搜档网
当前位置:搜档网 › 小区间负载均衡

小区间负载均衡

小区间负载均衡
小区间负载均衡

TDD LTE系统小区负载均衡

概述

Mobility Load Balancing处理的根本目的在于把过载的小区中适当比例的负载转移到不过载的小区。也就是把UE终端业务从过载小区切换到不过载的小区。切换分为两种:LTE系统内部切换;异系统间切换。

功能模块

MLB的功能上主要有几大块组成:负载报告生成和邻区信息收集;基于负载均衡的切换;切换参数/重选参数自适应调整。

1. 负载报告

由相邻的eNB通过X2接口(intra-LTE场景)或者S1接口(inter-RAT场景)来交互小区的负载信息。

负载报告:触发本小区的负载报告;收集邻小区的负载报告。

2. 切换

基于负载均衡的切换,根据负载报告,初始化切换参数,切换时加入原因说明是由于负载均衡引起的。主要分为:选择合适UE;选择合适的邻区。需要避免过早切换或过晚切换而导致无线链路失,以及UE在两个小区间互相切换。这两点决定了需要知道邻区的切换参数。

具体切换流程:待定

3. 参数自适应调整

与邻区商量调整切换参数和重选参数。从而控制切入难,切换容易。重选进来难,重现出去容易。

具体流程

负载报告

UE > MAX value OR other reason,也就是负载达到低级负载门限,触发RRM模块手机本小区负载信息,

RRM触发X2消息,收集邻区信息,并储存,建立邻区列表信息,此邻区列表只用于MLB。

实现难点:触发X2发消息;发什么消息(load indicate, resource request);代码是否能支持这类消息;还需要建X2 setup, 能不能和宏网建起来,会不会和切换有冲突;对方是否

支持。

切换:

负载达到高级负载门限,尝试切换:

1.轮询所有做低优先级业务的UE, 重新配置A2门限。

2.A2门限触发,配置新的A3或A5门限,然后触发切换流程。

3.循环步骤1,2,直到负载门限降低。

参数自适应调整:

小区间参数调整参考36.300, 如果没有源小区和目标小区的协商过程以及切换参数的自适应调整,虽然可以通过基于负载均衡的切换将源小区边缘的UE 切换至目标小区,但是有可能UE 立刻又从目标小区切换回到源小区。这不仅造成了UE 的乒乓切换,还导致了MLB 操作失败。因此小区切换参数/重选参数的自适应调整在MLB 操作过程中是必不可少的。

Sercomm MLB流程:监控负载情况;切换UE;调整RSRP power。

Note:1.一直处于负载监控。主要监控UE数。

2. 根据负载,来调整RSRP。

3.处于调整RSRP和切换过程中,不能再进行MLB过程。

4.MLB后,需要一段时间后,再可以进行MLB过程。

5.切换过程中UE 选择QCI >= 5.

6.切换参数是可变的,同时又范围的。防止出现过早或过晚切换。

广域网负载均衡原理简单介绍

广域网负载均衡 多链路广域网负载均衡 (1)Inbound多链路负载均衡算法策略:RTT+Topology+RoundRobin 具体描述: 当外部用户访问九州梦网网站时,首先由F5的3DNS对客户端的LDNS进行RTT(Round Trip Time)探测,对比从两条链路返回的探测结果(可以从统计列表中看到),选择一条返回值小的链路IP地址返回给客户端,从而客户端再发起访问请求;当F5的3DNS探测不到客户端的LDNS(由于LDNS安全防护等原因)时,F5的3DNS自动启用Topology算法,来静态匹配客户端的LDNS地理位置,从而根据客户端的来源,返回正确的A记录;当探测不到的LDNS又不在地址列表中时,F5 3DNS自动启用Global Availability 算法作为默认算法,将所有无法计算结果并且不在Topology范围之内的LocalDNS请求,定义到系统的默认线路上。 F5 的3DNS具备二十多种Inbound算法,可以根据需要进行组合。 ①RTT算法运行机制: 通过3DNS的RTT就近性算法会自动运算生成一个ldns就近分布表,通过这个动态的表,每个客户上来都会提供一个最快速的链路进行访问,由于站点有ISP1和ISP2的两条广域网线路。在3DNS上会针对站点服务器(以https://www.sodocs.net/doc/cf6625557.html, 为例)解析ISP1和ISP2的两个不同的公网地址。 对应于https://www.sodocs.net/doc/cf6625557.html,域名,在3DNS上配置wideip:https://www.sodocs.net/doc/cf6625557.html,,对应两个Virtual Server:VS1:202.106.83.177,VS2:219.17.66.100。分别属于ISP1和ISP2两条线路分配的IP地址段。在3DNS内部,同时定义两个DataCenter分别与ISP1和ISP2相对应。 用户的访问流程如下:

