搜档网
当前位置:搜档网 › TDR测量原理与应用

TDR测量原理与应用

数字频率计测频率与测周期的基本原理

了解数字频率计测频率与测周期的基本原理;熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。 [重点与难点] 重点:数字频率计的组成框图和波形图。 难点:时基电路和逻辑控制电路。 [理论内容] 一、数字频率计测频率的基本原理 所谓频率,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 f=N/T (1) 二、数字频率计的主要技术指标 1、频率准确度 2、频率测量范围 在输入电压符合规定要求值时,能够正常进行测量的频率区间称为频率测量范围。频率测量范围主要由放大整形电路的频率响应决定。 3、数字显示位数

频率计的数字显示位数决定了频率计的分辨率。位数越多,分辨率越高。 4、测量时间 频率计完成一次测量所需要的时间,包括准备、计数、锁存和复位时间。 三、数字频率计的电路设计与调试 1.基本电路设计 数字频率计的基本框图如图2所示,各部分作用如下。 ①放大整形电路 放大整形电路由晶体管3DG100与74LS00等组成。其中3DGl00组成放大器将输入频率为的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。 实验五数字频率计 实验目的 1. 了解数字频率计测量频率与测量周期的基本原理; 2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。实验任务

用中小规模集成电路设计一台简易的数字频率计,频率显示为四位,显示量程为四挡, 用数码管显示。1HZ—9.999KHZ ,闸门时间为1S ; 10HZ—99.99KHZ, 闸门时间为0.1S ; 100HZ—999.9KHZ, 闸门时间为10MS ; 1KHZ—9999KHZ, 闸门时间为1MS ; 实验五数字频率计 实验原理 1. 方案设计 原理框图见图1: 原理简述 所谓频率,就是周期性信号在单位时间(1s) 内变化的次数.若

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

遥感原理与应用

遥感原理与应用(高起专)2014年春季考试单选题 1. 可见光波谱波段范围位于_____。(5分) (A) 100~400nm (B) 400~700nm (C) 700~1000nm (D) 1000~1200nm 参考答案:B 2. 遥感图像统计分析通常包括计算图像的直方图、均值、方差、中值、陡度、峰态、相关系数矩阵和协方差矩阵等,其中用来描述整幅图像的灰度值分布的离散程度。(5分) (A) 均值 (B) 方差 (C) 中值 (D) 峰值 参考答案:B 3. 是基于可见光红光波段(R)与近红外波段(NIR)对绿色植物的响应的反差,用两者简单的比值来表达其反射率的差异的植被指数。(5分) (A) 比值植被指数(RVI) (B) 归一化差值植被指数 (C) 绿度植被指数 (D) 垂直植被指数 参考答案:A 4. 机载LIDAR系统,也称机载激光扫描测图系统,是一种的现代光学遥感系统,能直接获得高精度三维地表地形数据,是对传统摄影测量技术在高程数据获取及自动化快速处理方面的主要补充。(5分) (A) 被动式 (B) 主动式 (C) 分幅式 参考答案:B 填空题 5. 介质的______ 、散射系数、______ 、光衰减系数等参数为固有光学特性。(10分) (1). 参考答案: 吸收系数 (2). 参考答案: 散射相函数 6. 目前,消除条带噪音常用的方法有:______ 、直方图匹配法、______ 。(10分)

(1). 参考答案: 矩匹配法 (2). 参考答案: 均匀区法 7. 航片的内方位元素有______ ,像主点坐标y0和______ 。(10分) (1). 参考答案: 像主点坐标x0 (2). 参考答案: 焦距f 问答题 8. 写出监督分类中训练数据选择的步骤。(10分) 参考答案:(1)收集信息,包括分类地区的地图和航片等。 (2)进行野外调查获取研究区域的第一手信息。 (3)设计野外调查路线和内容。 (4)分类数字影像预分析。 (5)找出潜在的训练样区。 (6)定位和绘制训练样区。 (7)检查每个训练样区的各波段频率直方图。 (8)调整和去除双峰频率分布。 (9)合并训练数据信息并用于分类程序,进行计算机监督分类过程。 解题思路: 9. 不同的地物具有不同的电磁波反射和辐射特性,因而表现在遥感图像上具有不同的灰度和色调。正是这种特性,使我们可以利用遥感图像进行地物识别、提取所需要的信息,所以掌握地物在不同状态不同波段下的反射、辐射或者散射特征是非常重要的。 自行举例说明4种以上不同地物的散射特征。(10分) 参考答案: 解题思路:

摄影测量与遥感-自学手册

摄影测量与遥感 第一章摄影测量与遥感概述 第二章摄影测量基础 第三章遥感基础 第四章摄影测量与遥感处理系统 第五章野外像片调绘与像片控制测量 第六章基于摄影测量与遥感的4D产品生产

