搜档网
当前位置:搜档网 › 振动和波动 3

振动和波动 3

(完整版)物理选修3-4第十一章机械振动试题及答案详解(可编辑修改word版)

N M P 单元过关测试 ----- 机械振动 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1 至 4 页,第 II 卷 4 至 8 页, 共计 100 分,考试时间 90 分钟 第 I 卷(选择题 共 40 分) 一、本题共 10 小题;每小题 4 分,共计 40 分。在每小题给出的四个选项中,有一个或多个选项正确,全 部选对得 4 分,选对但不全得 2 分,有错选得 0 分. 1. 弹簧振子作简谐运动,t 1 时刻速度为 v ,t 2 时刻也为 v ,且方向相同。已知(t 2-t 1)小于周期 T , 则(t 2-t 1) ( ) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2. 有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将 被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪 光照片,如右图所示,(悬点和小钉未被摄入),P 为摆动中的最低点。已知每相邻两次闪光的时间间隔相等, 由此可知,小钉与悬点的距离为 ( )A .L /4 B .L /2 C .3L /4 D .无法确定 3. A 、B 两个完全一样的弹簧振子,把 A 振子移到 A 的平衡位置右边 10cm ,把 B 振子移到 B 的平衡位 置右边 5cm ,然后同时放手,那么:( ) A .A 、 B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的. C .A 、B 运动的方向有时相同、有时相反. D .无法判断 A 、B 运动的方向的关系. 4. 铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就 会受到一次冲击。由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动。普通钢轨长为 12.6m ,列车固有振动周期为 0.315s 。下列说法正确的是 ( ) A. 列车的危险速率为40m / s B. 列车过桥需要减速,是为了防止列车发生共振现象 C. 列车运行的振动频率和列车的固有频率总是相等 D .增加钢轨的长度有利于列车高速运行 5.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这 就做成了一个共振筛,筛子做自由振动时,完成 20 次全振动用 15 s ,在某电压下,电动偏心轮转速是 88 r /min.已知增大电动偏心轮的电压,可以使其转速提高,增加筛子的质量,可以增大筛子的固有周期,要 使筛子的振幅增大,下列做法中,正确的是(r /min 读作“转每分”) ( ) A.降低输入电压 B.提高输入电压 C.增加筛子的质量 D.减小筛子的质量 6.一质点作简谐运动的图象如图所示,则该质点 ( ) A. 在 0.015s 时,速度和加速度都为-x 方向 B. 在 0.01 至 0.03s 内,速度与加速度先反方向后同方向,且速度是先减小后 增大,加速度是先增大后减小。

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

第11章 振动与波动讲义

第11章振动与波动 第一节谐振动 一般地说,任何一个物理量在某一量值附近随时间作周期性变化都可以称为振动。振动有机械振动、电磁振动、光振动…...。 本章着重研究机械振动。物体在一定的位置附近作往返运动,称为机械振动。 振动中最简单最基本最有代表性的是简谐振动。 振动的传播就是波。在弹性介质中发生的波动,是依靠弹性介质质点的机械振动而产生和传播的,因而称为机械波,或弹性波。 并不是所有的波都依靠介质传播,光波、无线电波可以在真空中传播,称为电磁波。微观粒子也有波动性,这种波称为实物波或德布罗意波。 研究谐振动的意义 在一切振动中,最简单和最基本的振动称为谐振动 任何复杂的运动都可以看成是若干谐振动的合成 一.谐振动的基本特征 1、弹簧振子 O 点为小球水平方向不受力的位置,称为平衡位置。 B→O :弹性力向右,加速度向右,加速; O→C :向左,向左,减速; C→O :向左,向左,加速; O→B :向右,向右,减速。 物体在B 、C 之间来回往复运动 物体作谐振动的条件 物体的惯性——阻止系统停留在平衡位置 作用在物体上的弹性力——驱使系统回复到平衡位置 2、弹簧振子的动力学特征 取平衡位置O 点为坐标原点,水平向右为x 轴的正方向。 kx f -= 小球所受力的大小与它的位移的大小成正比,力的方向与位移的方向相反,始终指向平衡位置的,称为线性回复力。 ma f =,x m k m f a -==222dt x d x a =-=ω,

