体结构房屋抗震设计 (1)了解多层砌体房屋的结构布置原则、层数、高度和高宽比的限值要求; (2)掌握多层砌体房屋抗震计算要点和抗震构造措施。 6、钢结构房屋抗震设计 (1)了解钢结构房屋的常见震害; (2)了解高层钢结构体系及其各自特点; (3)了解高层钢结构的抗震设计要点; (4)了解钢构件及其连接的工作性能和抗震设计要点; (5)了解网架的抗震设计要点。 7、建筑结构基础隔震与消能减震设计 (1)了解基础隔震体系的减震机理、工作特性和适用范围; (2)了解夹层橡胶垫的基本性能参数;

第七章 地震预测1

地震学原理与应用
第七章 地震预测

一、概说
当今世界,各种自然灾害频频发生,全世界每年大约发生20起严 重的自然灾害,年平均死亡8万余人,经济损失80余亿美元。自然灾害 是对现代科学的挑战。 地震灾害的猝发性和惨重性给人类以极大威胁,地震所造成的巨 大灾害和损失,遥居各种自然灾害之首。 1995年1月17日,日本兵库县南部地震(MW=7.2),发生在工业发 达、人口密集的现代化大都市大阪-神户地区。这个地震造成人员死 亡5413人、受伤2.7万人;直接经济损失超过1000亿美元。 2011年3月11日,发生在日本东北部海域的MW 9.0地震及诱发的 海啸,已确认造成14435人死亡、11601人失踪;造成了重大人员伤亡 和财产损失 。
2013-5-27 地震学原理与应用第七章 2

大陆是人类主要活动地区,发生在大陆的地震虽只占全球 地震的15%,但大地震给人类造成的损失却占全球地震损失的 85%。中国是世界大陆区地震分布最广的国家,据1970-1980年 的统计,地震造成的伤亡和损失超过了其他国家和地区的总 和,地震预报的紧迫性明显地摆在中国地震工作者面前。 2008年5月12日下午14:28发生在四川汶川地区的MS8.0级地 震,截至8月25日统计,确认死亡69226人,失踪17823人,受伤 374643人,累计受灾人数4624.9048万人。直接经济损失估计超 过8451亿元人民币。 党和国家领导人多次到灾区视察、指导抗震救援工作。
2013-5-27 地震学原理与应用第七章 3

《结构动力学》课程作业解析

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:结构动力学大作业教师: 姓名:学号: 专业:岩土工程类别:专硕 上课时间:2015年9 月至2015 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师(签名)

重庆大学研究生院制 土木工程学院2015级硕士研究生考试试题 1 题目及要求 1、按规范要求设计一个3跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。

2 框架设计 2.1 初选截面尺寸 取所设计框架为3层3跨,跨度均为4.5m ,层高均为3.9m 。由于基础顶面离室内地面为1m ,故框架平面图中底层层高取 4.9m 。梁、柱混凝土均采用C30, 214.3/c f N mm =,423.010/E N mm =?,容重为325/kN m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的 112 1 8 ,取梁高b h =500mm ; 取梁宽300b b mm =; 所以梁的截面尺寸为:300500mm mm ? (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取为 21214/KN m ; n :验算截面以上的楼层层数。 ②c N c N A u f ≥ 其中:N u :框架柱轴压比限值;8度(0.2g ),查抗震规范轴压比限值0.75N u =; c f :混凝土轴心抗压强度设计值,混凝土采用30C ,2 14.3/c f N mm =。

第1章 习题工程结构抗震

《工程结构抗震》习题答案 第1章习题 1.1 地震按照成因可分为哪几种类型?按其震源的深浅又可分为哪几种类型? 答:地震按照成因可分为哪4种类型。构造地震、火山地震、陷落地震、诱发地震。按其震源的深浅又可分为哪3种类型,浅源地震:震源深度< 60km,中源地震:震源深度60~300km,深源地震:震源深度> 300km。 1.2 世界有哪几条地震带?我国有哪几个地震活动区? 答:世界上有三个主要地震带。 环太平洋地震带:它沿南美洲西部海岸起,经北美洲西部海岸→阿留申群岛→千岛群岛→日本列岛→我国的台湾省→菲律宾→印度尼西亚→新几内亚→新西兰。全球约有80%的浅源地震和90%的深源地震以及绝大部分中源地震都集中发生在这一带。 欧亚地震带:西起大西洋的亚速岛,经意大利→土耳其→伊朗→印度北部→喜马拉雅山脉→缅甸→印度尼西亚,与环太平洋地震带相衔接。 大洋海岭地震带和东非裂谷地震带。从西北利亚北岸靠近勒那河口开始,穿过北极经斯匹次卑根群岛和冰岛,再经过大西洋中部海岭到印度洋的一些狭长的海岭地带或海底隆起地带,并有一分支穿入红海和著名的东非裂谷区。 我国地处环太平洋地震带和欧亚地震带之间,是一个多地震的国家。地震活动的分布分为六大个活动区。 ①台湾及其附近海域。 ②喜马拉雅山脉地震活动区。 ③南北地震带:北起贺兰山,向南经六盘山,穿越秦岭沿川西直至云南省东部,纵贯南北,延伸长达2000多公里。因综观大致呈南北走向,故名南北地震带。 ④天山地震活动区。 ⑤华北地震活动区。 ⑥东南沿海地震活动区。 1.3 地震灾害主要表现在哪几个方面? 答:地震灾害主要表现在哪3个方面。 (1) 地表的破坏。地震造成地表的破坏主要有地裂缝、喷水冒砂、地面下沉、河岸、陡坡滑坡等。 (2) 建筑物的破坏。①结构丧失整体性;②承重结构承载力不足引起破坏;③地基失效。 (3) 地震次生灾害。地震除了直接造成建筑物的破坏以外,还可能引起火灾、水灾、毒气污染、滑坡、泥石流、海啸等严重的次生灾害。 1.4 什么是地震波?地震波包含了哪几种波? 答:当震源岩层发生断裂、错动时,岩层所积累的变形能突然释放,它以波的形式从震源向四周传播,这种波就称为地震波。 地震波分为体波(地球内部)和面波(地球表面传播的),体波又分纵波和横波。 纵波:震源向外传播的疏密波、压缩波、P波、介质的质点的振动方向与波的传播方向