通过本课程的学习,学生能够对摄影测量与遥感有总体的认识。了解摄影测量和遥感的历史和趋势,掌握相关概念。掌握摄影测量与遥感的原理,利用遥感和摄影测量的技术手段获得4D产品,掌握摄影测量与遥感的野外和室内处理流程和要点。具体如下: 第一章摄影测量与遥感概述 摄影测量的任务、分类和发展;遥感及其发展;摄影测量与遥感的结合。 第二章摄影测量基础 单张航摄像片解析;像点坐标的量测;立体测图的原理与方法;摄影测量解析计算基础;数字摄影测量基础 第三章遥感基础 遥感的基础知识;遥感图像特征;常用卫星遥感简介;遥感图像的解译 第四章摄影测量与遥感处理系统 数字摄影测量系统;遥感数字图像处理系统;机载LIDAR和车载移动测图系统 第五章野外像片调绘与像片控制测量 野外像片调绘;像片控制测量 第六章基于摄影测量与遥感的4D产品生产 4D产品生产的数据流;解析空中三角测量;数字高程模型;数字正射影像图;数字线划地图;数字栅格地图

本章重点: 1、理解摄影测量的概念、特点和任务 2、掌握摄影测量的类别和发展历程 3、掌握遥感概念、类别和发展历程 4、掌握摄影测量技术与遥感技术的相辅相成的关系和相互促进技术特点 参考书: 1、梅安新,彭望渌,秦其明.2005. 遥感导论[M].北京:高等教育出版社. 2、张剑清,潘励,王树根. 2008.摄影测量学(第二版)[M].武汉:武汉大学 出版社. 3、国家测绘局职业技能鉴定指导中心.2010.测绘综合能力[M]. 北京:测绘出版社. §1.1 摄影测量概述 一、学习提要 1、摄影测量的任务 2、摄影测量的类型 3、摄影测量的发展历程 二、思考题 1、什么是摄影测量? P102 2、摄影测量的任务是什么? P102 3、摄影测量有哪几种分类方式,分别可分为哪些类别? P102 4、摄影测量经历了哪三个发展历程?其特点是什么? P103 5、数字摄影测量与传统摄影测量的根本区别是什么? P103 (1)产品是数字化的;(2)以计算机视觉替代人眼的立体观测。

GPS测量原理与应用试卷与答案(共5套)

GPS原理与应用 第一套 一、单项选择题(每小题 1 分,共 10 分) 1.计量原子时的时钟称为原子钟,国际上是以( C)为基准。 A、铷原子钟 B 、氢原子钟 C 、铯原子钟 D 、铂原子钟 2.我国西起东经 72°,东至东经 135°,共跨有 5 个时区,我国采用( A )的区时作为统一的标准时间。称作北京时间。 A、东8区 B 、西8区 C 、东6区 D 、西6区 3.卫星钟采用的是 GPS 时,它是由主控站按照美国海军天文台( USNO) ( D )进行调整的。在 1980 年 1 月 6 日零时对准,不随闰秒增加。 A、世界时(UT0) B 、世界时(UT1) C、世界时(UT2) D 、协调世界时(UTC) 4.在 20 世纪 50 年代我国建立的 1954 年北京坐标系是( C)坐标系。 A、地心坐标系 B 、球面坐标系 C、参心坐标系 D 、天球坐标系 5.GPS定位是一种被动定位,必须建立高稳定的频率标准。因此每颗卫星上都必须 安装高精确度的时钟。当有 1×10— 9s 的时间误差时,将引起( B )㎝的距离误差。 A、20 B 、30 C 、40 D 、50 6. 1977 年我国极移协作小组确定了我国的地极原点,记作(B)。 A、JYD1958.0 B 、 JYD1968.0 C 、 JYD1978.0 D 、JYD1988.0 7. 在GPS测量中,观测值都是以接收机的( B )位置为准的,所以天线的相位 中心应该与其几何中心保持一致。 A、几何中心 B 、相位中心 C、点位中心 D 、高斯投影平面中心 8.在 20 世纪 50 年代我国建立的 1954 年北京坐标系,采用的是克拉索夫斯基椭球元素,其 长半径和扁率分别为( B )。 A、a=6378140、α =1/298.257 B 、a=6378245、α =1/298.3 C、a=6378145、α =1/298.357 D 、a=6377245、α =1/298.0 9.GPS 系统的空间部分由21 颗工作卫星及 3 颗备用卫星组成,它们均匀分布在(D) 相对与赤道的倾角为55°的近似圆形轨道上,它们距地面的 平均高度为20200Km,运行周期为11 小时58 分。 A、3 个 B 、四个 C 、五个 D 、 6 个 10.GPS卫星信号取无线电波中 L 波段的两种不同频率的电磁波作为载波,在载波 2 L 上调制有( A)。