几种负载均衡算法

几种负载均衡算法 本地流量管理技术主要有以下几种负载均衡算法: 静态负载均衡算法包括:轮询,比率,优先权 动态负载均衡算法包括: 最少连接数,最快响应速度,观察方法,预测法,动态性能分配,动态服务器补充,服务质量,服务类型,规则模式。 静态负载均衡算法 ◆轮询(Round Robin):顺序循环将请求一次顺序循环地连接每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。 ◆比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。 ◆优先权(Priority):给所有服务器分组,给每个组定义优先权,BIG-IP 用户的请求,分配给优先级最高的服务器组(在同一组内,采用轮询或比率算法,分配用户的请求);当最高优先级中所有服务器出现故障,BIG-IP 才将请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。 动态负载均衡算法 ◆最少的连接方式(Least Connection):传递新的连接给那些进行最少连接处理的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。 ◆最快模式(Fastest):传递连接给那些响应最快的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。 ◆观察模式(Observed):连接数目和响应时间以这两项的最佳平衡为依据为新的请求选择服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。 ◆预测模式(Predictive):BIG-IP利用收集到的服务器当前的性能指标,进行预测分析,选择一台服务器在下一个时间片内,其性能将达到最佳的服务器相应用户的请求。(被BIG-IP 进行检测) ◆动态性能分配(Dynamic Ratio-APM):BIG-IP 收集到的应用程序和应用服务器的各项性能参数,动态调整流量分配。 ◆动态服务器补充(Dynamic Server Act.):当主服务器群中因故障导致数量减少时,动态地将备份服务器补充至主服务器群。 ◆服务质量(QoS):按不同的优先级对数据流进行分配。 ◆服务类型(ToS): 按不同的服务类型(在Type of Field中标识)负载均衡对数据流进行分配。 ◆规则模式:针对不同的数据流设置导向规则,用户可自行。 负载均衡对应本地的应用交换,大家可以通过对上述负载均衡算法的理解,结合实际的需求来采用合适你的负载均衡算法,我们常用到的一般是最少连接数、最快反应、或者轮询,决定选用那种算法,主要还是要结合实际的需求。

集群HA负载均衡技术

实用标准文案 NLB 、HA、HPC集群、双机、负载均衡、 1.1什么是集群)就是一组计算机,它们作为一个整体向用户cluster 简单的说,集群()。一提供一组网络资源。这些单个的计算机系统就是集群的节点(node她们看/个理想的集群是,用户从来不会意识到集群系统底层的节点,在他来,集群是一个系统,而非多个计算机系统。并且集群系统的管理员可以随意增加和删改集群系统的节点。集群系统的主要优点:1.2 高可扩展性:(1):集群中的一个节点失效,它的任务可传递给其他节点。可高可用性HA(2) 以有效防止单点失效。 高性能:负载平衡集群允许系统同时接入更多的用户。(3) 高性价比:可以采用廉价的符合工业标准的硬件构造高性能的系统。(4) 集群系统的分类2.1 虽然,根据集群系统的不同特征可以有多种分类方法,但是一般把集群系统 分为两类:集群。,、高可用(High Availability)集群简称HA(1) 这类集群致力于提供高度可靠的服务。就是利用集群系统的容错性对外提供 小时不间断的服务,如高可用的文件服务器、数据库服务等关键应用。7*24负载均衡集群:使任务可以在集群中尽可能平均地分摊不同的计算机进行处 精彩文档. 实用标准文案 理,充分利用集群的处理能力,提高对任务的处理效率。以提供更加高效稳

定的服务。在实际应用中这几种集群类型可能会混合使用, 高就会包含高可用的网络文件系统、如在一个使用的网络流量负载均衡集群中,可用的网络服务。集群,也HPC(High Perfermance Computing)集群,简称(2)、性能计算称为科学计算集群。 在这种集群上运行的是专门开发的并行应用程序,它可以把一个问题的数据 从而可以分布到多台的计算机上,利用这些计算机的共同资源来完成计算任务,解决单机不能胜任的工作(如问题规模太大,单机计算速度太慢)。 如天气预报、这类集群致力于提供单个计算机所不能提供的强大的计算能力。石油勘探与油藏模拟、分子模拟、生物计算等。(HA) 3.1 什么是高可用性和可维护(reliability)计算机系统的可用性(availability)是通过系统的可靠性 来度量系统(MTTF)来度量的。工程上通常用平均无故障时间性(maintainability)于是可用性被定义)来度量系统的可维护性。,用平均维修时间(MTTR的可靠性MTTF/ (MTTF+MTTR)*100% 为:负载均衡服务器的高可用性主服务器和备份机上都需要建立一个备份机。为了屏蔽负载均衡服务器的失效,”这样的信息来监I am alive监控程序,通过传送诸如“运行High Availability它就接管当备份机不能在一定的时间内收到这样的信息时,控对方的运行状况。I am 并继续提供服务;当备份管理器又从主管理器收到“主服务器的服务IP精彩文档.实用标准文案 地址,这样的主管理器就开开始再次进IPalive”这样的信息是,它就释放服务行集群管理的工作了。为在主服务器失效的情况下系统能正常工作,我们在主、备份机之间实现负载集群系统配置信息的同步与备份,保持二者系统的基本一