3、谐振动的运动学特征 谐振动微分方程的解为: ) t cos()t sin( ) cos(2 22?ωω?ωω?ω+-==+-== +=A dt x d a A dt dx v t A x 说明: 物体在谐振动时,其位移、速度、加速度都是周期性变化的. 1、从受力角度来看——动力学特征 kx f -= 2、从加速度角度来看——运动学特征 x a 2ω-= 3、从位移角度来看——运动学特征 ) cos(?ω+=t A x 说明: 要证明一个物体是否作谐振动,只要证明上面三个式子中的一个即可,且由其中的一个可以推出另外两个; 要证明一个物体是否作谐振动最简单的方法就是受力方析,得到物体所受的合外力满足回复力的关系。 二、描述谐振动的特征量 谐振动方程是 ) cos(?ω+=t A x 1、振幅——A 振动物体离开平衡位置的最大位移的绝对值。 振幅恒为正值,单位为米(m); 振幅的大小与振动系统的能量有关,由系统的初始条件确定。 2、周期

2021年高中物理第11章 机械振动 单元综合试题及答案2

第十一章 《机械振动》综合测试 1、 关于简谐运动,下列说尖中正确的是( )。 A .位移减小时,加速度减小,速度增大。 B .位移放向总跟加速度方向相反,跟速度方向相同。 C .物体的运动方向指向平衡位置时,速度哏位移方向相反,背向平衡位置时,速度哏位移方向相同。 D .水平弹簧振子朝左运动时,加速度方向跟 速度方向相同,朝右运动时,加速度方向跟 速度方向相反。 2、 某一弹簧振子做简谐运动,在图的四幅图象中,正确反映加速度a 与位移x 的关系的是( ) 3、 如图所示的演示装置,一根张紧的水平绳上挂着五个单摆,其中A. E 摆长相同,先使A 摆摆动,其余各摆也摆动起来, A .各摆摆动的周期均与A 摆相同 B . B 摆摆运动的周期最短 C .C 摆摆动的周期最长 D . C 摆振幅最大 4、荡秋千是我国民间广为流传的健身运动, 关于荡秋千的科学原理,下列说法中正确的(A . 人应始终按照秋千摆动的节奏前后蹬板,这样才能越荡越高。荡秋千的过程是将人体内储存的营养物质的化学能转化为机械能的过程 B . 人和秋千属同一振动系统,人与秋千的相互作用力总是大小相等,方向相反,对系统做功之和为零,只有在与秋千的固有周期相同的外力作用下才能越荡越高 C . 秋千的运动是受迫振动,因此人用力的频率应保持和秋千的固有频率相同,秋千向下运动埋双脚向下用力,当秋千向上运动时双脚向上用力,这样才能越荡越高。荡秋千的过程是将人体仙储存的营养物质的化学 能转化为机械能和内能的过程。 D . 秋千的运动是受迫振动,当秋千在最高点时,人应站直身体,每当秋千向下运动时,先下蹲,系统势能向动能转化,在秋千通过最低点后逐渐用力站起,当到达最高点时身体恢复直立。。。。如此循环,系统的机械能不断增大,秋千才能越荡越高。 A B C D

机械设备振动标准.(精选)

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图 6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos(0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量A 、ω、0?(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t 对应地得到。 )2 cos()sin(00π ?ωω?ωω+ +=+-=t A t A v )cos()cos(0202π?ωω?ωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即kx F -=,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。这里应该注意,F 系指合力,它可以是弹性力或准弹性力。 (3)和简谐运动的动力学特征相一致的是简谐运动的运动学特征:作简谐 运动物体的加速度大小总是与其位移大小成正比、而方向相反,即x dt x d 222ω-=, 它也是物体是否作简谐运动的判据之一。只要加速度与位移大小成正比、而方向恒相反,则该物理量的变化过程就是一个简谐运动的过程。在非力学量,例如电量、电流和电压等电学量,就不易用简谐振动的动力学特征去判定,而LC 电路中的电量q 就满足q LC dt q d 1 22-=,故电量q 的变化过程就是一个简谐振荡的过程,显然用运动学的特征来判定简谐运动更具有广泛的意义。 3. 简谐振动的振幅、周期、频率和相位 (1)振幅A 是指最大位移的绝对值。A 是由初始条件来决定的,即 2 20 2 ω v + =x A 。 (2)周期T 是指完成一次完整的振动所用时间。ω π 2=T ,式中ω是简谐振 动的圆频率,它是由谐振动系统的构造来决定的,即m k =ω,ω也称为固有圆频率。对应的T 称为固有周期。v T 1 = ,式中v 称为频率(即固有频率),它与圆频率的关系2v ωπ=,是由系统本身决定的。