摄影测量与遥感实习心得

摄影测量与遥感实习心得摄影测量与遥感实习是摄影测量学和遥感技术相应用的综合实习课。下面搜集了摄影测量与遥感,欢迎阅读! 摄影测量与遥感实习心得【1】一、实习目的 摄影测量与遥感实习是摄影测量学和遥感技术相应用的综合实习课。本课程的任务是通过实习掌握摄影测量的原理、影像处理方法、成图方法,掌握遥感的信息获取、图像处理、分类判读及制图的方法和作业程序。从而更系统地掌握摄影测量与遥感技术。通过实习使我们更熟练地掌握摄影测量及遥感的原理,信息获取的途径,数字处理系统和应用处理方法。进一步巩固和深化理论知识,理论与实践相结合。培养我们的应用能力和创新能力、工作认真、实事求是、吃苦耐劳、团结协作的精神,为以后从事生产实践工作打下坚实的理论与实践相结合的综合素质基础。 二、实习内容 1)遥感影像图制作; 2)相片控制测量; 3)航空摄影测量相对立体观察与两侧; 4)航片调绘、遥感图像属性调查; 5)相片及卫片的判读及调绘 6)调绘片的内页整饰 7)撰写,提交成果。 三、实习设备与资料 1)摄影测量与遥感书本上的理论知识。

2)通过电脑查找有关这门学科的实践应用及其它相关知识等。 3)电脑上相关的摄影测量的图片信息资料及判读方法。 4)现有的实习报告模板及大学城空间里的相关教学资料。 四、实习时间与地点 时间:20XX年6月19日20XX年6月26日。 地点:学校图书馆、教室、寝室及搜集摄影测量与遥感这门学科的资料等相关地方。 五、实习过程 5.1摄影测量与遥感学的发展情景 摄影测量与遥感是从摄影影像和其他非接触传感器系统获取所研究物体,主要是地球及其环境的可靠信息,并对其进行记录、量测、分析与应用表达的科学和技术。随着 摄影测量发展到数字摄影测量阶段及多传感器、多分辨率、多光谱、多时段遥感影像与空间科学、电子科学、地球科学、计算机科学以及其他边缘学科的交叉渗透、相互融合,摄影测量与遥感已逐渐发展成为一门新型的地球空间信息科学。由于它的科学性、技术性、应用性、服务性以及所涉及的广泛科学技术领域,其应用已深入到经济建设、社会发展、国家安全和人民生活等各个方面。 5.2单张像片测量原理 单张像片测图的基本原理是中心投影的透视变换,而摄影过程的几何反转则是立体测图的基本原理。广义来说,前一情况的基本原理也是摄影过程的几何反转。20世纪30年代以后,摄影过程的几何反转都是应用各种结构复杂的光学机械的精密仪器来实现的。50年代,开始应用数学解析的方式来实现。图1就是用光学投影方法实现摄影几

对摄影测量基本原理的认识

对摄影测量基本原理的认识 宋剑虹 (贵州大学矿业学院测绘工程 09级2班) 内容摘要 摄影测量【photogrammetry】有二百多年的历史了。通过对摄影测量的学习和认识。本文从摄影测量最基本的原理出发,简单回顾了它的发展历程,本文立足于对武汉大学第二版《摄影测量》教程的学习以及对摄影测量基础知识的了解和认识后,阐述了摄影测量的一些基本知识。着重阐述了当代摄影测量技术最新理论的发展。尤其是对摄影测量的分类,分别阐述大地摄影测量、航空摄影测量、航天摄影测量的一些基本原理后相关技术要点。对大地摄影测量、航空摄影测量的内外业的有关步骤和相应技术作了一定的论述。最后,总结出自己的在学习过程中的对摄影测量的认识,作为测绘专业学生,我更看到新的希望。 关键词:摄影测量测量技术基本原理航天技术

目录 一、引言 (3) 二、摄影测量概述 (3) (一)关于摄影测量 (3) 1.摄影测量学的定义和任务 (3) 2.摄影测量的特点 (3) (二)摄影测量的发展阶段 (4) 三、摄影测量学的分类 (4) (一)地面摄影测量 (4) 1.地面摄影测量的基本原理 (4) 2.地面立体摄影测量的摄影方式 (4) 3.地面摄影测量分为外业工作和内业工作 (5) (二)航空摄影测量 (5) 1.航空摄影测量的基本原理 (5) 2.航空摄影测量的测图方法 (6) 3.航空摄影测量的作业分外业和内业 (7) (三)航天摄影测量 (7) 1.航天摄影测量的基本原理 (8) 2.航天摄影测量的特点 (8) 3.航天摄影测量的应用前景 (8) 四、结语 (8)