F5负载均衡基本原理

F5 Application Management Products 服务器负载均衡原理 F5 Networks Inc

1.服务器负载平衡市场需求 (3) 2.负载平衡典型流程 (4) 2..1 通过VIP来截获合适的需要负载平衡的流量 (4) 2.2 服务器的健康监控和检查 (5) 2.3 负载均衡和应用交换功能,通过各种策略导向到合适的服务器 (6)

1.服务器负载平衡市场需求 随着Internet的普及以及电子商务、电子政务的发展,越来越多的应用系统需要面对更高的访问量和数据量。同时,企业对在线系统的依赖也越来越高,大量的关键应用需要系统有足够的在线率及高效率。这些要求使得单一的网络服务设备已经不能满足这些需要,由此需要引入服务器的负载平衡,实现客户端同时访问多台同时工作的服务器,一则避免服务器的单点故障,再则提高在线系统的服务处理能力。从业界环境来说,如下的应用需求更是负载均衡发展的推动力: ?业务系统从Client-Server转向采用Browser-Server 系统结构,关键系统需要高可用性 ?电子商务系统的高可用性和高可靠性需要 ?IT应用系统大集中的需要(税务大集中,证券大集中,银行大集中) ?数据中心降低成本,提高效率 负载均衡技术在现有网络结构之上提供了一种廉价、有效、透明的方法,来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。它有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高。 BIG/IP利用定义在其上面的虚拟IP地址来为用户的一个或多个应用服务器提供服务。因此,它能够为大量的基于TCP/IP的网络应用提供服务器负载均衡服务。BIG/IP 连续地对目标服务器进行L4到L7合理性检查,当用户通过VIP请求目标服务器服务时,BIG/IP根椐目标服务器之间性能和网络健康情况,选择性能最佳的服务器响应用户的请求。 下图描述了一个负载平衡发生的流程:

负载均衡调度算法

负载调度算法 负载均衡(Load Balance),又称为负载分担,就是将负载(工作任务)进行平衡、分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。负载均衡建立在现有网络结构之上,它提供了一种廉价又有效的方法来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。 在调度器的实现技术中,IP负载均衡技术是效率最高的。在已有的IP负载均衡技术中有通过网络地址转换(Network Address Translation)将一组服务器构成一个高性能的、高可用的虚拟服务器,称之为VS/NAT技术。在分析VS/NAT 的缺点和网络服务的非对称性的基础上,提出通过IP隧道实现虚拟服务器的方法VS/TUN,和通过直接路由实现虚拟服务器的方法VS/DR,它们可以极大地提高系统的伸缩性。 在内核中的连接调度算法上,IPVS实现了以下几种调度算法: 1 轮叫调度 1.1 轮叫调度含义 轮叫调度(Round Robin Scheduling)算法就是以轮叫的方式依次将请求调度不同的服务器,即每次调度执行i = (i + 1) mod n,并选出第i台服务器。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。 轮叫是基站为终端分配带宽的一种处理流程,这种分配可以是针对单个终端或是一组终端的。为单个终端和一组终端连接分配带宽,实际上是定义带宽请求竞争机制,这种分配不是使用一个单独的消息,而是上行链路映射消息中包含的一系列分配机制。 1.2 轮叫调度算法流程 轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。在系统实现时,我们引入了一个额外条件,即当服务器的权值为零时,表示该服务器不可用而不被调度。这样做的目的是将服务器切出服务(如屏蔽服务器故障和系统维护),同时与其他加权算法保持一致。所以,算法要作相应的改动,它的算法流程如下:假设有一组服务器S = {S0, S1, …, Sn-1},一个指示变量i表示上一次选择的服务器,W(Si)表示服务器Si的权值。变量i被初始化为n-1,其中n > 0。 j = i; do { j = (j + 1) mod n;