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

机械加工中的强迫振动现象分析

机械加工中的强迫振动现象分析 沈庆玲 (七台河煤碳职业技术培训学院) 摘 要:主要介绍了机械加工中强迫振动产生的原因及减少强迫振动的途径。关键词:机械加工;强迫振动;误差;隔振 中图分类号:U469105 文献标识码:C 文章编号:1008-3383(2004)03-0062-01 机械加工过程中,在工件和刀具之间常产生振 动。产生振动时,工艺系统的正常切削过程便受到干扰和破坏,从而零件加工表面出现振纹,降低了零件的加工精度和表面质量。 机械加工过程中产生的振动,按其产生的原因来分,可分为自由振动、受迫振动和自激振动三大类。自由振动往往是由于切削力的突然变化或其他外力的冲击等原因所引起的。这种振动一般可以迅速衰减,因此对机械加工过程中的影响较小。而受迫振动和自激振动都是不能自然衰减而且危害较大的振动。下面主要对强迫振动进行简单的分析。 1 强迫振动产生的原因 机械加工中的强迫振动,是一种由工艺系统内部或外部周期交变的激振力作用下引起的振动。机械加工中引起工艺系统强迫振动的激振力,主要来自以下几方面。 111 机床上高速回转的零件的不平衡 机床上高速回转零件较多,如电动机转子、带轮、主轴、卡盘和工件、 磨床的砂轮等,由于不平衡而产生激振力F (即离心惯性力)。如图1所示是一个安装在简支梁上的电动机,以ω的角速度旋转时,假如由于电动机转子不平衡而产生离心力F n ,则F n 沿X 方向的分力F x (F x =F n cos ωt )就是该梁的外界周期干扰力。在这一干扰力的作用下,简支梁将作不衰减的振动。 图1 强迫振动力学模型 112 机床传动系统中的误差 机床传动系统中的齿轮,由于制造和装配误差 而产生周期性的激振力。此外,皮带接缝,轴承滚动体尺寸差和液压传动中油液脉动等各种因素均可能引起工艺系统强迫振动。 113 切削过程中本身的不均匀性 切削过程中的间歇特性,如铣削、拉削及车削带有键槽的断续表面等,由于间歇切削而引起切削的周期性变化,从而激起振动。 114 外部振源 由邻近设备(如冲压设备、龙门刨等)工作时的强烈振动通过地基传来,使工艺系统产生相同(或整倍数)频率的强迫振动。 综合上面的讨论,可以看出强迫振动的主要特点有以下几方面。 (1)强迫振动是在外界周期性干扰力的作用下产生的,但振动本身并不能引起干扰力的变化。当干扰力停止时,则工艺系统的振动也随着停止。 (2)不管振动系统本身的固有频率如何,强迫振动的频率总是与外界干扰力的频率相同。 (3)强迫振动的振幅大小在很大程度上决定于干扰力的频率与系统固有频率的比值λ。当比值等于或接近1时,振幅将达到量大值,这种现象通常称为“共振”。 (4)强迫振动的振幅大小还与干扰力、系统刚度及其阻尼系数有关。 2 减小强迫振动的措施和途径 (1)减少或消除振源的激振力:例如精确平衡各回转零件、部件,对电动机的转子和砂轮不但要进行静平衡,而且要进行动平衡。轴承的制造精度以及装配和调试质量常常对减小强迫振动有较大的影响。 (2)隔振:即在振动的路线中安放具有弹性性能的隔振装置,使振源所产生的大部分振动由隔振装置来吸收,以减小振源对加工过程中的干扰。如将机床安置在防振地基上及在振源与刀具和工件之间设置弹簧或橡皮垫片等 。 (3)提高工艺系统的刚度及增大阻尼,其目的是使强迫振动的频率远离系统的固有频率。如使其避开共振区,使在λ≤0或λ≥0的情况下加工,采用刮研接触面来提高部件的刚度。 (4)采用阻尼器:通过阻尼作用,将振动能量转换成热能散失掉,以达到减振目的。 以上分析了机械加工中强迫振动的原因及特点、减小振动的措施和途径,随着科学技术的发展,也将有更好的措施。 收稿日期:2004-01-08 2004年 第3期(总第121期) 黑龙江交通科技 HEI LONG J I ANG J I AOTONG KE J I No.3,2004 (Sum No.121)