一、引言 摄影测量学有二百多年的历史了。最初叫图形量学(据 Iconometry 而来,或译作量影术)。1837年,发明摄影技术后,才叫摄影测量学。数学家勃兰特早在18世纪就论述了摄影测量学的基础——透视几何理论。1839年,法国报到了摄影像片的产生后,摄影测量学开始了它的发展历程。19世纪中叶,法国陆军上校劳塞达利用所谓“明箱”装置,测制了万森城堡图。劳塞达被公认为“摄影测量之父”。航空技术发达以后,摄影测量学被称为航空摄影测量学。1975年,卫星上天后,航空测量发展到了航天摄影测量。 通过上世纪八九十年代对数字摄影测量的研究、开发与推广,进入21世纪,我国数字摄影测量以世人难以想象的速度发展,数字摄影测量工作站在中国的摄影测量生产中获得了普遍的应用与推广,摄影测量的教学也由过去只有少数院校才能进行的“贵族”式的教学得到了极大的普及。目前,全国至少有40多所大专院校的测绘工程专业开设摄影测量课程,这极大地拓宽了摄影测量所需人才的培养渠道。 二、摄影测量概述 (一)关于摄影测量 1.摄影测量学的定义和任务 摄影测量【photogrammetry】指的是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学。传统摄影测量学定义:是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。摄影测量学是测绘学的分支学科,它的主要任务是用于测绘各种比例尺的地形图、建立数字地面模型,为各种地理信息系统和土地信息系统提供基础数据。摄影测量学要解决的两大问题是几何定位和影像解译。几何定位就是确定被摄物体的大小、形状和空间位置。几何定位的基本原理源于测量学的前方交会方法,它是根据两个已知的摄影站点和两条已知的摄影方向线,交会出构成这两条摄影光线的待定地面点的三维坐标。影像解译就是确定影像对应地物的性质。 2.摄影测量的特点 在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。

航天摄影测量

航天摄影测量的原理分析 航天摄影测量是指以卫星、飞船和飞机等航天器为运载工具,利用各种传感器在轨道空间获取地球表面上的地物、地貌影像等信息数据,通过系统软件分析、处理形成各种用途专题地图的测绘方法。 航天摄影测量是伴随着空间技术、摄影技术、图像数字传输与处理、全球定位和计算机技术的发展而产生的测量新技术,从其原理与应用角度看其应属于摄影测量学科的一个分支,是航空摄影测量技术的进一步拓展。 1、航天摄影测量的基本原理 航天摄影测量是航空摄影测量技术在空间摄影条件下的进一步应用,由于其成像原理与航空摄影有着本质的区别,因此,在技术上同样有着与其相区别的处理方法。但就其原理讲与航空摄影测量没有本质的区别,同样是利用立体影象进行立体模型的恢复与建立,从而测绘出一定比例尺的地形图。目前基于技术的发展和相关学科的技术现状,模型的建立是基于有理多项式 () RPC Rational Polynomial Coefficient 进行的。具体如下所述:有理多项式影像模型用两组不同的多项式函数分别计算从地面坐标( 经度, 纬度, 高程) 到影像的行列坐标,具体的数学表达式如下: 1 , , / 1 , , 2 , ()()()() , / 2 , , Row P Xn Yn Zn Q Xn Yn Zn Col P Xn Yn Zn Q Xn Yn Zn == 其中:Row 、Col 是影像坐标,, , Xn Yn Zn 是地面坐标, 1, 2,...,20n = ,因此要完成以上三次多项式计算需要420?个参数,Spacing Jmaging 公司提供的IKONOS 立体像 对的RPC 参数,如下所示: LINE OFF 影像坐标的行偏移 SAMP OFF 影像坐标的列偏移 LAT OFF 纬度偏移 LONG OFF 经度偏移 HEIGHT OFF 高程偏移 LINE SCALE 影像坐标的行缩放比例 SAMP SCALE 影像坐标的列缩放比例 LAT SCALE 纬度缩放比例 LONG SCALE 经度缩放比例 HEIGHT SCALE 高程缩放比例 1 20LINE NUM COEFF to 有关行变换的第一组参数( 1- 20) 1 20LINE DEN COEFF to 有关行变换的第二组参数( 1- 20) 1 20SAMP NUM COEFF to 有关列变换的第一组参数( 1- 20) 1 20SAMP DEN COEFF to 有关行变换的第二组参数( 1- 20) 假设物方的点84WGS 和83NAD 坐标系的经纬度及高程() , , Latitude Longitude Height ,其中(), Latitude Longitude 以度为单位,Height 以米为单位。 首先利用下式进行规格化, 得到规格化坐标(,,)P L H :

电子计数法测量频率原理附误差分析报告

电子计数法测量频率原理及误差分析 摘要:频率是电信号的基本特性之一. 在各种对频率的测量方法中 , 电子计数法测频具有测量精度高 , 读数直观 , 测量迅速 , 以及便于实现测量过程自动化等优点.电子计数法测频的基本方法有两种 , 即直接测频和通过测周期得到频率. 测频原理 直接测频的原理是依照频率的定义 :若某一信号在 T 秒时间内重复变化 N 次 , 则(注意: 适用于测量较高的频率) 基于此原理的测量框图如图 . 电子计数器测频原理方框图 T N f x

误差分析: 设主门的开启时间为T , 被测信号周期为Tx , 主门开启时刻至下一个计数脉冲的前沿为Δt1 , 主门关闭时刻至下一个计数脉冲的前沿为Δt2 , 如图2 所示. 由图2 由式得到, 被测频率越高, 闸门时间越长, 则量化误差越小. 但闸门时间太长, 则降低测量速度, 且受到显示位数的限制.