Tomcat集群与负载均衡

Tomcat集群与负载均衡(转载) 在单一的服务器上执行WEB应用程序有一些重大的问题,当网站成功建成并开始接受大量请求时,单一服务器终究无法满足需要处理的负荷量,所以就有点显得有点力不从心了。另外一个常见的问题是会产生单点故障,如果该服务器坏掉,那么网站就立刻无法运作了。不论是因为要有较佳的扩充性还是容错能力,我们都会想在一台以上的服务器计算机上执行WEB应用程序。所以,这时候我们就需要用到集群这一门技术了。 在进入集群系统架构探讨之前,先定义一些专门术语: 1. 集群(Cluster):是一组独立的计算机系统构成一个松耦合的多处理器系统,它们之间通过网络实现进程间的通信。应用程序可以通过网络共享内存进行消息传送,实现分布式计算机。 2. 负载均衡(Load Balance):先得从集群讲起,集群就是一组连在一起的计算机,从外部看它是一个系统,各节点可以是不同的操作系统或不同硬件构成的计算机。如一个提供Web服务的集群,对外界来看是一个大Web服务器。不过集群的节点也可以单独提供服务。 3. 特点:在现有网络结构之上,负载均衡提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。集群系统(Cluster)主要解决下面几个问题: 高可靠性(HA):利用集群管理软件,当主服务器故障时,备份服务器能够自动接管主服务器的工作,并及时切换过去,以实现对用户的不间断服务。 高性能计算(HP):即充分利用集群中的每一台计算机的资源,实现复杂运算的并行处理,通常用于科学计算领域,比如基因分析,化学分析等。 负载平衡:即把负载压力根据某种算法合理分配到集群中的每一台计算机上,以减轻主服务器的压力,降低对主服务器的硬件和软件要求。 目前比较常用的负载均衡技术主要有: 1. 基于DNS的负载均衡 通过DNS服务中的随机名字解析来实现负载均衡,在DNS服务器中,可以为多个不同的地址配置同一个名字,而最终查询这个名字的客户机将在解析这个名字时得到其中一个地址。因此,对于同一个名字,不同的客户机会得到不同的地址,他们也就访问不同地址上的Web服务器,从而达到负载均衡的目的。 2. 反向代理负载均衡(如Apache+JK2+Tomcat这种组合) 使用代理服务器可以将请求转发给内部的Web服务器,让代理服务器将请求均匀地转发给多台内部Web服务器之一上,从而达到负载均衡的目的。这种代理方式与普通的代理方式有所不同,标准代理方式是客户使用代理访问多个外部Web服务器,而这种代理方式是多个客户使用它访问内部Web服务器,因此也被称为反向代理模式。 3. 基于NAT(Network Address Translation)的负载均衡技术(如Linux Virtual Server,简称LVS)

天融信负载均衡算法

1.Rr – Round Robin 默认情况下,访问请求分配的次序为: 1, 2, 3, 4, 1, 2, 3,4 若Servers之间存在性能差异,可以通过调整分配粒度值(weight),来控制访问请求分配的次序: 1, 1, 1, 2, 2, 2, 3, 3, 3,4,4,4, 2.Lc - Least Connections 新的访问请求将分配至当前连接数最少的一台服务器上。分配粒度方法定义了两个服务器的活动连接数要有多大差别,算法里才会将它们区分为不同等级。3.Sr – Shortest Response Time 基于后台服务器的最短相应时间来分配新的访问请求。 4.Pi – Persistent IP 相同IP地址的请求将会分配到相同的服务器上 5.HI - Hash IP 这是一种基于源IP地址Hash来分发新建连接的算法。客户端发送一个请求到虚拟服务器;负载均衡设备将根据源IP地址计算出的哈希值来选择将该访问请求发送到哪一台服务器;对于哈希值相同的请求连接,都将会发送到相同的服务器上。 注意:如果一台服务器失效了,将导致负载均衡设备上的哈希值重新计算,这样对所有原已维持的会话状态都将产生影响。 在负载均衡集群的方式下,客户端到服务器端的对应关系,在其他负载均衡设备上无法维持的,因此当其中一台负载均衡设备失效以后,客户端的请求将会在其他正常的负载均衡重新进行负载分配。 6.CHI – Consistent Hash IP 这是一种基于源IP地址Hash来分发新建连接的算法。 客户端发送一个请求到虚拟服务器;负载均衡设备将根据源IP地址计算出的哈希值来选择将该访问请求发送到哪一台服务器;对于哈希值相同的请求连接,都将会发送到相同的服务器上。 注意:

数据库负载均衡解决方案

双节点数据库负载均衡解决方案 问题的提出? 在SQL Server数据库平台上,企业的数据库系统存在的形式主要有单机模式和集群模式(为了保证数据库的可用性或实现备份)如:失败转移集群(MSCS)、镜像(Mirror)、第三方的高可用(HA)集群或备份软件等。伴随着企业的发展,企业的数据量和访问量也会迅猛增加,此时数据库就会面临很大的负载和压力,意味着数据库会成为整个信息系统的瓶颈。这些“集群”技术能解决这类问题吗?SQL Server数据库上传统的集群技术 Microsoft Cluster Server(MSCS) 相对于单点来说Microsoft Cluster Server(MSCS)是一个可以提升可用性的技术,属于高可用集群,Microsoft称之为失败转移集群。 MSCS 从硬件连接上看,很像Oracle的RAC,两个节点,通过网络连接,共享磁盘;事实上SQL Server 数据库只运行在一个节点上,当出现故障时,另一个节点只是作为这个节点的备份; 因为始终只有一个节点在运行,在性能上也得不到提升,系统也就不具备扩展的能力。当现有的服务器不能满足应用的负载时只能更换更高配置的服务器。 Mirror 镜像是SQL Server 2005中的一个主要特点,目的是为了提高可用性,和MSCS相比,用户实现数据库的高可用更容易了,不需要共享磁盘柜,也不受地域的限制。共设了三个服务器,第一是工作数据库(Principal Datebase),第二个是镜像数据库(Mirror),第三个是监视服务器(Witness Server,在可用性方面有了一些保证,但仍然是单服务器工作;在扩展和性能的提升上依旧没有什么帮助。