浅析机械设备的振动故障检测

Equipment Manufactring Technology No.3,2010 机械设备的故障检测,主要包括状态检测和故障诊断两个方面,即对机械设备的运行情况进行检测,并在发现故障后进行诊断和处理。机械故障检测是现代化的产物,是随着设备的改进和维修发展起来的。经过30年的发展,机械检测技术已经广泛应用在了飞机和船舶发动机、大型电网系统、石油化工、飞机自动驾驶和矿山设备等领域。 1机械故障检测技术的研究意义 在现代化的生产中,机械设备故障检测技术有着重要的意义。机械设备出现异常如果没有及时发现和处理,不仅会导致机械设备的损坏,更会造成人员伤亡的惨剧。所以关于机械故障检测技术的研究,就十分必要了。机械故障检测技术,还可以预防事故的发生和提高企业的经济效益。 1.1预防事故发生保障人身和设备安全 在许多行业(如航天、航海、航空等)中,机械设备发生故障,不仅会导致经济的严重损失,也会带来严重的社会影响。仅仅依靠提高设备的安全性来避免事故的发生,是远远不够的,必须辅助以有效的机械设备检测技术,才可以防患于未然。1.2提高经济效益 选用机械故障诊断技术,在现代化的工业生产中,可以有效增加企业的经济效益。效益是多方面的,主要是降低机械设备的突发故障和减少设备的维修费用。突发的机械设备故障,会严重影响企业的生产,造成严重经济损失。虽然我国选用机械故障诊断技术的时间不是太长,但是也取得了优良的成绩。例如辽阳的石油化工集团,从国外引进了大型的机组,试机期间出现了多起机械故障,损坏了4个离心压缩机的转子,严重影响了生产。经过故障诊断和振动分析,把故障彻底的解决了。以前,铁路系统也曾出现了大规模的燃轴事件,严重影响了铁路运输的发展,后来选用红外技术,极大地减少了此类故障的发生。 机械设备的维修费用,主要是过剩维修。选用机械设备的状态检测技术,可以有效的避免过剩维修,减少企业对于维修费用的支出。以辽阳石油化工集团为例,该企业每年要停产维修一次,企业利润减少了4000万元,维修费用4000万元,合计8000万元白白丢失了。国外的相关企业的维修期限大多是3~4年一次。由此可见,我国的过剩维修带来的损失是极为严重的。 2机械故障检测的方法振动分析法 2.1振动分析简介 机械设备在作业时,会不断的出现不同强度的振动。经验丰富的维修人员,通过触摸和倾听振动强度及声音,就可以判断出机械设备明显的故障。但关于设备早期或特征不突出的故障,维修人员还是无能为力。对机械设备进行振动检测的研究,不但可以有效地检测设备的运行情况,还可以正确的判断出故障的发生和进行处理,减少了对设备拆卸的次数。 在工业领域里,机械振动分析是衡量机械设备情况的重要指标之一。机械内部出现异常情况,随后就会出现振动的加大。零部件和设备表面就可以感受到振动,其实就是某一个振动源在设备内的传播,对应着设备和零部件的损坏或出现异常故障。例如零部件的原始制造误差、零部件间的滚动和摩擦、运动副间的空隙和回转机件的冲击等,都是机械设备的可能振动源。机械振动随着零部件间的摩擦、零部件表面的脱落、开裂等的变化而变化。机械设备也可能因为某一部件的微小振动,引发其他部件和设备的共振响应,造成设备的严重损坏。研究机械振动的目的,就是了解各种机械设备的振动现象的机理,获得机械振动包含的大量设备信息,对设备的运行情况进行检测,并分析可能存在的故障问题。依据对机械振动的研究和分析,就可以在不拆卸的前提下,对设备进行前期诊断和故障分析,并根据问题进行相应的处理。 由于振动诊断技术的理论和实践都较为完善,其诊断结果也较为准确,而备受关注,在机械故障诊断体系中有着主导地位,被广泛应用于各种设备的运行检测和故障诊断中。 2.2振动分析方法 (1)振动信号的幅值分析方法。主要应用参数有最大值、最小值、均值、均方根值和绝对平均值。这些参数的计算简单,对于机械故障的诊断也有一定的作用。其缺点是对故障有不敏感性和区分故障难的特点,因为它们会随着工作条件(转 浅析机械设备的振动故障检测 蔡宇 (江汉大学文理学院,湖北武汉430056) 摘要:介绍了机械设备的振动故障分析法,并总结出振动分析的方法,还对数种机械故障的诊断技术做了具体的分析。 关键词:机械设备;振动分析;诊断技术 中图分类号:TH113文献标识码:B文章编号:1672-545X(2010)03-0062-02 收稿日期:2009-12-14 作者简介:蔡宇(1987—),男,海南澄迈人,江汉大学文理学院2006级本科生,研究方向:机械设计制造及其自动化。 62