式中第二项为闸门时间相对误差 f c 为石英晶体振荡器的频率. 闸门时间误差大小主要取决于晶体振荡器的频率误差. 由此得到计数法测频的最大相对误差为 结论:由以上分折, 基本计数法测频的误差除忽略由高稳定度的晶振引起的频率误差外, 主要是量化误差, 为了提高测频的精度可采取如下措施: (1) 提高晶振频率的准确度以减小闸门的时间误差. (2) 被测频率较高时采用直接测频法, 并可在计数显示不溢出的条件下扩大闸门时间或倍频被测 信号以减小量化误差. (3) 被测频率较低时采用测周期的方法测频, 并选择较高频率的时标信号或分频被测信号以减小量化误差. 但增大时标信号频率受到计数器计数速度的限制.

对摄影测量基本原理的认识

对摄影测量基本原理的认识 (贵州大学矿业学院测绘工程 09级2班) 内容摘要 摄影测量【photogrammetry】有二百多年的历史了。通过对摄影测量的学习和认识。本文从摄影测量最基本的原理出发,简单回顾了它的发展历程,本文立足于对武汉大学第二版《摄影测量》教程的学习以及对摄影测量基础知识的了解和认识后,阐述了摄影测量的一些基本知识。着重阐述了当代摄影测量技术最新理论的发展。尤其是对摄影测量的分类,分别阐述大地摄影测量、航空摄影测量、航天摄影测量的一些基本原理后相关技术要点。对大地摄影测量、航空摄影测量的内外业的有关步骤和相应技术作了一定的论述。最后,总结出自己的在学习过程中的对摄影测量的认识,作为测绘专业学生,我更看到新的希望。 关键词:摄影测量测量技术基本原理航天技术

目录 一、引言 (3) 二、摄影测量概述 (3) (一)关于摄影测量 (3) 1.摄影测量学的定义和任务 (3) 2.摄影测量的特点 (4) (二)摄影测量的发展阶段 (4) 三、摄影测量学的分类 (4) (一)地面摄影测量 (5) 1.地面摄影测量的基本原理 (5) 2.地面立体摄影测量的摄影方式 (5) 3.地面摄影测量分为外业工作和内业工作 (5) (二)航空摄影测量 (6) 1.航空摄影测量的基本原理 (7) 2.航空摄影测量的测图方法 (7) 3.航空摄影测量的作业分外业和内业 (9) (三)航天摄影测量 (9) 1.航天摄影测量的基本原理 (10) 2.航天摄影测量的特点 (10) 3.航天摄影测量的应用前景 (10) 四、结语 (10)

一、引言 摄影测量学有二百多年的历史了。最初叫图形量学(据 Iconometry 而来,或译作量影术)。1837年,发明摄影技术后,才叫摄影测量学。数学家勃兰特早在18世纪就论述了摄影测量学的基础——透视几何理论。1839年,法国报到了摄影像片的产生后,摄影测量学开始了它的发展历程。19世纪中叶,法国陆军上校劳塞达利用所谓“明箱”装置,测制了万森城堡图。劳塞达被公认为“摄影测量之父”。航空技术发达以后,摄影测量学被称为航空摄影测量学。1975年,卫星上天后,航空测量发展到了航天摄影测量。 通过上世纪八九十年代对数字摄影测量的研究、开发与推广,进入21世纪,我国数字摄影测量以世人难以想象的速度发展,数字摄影测量工作站在中国的摄影测量生产中获得了普遍的应用与推广,摄影测量的教学也由过去只有少数院校才能进行的“贵族”式的教学得到了极大的普及。目前,全国至少有40多所大专院校的测绘工程专业开设摄影测量课程,这极大地拓宽了摄影测量所需人才的培养渠道。 二、摄影测量概述 (一)关于摄影测量 1.摄影测量学的定义和任务 摄影测量【photogrammetry】指的是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学。传统摄影测量学定义:是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。摄影测量学是测绘学的分支学科,它的主要任务是用于测绘各种比例尺的地形图、建立数字地面模型,为各种地理信息系统和土地信息系统提供基础数据。摄影测量学要解决的两大问题是几何定位和影像解译。几何定位就是确定被摄物体的大小、形状和空间位置。几何定位的基本原理源于测量学的前方交会方法,它是根据两个已知的摄影站点和两条已知的摄影方向线,交会