F5负载均衡算法详解

应用交换技术的负载均衡算法 应用交换技术里主要包括四项关键的技术: ●截获和检查流量 ●服务器监控健康检查 ●负载均衡算法 ●会话保持 截获和检查流量保证只有合适的数据包才能通过; 服务器监控和健康检查随时了解服务器群的可用性状态; 负载均衡和应用交换功能通过各种策略导向到合适的服务器; 会话的保持以实现与应用系统完美结合; F5在应用交换技术中的优势: A、截获和检查流量 –BIG-IP 有最强的数据包截获和检查引擎去检查任何数据流量包中的任何部分,可以检测16384bytes包的深度,理论上可以检测 64Kbytes的包长度 –这使得BIG-IP 明显有别于其他的厂商的产品 B、用于定制控制的iRules工具 –可用来定义如何根据报头和/或TCP有效负载信息来引导、保存和过滤流量。 –iRules增强了企业或服务提供商定根据业务需求定制应用流量的能力。 –通用检查引擎和iRules分别是应用智能和业务决策来进行应用流量管理的方法和工具。 C、服务器监控和健康检查

–服务器(Node)-Ping(ICMP) –服务(Port)-Connect –扩展的应用验证(EA V) –扩展的内容验证(ECV) –针对VOD服务器的专用健康检查机制 –针对节点的检查频率和超时频度,e.g.10seconds响应,e.g.5seconds D、负载均衡和应用交换功能 –Global Load Balancer提供17种负载均衡算法 –F5提供最优质的负载均衡和应用交换功能 静态算法 动态算法 智能算法 I –control UIE + Irules –Local Load Balancer提供12种负载均衡算法 E、持续功能 –连续性与负载平衡是相互对立的,但它对于负载平衡又是必不可少的! –简单的连续性—基于源地址 –HTTP Cookie 连续性 –SSL Session ID 连续性 –目的地址的亲合作用--caches –standby BIG-IP实现对连续性记录的镜像 –智能与第七层的内容交换组合 F5做为应用交换领域的领导厂商,一直保持着技术上的领先地位,F5已经有40多项技术申请了专利,其它的竞争合作伙伴都在购买F5的这些专利技术。接下来我们讨论一下负载均衡算法。

应用负载均衡设计方案v1设计方案

应用负载均衡设计方案v1设 计方案 1.需要有支持应用的负载均衡产品,具备多种负载均衡算法。 2.能够做到根据各个Web服务器的性能,合理地分配服务器群中的每台机器所要处理的请求。 3.能够及时的发现群中的某台机器当掉,从而不对此机器发送请求。当掉机器恢复正常后,自动进行业务处理。 4.可以应对大量的服务访问;至少2, 000, 000条的TCP同时并发连接,至少每秒建立100, 000条连接。 5.有效直观的监控统计界面,包含当前时刻、过去一段时间的请求数量统计、性能统计、会话时间统计。 6.为个人业务提供SSL加密服务,可以将服务器SSL加/解密前移,并提供高效的https加/解密性能。 7.能够提供有效的机制缓解后台应用中间键服务器压力,提高业务的访问量。

一、方案建议 针对上一节提出的需求分析,F5公司充分考虑XXXX现有的实际状况,结合F5公司在 国际上网络优化案例的经验,总结出以下应用交付优化设计方案。 方案采用F5公司的新一代LTM应用交换机BIGIP3400, 提供后台Web服务器集群的负 载均衡;同时,采用另两台BIGIP 3400设备提供后台中间键服务器负载均衡,并减轻中间键服务器的压力。 在负责实现Web服务器负载均衡的BIG-IP 3400上设置两个Vlan , 分别是External Vlan 负责连接外部的防火墙系统, Internal Vlan负责连接部Web服务器集群。并且在该对BIG-IP 3400上,分别采用SSL加速模块帮助后台Web服务器实现业务的加密处理;还采用了动态智能压缩模块帮助XXXX在有限的带宽下实现访问速度的提高和访问量的增大。 在负责实现部中间键服务器负载均衡的BIG-IP 3400也设置两个Vlan,分别是External Vlan 负责连接外部的Web服务器集群, Internal Vlan负责连接部中间键服务器集群。并 且在该对BIG-IP 3400上,采用One-Connection技术降低后台中间键服务器集群的负载。