浅谈对结构动力学的认识

浅谈对结构动力学的认识 摘要:简单地讲述了对结构动力学的整体认识,介绍了结构动力学的发展历程,结构动力问题的几大特点,结构动力问题的分类,结构系统的动力自由度及其离散方法(包括集中质量法、广义坐标法和有限单元法),建立运动方程的方法(包括利用达朗贝尔(d'Alermbert)原理的直接平衡法,虚位移原理建立振动方程,哈密顿(Hamilton)原理建立振动方程)。 关键词:结构动力学;质量;阻尼;运动方程 On understanding of structure dynamics Abstract: This paper simply tells the overall understanding of structure dynamics, and introduces the development course of structure dynamics, a few big characteristics of structure dynamic problem , the classification of structure dynamic problem, the structure of the system and its dynamic freedom discrete method (including focus on quality method, generalized coordinates method and finite element method), the method for establishing the equations of motion (including the use of d'Alermbert principle direct balance method, vibration equation with imaginary displacement principle, establish vibration equation with Hamilton principle). Key words: structure dynamics; quality; damping; equations of motion 1结构动力学发展简介 结构动力学是研究结构体系的动力特性,及其在动力荷载作用下动力响应分析原理和方法的一门技术学科。该学科的根本目的在于为改善工程结构系统在动力环境中的安全和可靠性提供坚实的理论基础。根据结构的功能不同和所处环境的不同,工程结构的振动存在三种情况:线性振动、非线性振动和随机振动。相应地可以将结构动力学划分为线性振动理论、非线性振动理论和随机振动理论。 拉格朗日(Lagrange)在l8世纪出版了名著《分析力学》,此书奠定了线性系统动力分析的基础。由于18世纪科学技术的不断创新,各种动力机械开始应用于不同的工程结构,促进了结构动力学理论和方法的不断进步。自从蒸汽机应用于船舶推进系统以后,使得船舶向大型和高速化发展,引起船舶振动问题日益突出。20世纪60年代以来,随着以有限元为核心的计算理论和技术的发展以及电子计算机的问世,产生了计算结构动力学,这使得对于大型复杂结构的动力分析成为可能。如今,人们可以成功地进行具有成千上万个自由度的大型复杂结构体系的动力分析。 在结构动力响应计算中,人们已经注意到结构系统自身的非线性特性和非线

激光原理及应用试卷

激光原理及应用 考试时间:第18周星期五(2007年1月5日) 一单项选择(30分) 1.自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为(B) 2.爱因斯坦系数A21和B21之间的关系为(C) 3.自然增宽谱线为(C) (A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型 4.对称共焦腔在稳定图上的坐标为(B) (A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1) 5.阈值条件是形成激光的(C) (A)充分条件(B)必要条件(C)充分必要条件(D)不确定 6.谐振腔的纵模间隔为(B) 7.对称共焦腔基模的远场发散角为(C) 8.谐振腔的品质因数Q衡量腔的(C) (A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性 9.锁模激光器通常可获得(A)量级短脉冲 10.YAG激光器是典型的(C)系统 (A)二能级(B)三能级(C)四能级(D)多能级 二填空(20分) 1.任何一个共焦腔与等价,

而任何一个满足稳定条件的球面腔地等价于一个共焦腔。(4分) 2.光子简并度指光子处于、 、、。(4分) 3.激光器的基本结构包括三部分,即、 和。(3分) 4.影响腔内电磁场能量分布的因素有、 、。(3分) 5.有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为 个。(2分) 6.目前世界上激光器有数百种之多,如果按其工作物质的不同来划分,则可分为四大类,它们分别是、、和。(4分) 三、计算题(42分) 1.(8分)求He-Ne激光的阈值反转粒子数密度。已知=6328?,1/f(ν) =109Hz,=1,设总损耗率为,相当于每一反射镜的等效反射率R=l-L =98.33%,=10—7s,腔长L=0.1m。 2.(12分)稳定双凹球面腔腔长L=1m,两个反射镜的曲率半径大小分别为R 1=3m求它的等价共焦腔腔长,并画出它的位置。 =1.5m,R 2 3.(12分)从镜面上的光斑大小来分析,当它超过镜子的线度时,这样的横模就不可能存在。试估算在L=30cm,2a=0.2cm的He-Ne激光方形镜共焦腔中所可能出现的最高阶横模的阶次是多大? 4.4.(10分)某高斯光束的腰斑半径光波长。求与腰斑相距z=30cm处的光斑及等相位面曲率半径。 四、论述题(8分) 1.(8分)试画图并文字叙述模式竞争过程

相关主题