频率测量的两种方法及等精度测量原理及实现

频率测量的两种方法及等精度测量原理及实现 频率测量在电子设计和测量领域中经常用到,因此对频率测量方法的研究在实际工程应用中具有重要意义。常用的频率测量方法有两种:频率测量法和周期测量法。频率测量法是在时间t内对被测信号的脉冲数N进行计数,然后求出单位时间内的脉冲数,即为被测信号的频率。周期测量法是先测量出被测信号的周期T,然后根据频率f=1/T 求出被测信号的频率。但是上述两种方法都会产生±1个被测脉冲的误差,在实际应用中有一定的局限性。根据测量原理,很容易发现频率测量法适合于高频信号测量,周期测量法适合于低频信号测量,但二者都不能兼顾高低频率同样精度的测量要求。 1 等精度测量原理等精度测量的一个最大特点是测量的实际门控时间不是一个固定值,而是一个与被测信号有关的值,刚好是被测信号的整数倍。在计数允许时间内,同时对标准信号和被测信号进行计数,再通过数学公式推导得到被测信号的频率。由于门控信号是被测信号的整数倍,就消除了对被测信号产生的±l周期误差,但是会产生对标准信号±1周期的误差。等精度测量原理如图1所示。 从以上叙述的等精度的测量原理可以很容易得出如下结论:首先,被测信号频率fx的相对误差与被测信号的频率无关;其次,增大测量时间段“软件闸门”或提高“标频”f0,可以减小相对误差,提高测量精度;最后,由于一般提供标准频率f0的石英晶振稳定性很高,所以标准信号的相对误差很小,可忽略。假设标准信号的频率为100 MHz,只要实际闸门时间大于或等于1s,就可使测量的最大相对误差小于或等于10-8,即精度达到1/100 MHz。 2 等精度测频的实现等精度测量的核心思想在于如何保证在实际测量门闸内被测信号为整数个周期,这就需要在设计中让实际测量门闸信号与被测信号建立一定的关系。基于这种思想,设计中以被测信号的上升沿作为开启门闸和关闭门闸的驱动信号,只有在被测信号的上升沿才将图1中预置的“软件闸门”的状态锁存,因此在“实际闸门”Tx内被测信号的个数就能保证整数个周期,这样就避免普通测量方法中被测信号的±1的误差,

《遥感原理与应用》试卷(A)答案

A卷参考答案要点 名词解释 1.绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。 2.大气窗口:大气对电磁波有影响,有些波段的电磁波通过大气后衰减较小,透过率较高的波段。3.图像融合:由于单一传感器获取的图像信息量有限,难以满足应用需要,而不同传感器的数据又具有不同的时间、空间和光谱分辨率以及不同的极化方式,因此,需将这些多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像,这个过程即图像融合。 4.距离分辨力:指测视雷达在发射脉冲方向上能分辨地物最小距离的能力。它与脉冲宽度有关,而与距离无关。 5.特征选择:指从原有的m个测量值集合中,按某一规则选择出n个特征,以减少参加分类的特征图像的数目,从而从原始信息中抽取能更好的进行分类的特征图像。即使用最少的影像数据最好的进行分类。 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 由于植物进行光合作用,所以各类绿色植物具有相似的反射波谱特性,以区分植被与其他地物。 (1)由于叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强,因而在可见光的绿波段有波峰,而在蓝、红波段则有吸收带; (2)在近红外波段(0.8-1.1微米)有一个反射的陡坡,形成了植被的独有特征; (3)在近红外波段(1.3-2.5微米)受绿色植物含水量的影响,吸收率大增,反射率大大下降;但是,由于植被中又分有很多的子类,以及受到季节、病虫害、含水量、波谱段不同等影响使得植物波谱间依然存在细部差别。 波谱特性的重要性: 由于不同地物在不同波段有着不同的反射率这一特性,使得地物的波谱特性成为研究遥感成像机理,选择遥感波谱段、设计遥感仪器的依据;在外业测量中,它是选择合适的飞行时间和飞行方向的基础资料;有效地进行遥感图像数字处理的前提之一;用户判读、识别、分析遥感影像的基础;定量遥感的基础。 2.遥感图像处理软件的基本功能有哪些? 1)图像文件管理——包括各种格式的遥感图像或其他格式的输入、输出、存储以及文件管理等; 2)图像处理——包括影像增强、图像滤波及空间域滤波,纹理分析及目标检测等; 3)图像校正——包括辐射校正与几何校正; 4)多图像处理——包括图像运算、图像变换以及信息融合; 5)图像信息获取——包括直方图统计、协方差矩阵、特征值和特征向量的计算等; 6)图像分类——非监督分类和监督分类方法等; 7)遥感专题图制作——如黑白、彩色正射影像图,真实感三维景观图等地图产品; 8)三维虚拟显示——建立虚拟世界; 9)GIS系统的接口——实现GIS数据的输入与输出等。 3.遥感图像目视判读的依据有哪些,有哪些影响因素? 地物的景物特征:光谱特征、空间特征和时间特征。 影响因素包括:地物本身复杂性,传感器的性能以及目视能力。

时频测量原理简述

时频测量原理简述 目录 1调制域测量 1)什么是调制域测量 2)为什么要进行调制域测量 2时频测量原理一如何实现调制域测量 1)瞬时频率测量原理 2)无间隔计数器的实现 3 )提高测量速度与分辨力的方法 4)调制域分析的应用 5)发展动态 正文内容 1)什么是调制域测量? 电信号的完整关系:可采用三个量以及之间的关系来描述。这三个量就是时间、频率和幅度,其中: 幅度-时间关系:示波器; 幅度-频率关系:频谱仪 频率-时间关系:调制域分析仪 下图描述了同一信号在时域(V-T )、频域(V-F)、调制域(F-T )的特性。