负载均衡系统构架

负载均衡系统构架 负载均衡系统构架 【摘要】随着计算机网络和Internet应用的飞速发展,信息共享日益广泛化,并深入到人们工作和生活的各个领域。人们对信息共享的依赖正逐渐增强。而作为提供信息载体的服务器的压力也越来越大,对于电子商务、信息共享平台急需合理分配访问流量来减少服务器的压力。 本文对目前的负载均衡技术进行简单的阐述,并对现有均衡算法进行简单的比较,分析其不足之处。并采用LVS(Linux虚拟服务器)实现负载均衡的架构。采用Keepalived技术实现负载均衡的高可用性。并对LVS不同策略上实现的均衡结果进行详细的比较。最终完成对负载均衡系统的构建同时提供了详细的系统搭建步骤,为研究该方向的人员提供可靠的参考资料。 【关键词】负载均衡、LVS、Keepalived、高并发 中图分类号:TN711 文献标识码:A 文章编号: 简介 1.1背景 目前随着网络技术的迅速崛起,网络信息共享数据越来越大,访问量和数据流量的快速增长,所需的处理能力和运算强度也越来越大,使得单一的服务器设备根本无法承担。在此情况下,如果花大量的资金进行硬件方面的升级,会造成大量的资源浪费。并且对于下一次升级来说,将会投入更大的成本,如何才能利用现有资源,在少量的投入下解决该问题? 针对此情况而衍生出来的一种廉价有效透明的方法来扩展现有网络设备和服务器的带宽、增加吞吐量、加强网络数 据处理能力、提高网络的灵活性和可用性的技术就是负载均 衡(Load Balance)。 1.2负载均衡技术概述 负载均衡(又称为负载分担),英文名称为Load Balance,其

集群的负载均衡技术综述

集群的负载均衡技术综述 摘要:当今世界,无论在机构内部的局域网还是在广域网如Internet上,信息处理量的增长都远远超出了过去最乐观的估计,即使按照当时最优配置建设的网络,也很快会感到吃不消。如何在完成同样功能的多个网络设备之间实现合理的业务量分配,使之不致于出现一台设备过忙、而别的设备却未充分发挥处理能力的情况,负载均衡机制因此应运而生。本组在课堂上讲解了《集群监控与调度》这一课题,本人在小组内负责负载均衡部分内容,以及PPT的制作。 关键词:负载均衡集群网络计算机 一、前言 负载均衡建立在现有网络结构之上,它提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务:解决网络拥塞问题,服务就近提供,实现地理位置无关性;为用户提供更好的访问质量;提高服务器响应速度;提高服务器及其他资源的利用效率;避免了网络关键部位出现单点失效。 其实,负载均衡并非传统意义上的“均衡”,一般来说,它只是把有可能拥塞于一个地方的负载交给多个地方分担。如果将其改称为“负载分担”,也许更好懂一些。说得通俗一点,负载均衡在网络中的作用就像轮流值日制度,把任务分给大家来完成,以免让一个人累死累活。不过,这种意义上的均衡一般是静态的,也就是事先确定的“轮值”策略。 与轮流值日制度不同的是,动态负载均衡通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理分配出去。结构上分为本地负载均衡和地域负载均衡(全局负载均衡),前一种是指对本地的服务器集群做负载均衡,后一种是指对分别放置在不同的地理位置、在不同的网络及服务器群集之间作负载均衡。 服务器群集中每个服务结点运行一个所需服务器程序的独立拷贝,诸如Web、FTP、Telnet或e-mail服务器程序。对于某些服务(如运行在Web服务器上的那些服务)而言,程序的一个拷贝运行在群集内所有的主机上,而网络负载均衡则将工作负载在这些主机间进行分配。对于其他服务(例如e-mail),只有一台主机处理工作负载,针对这些服务,网络负载均衡允许网络通讯量流到一个主机上,并在该主机发生故障时将通讯量移至其他主机。 二、负载均衡技术实现结构 在现有网络结构之上,负载均衡提供了一种廉价有效的方法扩展服务器带宽和增加吞吐量,加强网络数据处理能力,提高网络的灵活性和可用性。它主要完成以下任务: 1.解决网络拥塞问题,服务就近提供,实现地理位置无关性 2.为用户提供更好的访问质量 3.提高服务器响应速度

F5负载均衡原理

F5负载均衡原理 一负载均衡基本概念 1、什么是负载均衡? 负载均衡技术在现有网络结构之上提供了一种廉价、有效、透明的方法,来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。它有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高。 BIG/IP利用定义在其上面的虚拟IP地址来为用户的一个或多个应用服务器提供服务。因此,它能够为大量的基于TCP/IP的网络应用提供服务器负载均衡服务。BIG/IP 连续地对目标服务器进行L4到L7合理性检查,当用户通过VIP请求目标服务器服务时,BIG/IP根椐目标服务器之间性能和网络健康情况,选择性能最佳的服务器响应用户的请求。 下图描述了一个负载平衡发生的流程: 1. 客户发出服务请求到VIP 2. BIGIP接收到请求,将数据包中目的IP地址改为选中的后台服务器IP地址,然后将数据包发出到后台选定的服务器 3. 后台服务器收到后,将应答包按照其路由发回到BIGIP 4. BIGIP收到应答包后将其中的源地址改回成VIP的地址,发回客户端,由此就完成了一个标准的服务器负载平衡的流程。