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

人教版高中物理选修3-4第十一章机械振动试题

高中物理学习材料 (马鸣风萧萧**整理制作) 选修3-4第十一章机械振动试题 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共计100分。考试时间90分钟。 第I 卷(选择题 共40分) 一、本题共10小题;每小题4分,共计40分。在每小题给出的四个选项中,有一个或多个选项正确,全部选对得4分,选对但不全得2分,有错选得0分. 1.弹簧振子作简谐运动,t 1时刻速度为v ,t 2时刻也为v ,且方向相同。已知(t 2-t 1)小于周期T ,则(t 2-t 1) ( ) A .可能大于四分之一周期 B .可能小于四分之一周期 C .一定小于二分之一周期 D .可能等于二分之一周期 2.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如右图 所示,(悬点和小钉未被摄入),P 为摆动中的最低点。已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为 ( ) A .L /4 B .L /2 C .3L /4 D .无法确定 3.A 、B 两个完全一样的弹簧振子,把A 振子移到A 的平衡位置右边10cm ,把B 振子移到B 的平衡位置右边5cm ,然后同时放手,那么: ( ) A .A 、 B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的. C .A 、B 运动的方向有时相同、有时相反. D .无法判断A 、B 运动的方向的关系. 4 .铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就

机械设备振动特性分析

机械设备振动特性分析 佟德纯 教授 一 振动波形变换 设备的振动监测与诊断,振动波形的分析,提取表征状态信息的特征量是最常用的有效方法之一,振动波形的分析主要有两种:一是时域分析,即将振动作为时间τ(秒)的函数x(τ)来观测。二是频域分析,即按傅立叶变换方法将x(τ)变换成频率f (赫芝)的函数X(f)。这个变换关系和过程可用空间简图来表示,见图5.1。 图5.1 振动波形分析 1. 振动的时域波形特征量 (1) 均值x :描述振动过程的静态成分,又称为直流分量,即 ?=T dt t x T x 0)(1 (5.1) 式中T —平均时间(样本长度),以秒或毫秒计。 (2) 绝对值平均x ,即 dt t x T x T ?=0)(1 (5.2) (3) 均方值2x :表示振动的平均能量或平均功率的指标,即 ?=T dt t x T x 022)(1 (5.3) (4) 均方根值(有效值)rms X :描述振动的有效正振幅,即 ?=T rms dt t x T X 0 2)(1 (5.4) (5) 方差2x σ :描述振动偏离均值散布情况,其标准差σx 表示振动的动态分量 ,即 []?-=T x dt x t x T 02 2 )(1σ (5.5) 为了进一步理解上述振动特征量的物理意义,特用模拟电路表示特征量的运算过程,具

体如图5.2所示。 图5.2 振动特征量的运算电路 3. 复杂周期振动的分解 复杂的周期振动)()(nT t x t x T +=都可用傅立叶级数的形式展开,即分解成若干个 谐波(简谐)振动之各,即 ∑∑∞=∞=++=++=1 010)cos()sin cos (2n n n n n n T t n A A t n b t n a a x θωωω (5.6) 式中 ω为角频率,T f ππω220== 0A 为直流分量,200a A = n A 为n 阶谐波的振幅,)2,1(,?????=+=n b a A n n n n θ为n 阶谐波的相角,)2,1(),(???=-n a b arctg n n n θ 由(5.6)式可知,复杂的周期振动)(t x τ是由直流分量0A 和各次谐波振动 )3,2,1(,???=n A n 所组成。这就是振动信号的频率分析,又称谐波分析,是振动监测与诊断的基本方法之一。 示例:柴油机扭振分析 柴油机是六缸四冲程星形连接,点火次序如图5.3所示。转速n=195rpm ,即基频f 0