调制域分析仪:能够完成时间与频率关系测量的仪器。 调制域即由频率轴(F)和时间轴(T)共同构成的平面域。 调制域测量技术是对时域和频域测量技术的补充和完善。 ?时域与频域分析的局限性 一个实际的信号可以从时域和频域进行描述和分析,时域分析可以了解信号波形(幅值)随时间的直观变化;频域分析则可以了解信号中所含频谱分量,但是,却不能把握各频谱分量在何时岀现。 ?调制域概念 在通信等领域中,各种复杂的调制信号越来越多地被人们使用,因而,常常需要了解信号频率随时间的变化,以便对调制信号等进行有效分析一一即调制域分析。 调制域即指由频率轴(F)和时间轴(T)共同构成的平面域。 1调制域测量 2)为什么要进行调制域测量? 在通信等领域中,各种复杂的调制信号越来越多地被人们使用,因而,常常需要了解信号频率随时间的变化,以便对调制信号等进行有效分析一一即调制域分析。 方便地表达岀频域和时域中难以描述的信号参数和信号特性。为人们对复杂信号的测试和分析提供了方便 直观的方法,解决了一些难以用传统方法或不可能用传统方法解决的难题。 492时频测量原理 1)瞬时频率测量原理

频率设计的原理及详细讲解

第一章概述 第一章概述 单片机即MCU(MICRO CTROL UNIT)翻译成中文就是微型控制单元。它的应用遍及各个领域单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。并且由于单片机具显著的优点,它已成为科技领域的有力工具,人类生活的得力助手。 频率测量在科技研究和实际应用中的作用日益重要。传统的频率计通采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量低频信号时不宜直接使用。频率信号抗干扰性强、易于传输,可以获得较高的测量精度。同时,频率测量方法的优化也越来越受到重视.并采用AT89C51片机和相关硬软件实现。 MCS—51单片机具有体积小,功能强,性能价格比较高等特点,因此被广泛应用于工业控制和智能化仪器,仪表等领域。我们研制的频率计以89c51,具有性能优良,精度高,可靠性好等特点。 实现一个宽频域,高精度的频率计,一种有效的方法是:在高频段直接采用频率法,低频段采用测周法。一般的数字频率计本身无计算能力因而难以使用测周发,而用89c51机构成的频率计却很容易做到这一点。对高频段和低频段的划分,会直接影响测量精度及速度。经分析我们将f=1MHz做为高频,采用直接测频法;将f=1Hz做为低频,采用测周期法。为了提高测量精度,我们又对高低频再进行分段。 以89C51机为控制器件的频率测量方法,并用C语言进行设计,采用单片机能控制,结合外围电子电路,得以高低频率的精度测量。最终实现多功能数字频率计的设计方案,根据频率计的特点, 可广泛应用于各种测试场所。 在基础理论和专业技术基础上,通过对数字频率计的设计,用十进制数字来显示被测信号频率的测量装置。以精确迅速的特点测量信号频率,在本设计在实践理论上锻炼提高了自己的综合运用知识 水平,为以后的开发及科研工作打下基础。 第二章测量方法及设计方案 2.1频率测量方法 直读法又称无源网络频率特性测量法;比较法是将被测频率信号与已知频率信号相比较,通过观、听比较结果,获得被测信号的频率;电容充放电式计数法是利用电子电路控制电容器充放电的次数,再用电磁式仪表测量充放电电流的大小,从而测出被测信号的频率值;电子计数法是根据频率定义进行测量的一种方法,它是用电子计数器显示单位时间内通过被测信号的周期个数来实现频率的测量。 利用电子计数式测量频率具有精度高、测量范围宽、显示醒目直观、测量迅速,以及便于实现测量过程自动化等一系列优点.首先,被测信号通过放大整形,形成幅度一致,形状一致是计数脉冲。然后,N将它加到闸门的一个输入端,闸门由门控信号来控制其关闭时间。计得的脉冲送至译码,再送显示器显示出来。而由晶振产生的1MHz的振荡信号经放大整形,形成方波,经多个10分频10s,1s,0.1s, 0.01s,1ms,那么有fx=N/T符合测频定义。根据f=N/T。不难看出,采用计数器测频的测量误差,一方面决定于闸门时间T准不准确,即由晶振提供的标准频率的准确度△T/T=-(△fo/fo);另一方面 放大整形 闸门 技术显示器 门控信号 Fx 分频 石英振荡器 控制电源