2.负载平衡典型流程 ●通过VIP来截获合适的需要负载平衡的流量 ●服务器监控和健康检查,随时了解服务器群的可用性状态 ●负载均衡和应用交换功能,通过各种策略导向到合适的服务器 2.1 通过VIP来截获合适的需要负载平衡的流量 在BIGIP上通过设置VIP来截获需要进行负载平衡的流量,这个VIP地址可以是一个独立的主机地址和端口的组合(例如:202.101.112.115:80)也可以是一个网络地址和端口的组合(例如:202.101.112.0:80),当流量经过BIGIP的时候,凡是命中VIP 的流量都将被截获并按照规则进行负载平衡。 2.2 服务器的健康监控和检查 服务器 (Node) - Ping (ICMP) BIGIP可以定期的通过ICMP包对后台服务器的IP地址进行检测,如果在设定的时间内能收到该地址的ICMP的回应,则认为该服务器能提供服务 服务 (Port) – Connect BIGIP可以定期的通过TCP包对后台服务器的服务端口进行检测,如果在设定的时间内能收到该服务器端口的回应,则认为该服务器能提供服务 扩展内容查证(ECV: Extended Content Verification)—ECV ECV是一种非常复杂的服务检查,主要用于确认应用程序能否对请求返回对应的数据。如果一个应用对该服务检查作出响应并返回对应的数据,则BIG/IP控制器将该服务器标识为工作良好。如果服务器不能返回相应的数据,则将该服务器标识为宕机。宕机一旦修复,BIG/IP就会自动查证应用已能对客户请求作出正确响应并恢复向该服务器传送。该功能使BIG/IP可以将保护延伸到后端应用如Web内容及数据库。BIG/ip的ECV 功能允许您向Web服务器、防火墙、缓存服务器、代理服务器和其它透明设备发送查询,然后检查返回的响应。这将有助于确认您为客户提供的内容正是其所需要的。 扩展应用查证(EAV: Extended Application Verification) EAV是另一种服务检查,用于确认运行在某个服务器上的应用能否对客户请求作出响应。为完成这种检查,BIG/IP控制器使用一个被称作外部服务检查者的客户程序,该程序为BIG/IP提供完全客户化的服务检查功能,但它位于BIG/IP控制器的外部。例如,该外部服务检查者可以查证一个Internet或Intranet上的从后台数据库中取出数据并在HTML网页上显示的应用能否正常工作。EAV是BIG/IP提供的非常独特的功能,它提供管理者将BIG/IP客户化后访问各种各样应用的能力,该功能使BIG/IP在提供标准的可用性查证之外能获得服务器、应用及内容可用性等最重要的反馈。

负载均衡器部署方式和工作原理

负载均衡器部署方式和工作原理 2011/12/16 小柯信息安全 在现阶段企业网中,只要部署WEB应用防火墙,一般能够遇到负载均衡设备,较常见是f5、redware的负载均衡,在负载均衡方面f5、redware的确做得很不错,但是对于我们安全厂家来说,有时候带来了一些小麻烦。昨日的一次割接中,就遇到了国内厂家华夏创新的负载均衡设备,导致昨日割接失败。 在本篇博客中,主要对负载均衡设备做一个介绍,针对其部署方式和工作原理进行总结。 概述 负载均衡(Load Balance) 由于目前现有网络的各个核心部分随着业务量的提高,访问量和数据流量的快速增长,其处理能力和计算强度也相应地增大,使得单一的服务器设备根本无法承担。在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升时,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量增长的需求。 负载均衡实现方式分类 1:软件负载均衡技术 该技术适用于一些中小型网站系统,可以满足一般的均衡负载需求。软件负载均衡技术是在一个或多个交互的网络系统中的多台服务器上安装一个或多个相应的负载均衡软件来实现的一种均衡负载技术。软件可以很方便的安装在服务器上,并且实现一定的均衡负载功能。软件负载均衡技术配置简单、操作也方便,最重要的是成本很低。 2:硬件负载均衡技术 由于硬件负载均衡技术需要额外的增加负载均衡器,成本比较高,所以适用于流量高的大型网站系统。不过在现在较有规模的企业网、政府网站,一般来说都会部署有硬件负载均衡设备(原因1.硬件设备更稳定,2.也是合规性达标的目的)硬件负载均衡技术是在多台服务器间安装相应的负载均衡设备,也就是负载均衡器来完成均衡负载技术,与软件负载均衡技术相比,能达到更好的负载均衡效果。 3:本地负载均衡技术