高中物理选修3-4知识点机械振动与机械波解析

机械振动与机械波 简谐振动 一、学习目标 1.了解什么是机械振动、简谐运动 2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 二、知识点说明 1.弹簧振子(简谐振子): (1)平衡位置:小球偏离原来静止的位置; (2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械 运动,这样的系统叫做弹簧振子。 (3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑 振子的大小和形状的理想化的物理模型。 2.弹簧振子的位移—时间图像 弹簧振子的s—t图像是一条正弦曲线,如图所示。 3.简谐运动及其图像。 (1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 (2)应用:心电图仪、地震仪中绘制地震曲线装置等。 三、典型例题 例1:简谐运动属于下列哪种运动() A.匀速运动 B.匀变速运动 C.非匀变速运动 D.机械振动 解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。故A、B错,C正确。简谐运动是最简单的、最基本的机械振动,D正确。

答案:CD 简谐运动的描述 一、学习目标 1.知道简谐运动的振幅、周期和频率的含义。 2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 二、知识点说明 1.描述简谐振动的物理量,如图所示: (1)振幅:振动物体离开平衡位置的最大距离,。 (2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。 (3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。 (4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。 (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。 (6)相位:用来描述周期性运动在各个时刻所处的不同状态。 2.简谐运动的表达式:。 (1)理解:A代表简谐运动的振幅;叫做简谐运动的圆频率,表示简谐运动的快慢,且;(代表简谐运动的相位,是t=0时的相位,称作初相位或初相;两个具有相同频率的简谐运动存在相位差,我们说2的相位比1超前。 (2)变形: 三、典型例题 例1:某振子做简谐运动的表达式为x=2sin(2πt+6π)cm则该振子振动的振幅和周期为() A.2cm1s B.2cm2πs C.1cmπ6s D.以上全错 解析:由x=Asin(ωt+φ)与x=2sin(2πt+6π)对照可得:A=2cm,ω=2π=2πT,∴T=1s,A选项正确。 答案:A 例2:周期为2s的简谐运动,在半分钟内通过的路程是60cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为() A.15次,2cm B.30次,1cm

机械振动和机械波知识点总结分析

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F 是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L 和g 有关,其中L 是摆长,是悬点到摆球球心的距离。g 是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g 应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六) 机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==?λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 横坐标表示质点的振动时间 横坐标表示介质中各质点的平衡位置

第11章振动下册

第十一章 振动 练习题 11-3 一个质量为m 的物体由串接的两个弹簧相连,如图所示,设两个弹簧的劲度系数分别为1k 和2k ,忽略弹簧的质量。证明,振动系统的振动频率为 m k k k k )(21 2121+?=πν 证明:设在运动过程中,物体m 所受的力为f ,当物体m 发生位 移x 时,两个弹簧的位移分别为 练习题11-1用图 21x x +,m 所受的弹性力应为 )(21x x k kx f +-=-= 其中,k 为两个弹簧的等效劲度系数。 设1f 和2f 分别为弹簧1k 和2k 中的弹性力,据胡克定律分别有 111x k f -= ,222x k f -= 于是 ??? ? ??+=+-=-=221121)(k f k f k x x k kx f 由于忽略了弹簧质量,21f f f ==,由上式可得 2 121k k k k k +?= k 称为两个串连弹簧的等效劲度系数。于是振动系统的振动频率为 m k k k k m k )(2121 2121+?==ππν 11-4 放置在水平桌面上的弹簧振子,其简谐振动的振幅A =m 100.22-?,周期T = 0.5s ,求起始状态为下列情况的简谐振动方程: (1) 振动物体在正方向端点; (2) 振动物体在负方向端点; (3) 振动物体在平衡位置,向负方向运动; (4) 振动物体在平衡位置,向正方向运动; (5) 振动物体在m 100.12-?=x 处,向负方向运动; (6) 振动物体在m 100.12-?-=x 处,向正方向运动。 (特别说明:本章各表达式中各量用数值表示时,除特别指明外,均用国际单位制单位。)

相关主题