遥感原理与应用

遥感原理与技术讲义 资源与环境学院 张晓丽

第一章绪论 第一节地球信息科学 一、含义: 地球信息科学(Geoinformatics或Geomatics),又译为地理信息科学,是测绘学、摄影测量与遥感学、地图学、地理科学、计算机科学、卫星定位技术、专家系统技术与现代通讯技术等的有机集成,即多种学科的综合。是用各种现代化方法采集、量测、分析、存储、管理、显示、传播、和应用与地理和空间分布有关数据的一门综合的计算机信息科学、技术和产业实体。Geomatics作为解决空间问题的工具,是一门应用科学。 地球——空间系统本身是复杂的、开放的、动态的,因此要用动态的、系统的方法来研究。“3S”技术是Geomatics的核心内容,Geomatics是3S技术的广义定义。 二、特点:动态性、系统化、实时性、空间特征、信息科学 三、组成: GIS:多种学科集成的基础平台,用来搜索、存储、管理和分析空间信息数据。 RS、DPS、GPS:快速获取和更新地理信息的主要技术手段。 地图学与图象图形学:用作地理信息的表示、分析和处理,以及地理信息成果的表达和显示。 人工智能:如专家系统(ES)和人工神经网络,使数据采集、更新、分析和应用更加自动化和智能化,达到决策层次的应用。 现代通讯技术:为地理信息在各部门的传播和应用提供保证。 第二节狭义的3S技术 一、含义: RS(Remote Sensing):获取地面信息,并更新。 GIS(Geographic Information System):对地理信息进行采集、存储、管理、分析和显示的基础平台。 GPS(Global Positioning System):实现准确的定位。(实时、动态) 二、应用领域 地图制图:RS和GPS—获取和更新数据,GIS—编辑、存储、显示和输出。 自然资源管理、监测和评价:森林资源、土地资源、矿产等。如土地资源管理、监测。 城市与区域规划:需综合自然环境、地形、地貌、人口密度等多种因素,同时考虑生态、经济、社会等多种效益。进行各种空间分析,如连通度分析。设计交通网络、地下管线、绿地设施、水系和利用等。交通管理:导航系统,实时监控、调度。 环境监测和分析:污染监测、评价和分析。确定污染源、蔓延过程、评价污染程度、预测。 工商管理:客户位置、相关信息(邮编、电话、销售状况、负责销售员等),销售分析。 第三节 RS的概念、发展及应用 RS技术是60年代以来,在现代物理学(包括光学技术、红外技术、微波技术、雷达技术、激光技术和全息技术)、空间科学、电子计算机技术、数学方法和地球科学理论的基础上,建立和发展起来的一门新兴的综合性的边缘学科,是一门先进的,实用的探测技术。 一、概念

摄影测量实验报告讲解

《摄影测量原理》 实 验 报 告 院系: 班级: 姓名: 指导教师: 实验一预备知识

一、实验目的 1.了解4d的基本概念。 2.了解VirtuoZo NT系统的运行环境及软件模块的操作特点。 3.了解实习工作流程,从而能对4d产品生产实习有个整体概念。 二、实验内容 1.熟悉4D的基本概念。 数字高程模型(缩写DEM)是在某一投影平面(如高斯投影平面)上规则格网点的平面坐标(X,Y)及高程(Z)的数据集。 数字正射影像图(缩写DOM)是利用数字高程模型(DEM)对经扫描处理的数字化航空像片,经逐像元进行投影差改正、镶嵌,按国家基本比例尺地形图图幅范围剪裁生成的数字正射影像数据集。它是同时具有地图几何精度和影像特征的图像,具有精度高、信息丰富、直观真实等优点。 数字线划地图(缩写DLG)是现有地形图要素的矢量数据集,保存各要素间的空间关系和相关的属性信息,全面地描述地表目标。 数字栅格地图(缩写DRG)是现有纸质地形图经计算机处理后得到的栅格数据文件。每一幅地形图在扫描数字化后,经几何纠正,并进行内容更新和数据压缩处理,彩色地形图还应经色彩校正,使每幅图像的色彩基本一致。数字栅格地图在内容上、几何精度和色彩上与国家基本比例尺地形图保持一致。 2.了解VirtuoZo NT系统,熟悉系统的运行环境及配置,主要软件模块以及作业方式等,了解系统目录。 3.系统启动。 4.4d产品制作流程 根据VirtuoZo制作4d产品的基本工作流程如下:

三、实验方法与步骤 通过阅读实验指导书,对制作DEM、DOM流程以及基本知识进行足够的了解。 四、实验结果 五、实验心得与体会 实验二数据准备 一、实验目的 1.掌握创建/打开测区及测区参数文件的设置。 2.掌握参数文件的数据录入。 3.完成原始数字影像格式的转换。 二、实验内容 测区是待处理的航空影像所对应的地面范围,在软件VirtuoZo NT里创建一个测区,并且输入测区参数,录入相机参数,之后录入控制点数据,最后要将原始影像的数据格式转换。因为原始数字影像即是数字摄影测量所用的原始资料,有数字影像(如卫星影像)和数字化影像(如用模拟的航片经扫描而获得的影像),影像的数据格式有多种(一般常用的有tif格式等),这些影像格式VirtuoZo NT系统不能直接引用,必须转换为VirtuoZo NT所认识的vz格式。 三、实验方法与步骤 1.资料分析 (1)查看原始数字影像的分辨率、比例尺等。 (2)查看相机检校参数,及其影像方位、框标的位置等。 (3)查看地面控制点数据及其点位与分布。 2.创建新测区,设置测区参数文件。 3.相机参数文件的数据录入。 4.地面控制点文件的数据录入。 5.原始影像的数据格式转换。 四、实验结果

时间频率测量技术的发展与应用

精品文档 21世纪中国电子仪器发展战略研讨会2004年9月时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关 重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程 技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量 精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。 .

相关主题