LVS集群之十种调度算法及负载均衡

一、LVS概念 LVS(Linux Virtual Server):Linux 虚拟服务器 LVS是个负载均衡设备,它不提供任何服务,用户请求到这里的时候,它是将客户需求转发至后端真正提供服务的服务,所以说后端的服务称作real server。LVS分为两段,前一段称为ipvsadm(管理集群服务的命令行工具),后面一段叫做ipvs(内核模块)【提示:LVS和iptables不能同时使用】。 二、LVS类型 LB(Load Balancing):负载均衡集群 特性:为了增加能力 HA(High Availability):高可用集群 特性:提供服务的可用性(一年在线时间达到99.999%才行) 计算方法:在线时间/(在线时间/故障处理时间) HP([HPC]High Performance):高性能集群 特性:提供服务的性能 三、LVS组成结构(负载均衡实现方案) 基于DNS域名轮流解析的方法 基于客户端调度访问的方法 基于应用层系统负载的调度方法 基于IP地址的调度方法 其中基于IP的负载调度算法中,IP负载均衡技术是执行效率最高的 四、LVS十种调度算法 1、静态调度: ①rr(Round Robin):轮询调度,轮叫调度 轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。【提示:这里是不考虑每台服务器的处理能力】 ②wrr:weight,加权(以权重之间的比例实现在各主机之间进行调度) 由于每台服务器的配置、安装的业务应用等不同,其处理能力会不一样。所以,我们根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。 ③sh:source hashing,源地址散列。主要实现会话绑定,能够将此前建立的session信息保留了 源地址散列调度算法正好与目标地址散列调度算法相反,它根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的并且没有超负荷,将请求发送到该服务器,否则返回空。它采用的散列函数与目标地址散列调度算法的相同。它的算法流程与目标地址散列调度算法的基本相似,除了将请求的目标IP地址换成请求的源IP地址,所以这里不一个一个叙述。 ④Dh:Destination hashing:目标地址散列。把同一个IP地址的请求,发送给同一个server。 目标地址散列调度算法也是针对目标IP地址的负载均衡,它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。目标地址散列调度算法先根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。 2、动态调度 ①lc(Least-Connection):最少连接 最少连接调度算法是把新的连接请求分配到当前连接数最小的服务器,最小连接调度是一种动态调度短算法,它通过服务器当前所活跃的连接数来估计服务器的负载均衡,调度器需要记录各个服务器已建立连接的数目,当一个请求被调度到某台服务器,其连接数加1,当连接中止或超时,其连接数减一,在系统实现时,我们也引入当服务器的权值为0时,表示该服务器不可用而不被调度。 简单算法:active*256+inactive(谁的小,挑谁) ②wlc(Weighted Least-Connection Scheduling):加权最少连接。 加权最小连接调度算法是最小连接调度的超集,各个服务器用相应的权值表示其处理性能。服务器的缺省权值为1,系统管理员可以动态地设置服务器的权限,加权最小连接调度在调度新连接时尽可能使服务器的已建立连接数和其权值成比例。 简单算法:(active*256+inactive)/weight【(活动的连接数+1)/除以权重】(谁的小,挑谁) ③sed(Shortest Expected Delay):最短期望延迟 基于wlc算法 简单算法:(active+1)*256/weight 【(活动的连接数+1)*256/除以权重】 ④nq(never queue):永不排队(改进的sed)

用双机高可用集群还是使用负载均衡集群

用双机高可用集群还是使用负载均衡集群 北京麒麟博峰科技有限公司 2010年11月 1

目录 第一章问题描述 (1) 第二章基本的技术知识 (1) 2.1.HA高可用集群 (1) 2.2.Load Balance负载均衡集群 (2) 第三章该使用哪种集群 (3) I

第一章问题描述 系统工程师通常会对如何使用HA高可用集群,即“双机”,和负载均衡集群,比如KYLIN Netsphere等负载均衡设备,产生疑惑不解,通常在构筑服务器集群的时候,不合理的设计造成系统的整体效率不高、设备浪费或者维护的不便利,本文试图用最简单的方式解惑。 要解决这些问题,不惑者需要正确自我解答以下问题: 1.系统的并发是否是考虑的主要问题之一? 2.以后并发用户会不会急剧增长? 3.运营的软件是否是一个标准的三级架构或者多级架构(N-Tier)? 4.运营的软件的端口是否对应不同的业务? 5.不同的业务软件是否运行在不同的服务器设备上? 6.资金是否成为问题? 第二章基本的技术知识 2.1 HA高可用集群 HA(单字母发音, H A 不是“哈”)高可用集群主要是为了“保护”“特定资源”所开发的一种集群技术,这里所说的“特定资源”包含以下内容: 1)进程; 如果进程被杀死,即从系统角度上看,该进程没有了,那么,HA可以及时发现,并在 另外一个地方将部署好的进程启动;如果该进程僵死,即不工作了,可能由于软件设计 的不好,出现了死循环或者其他原因,但该进程还存在,这时HA是不能发现的,所以,有时候即使进程不响应了,HA并没有切换; 解决这个问题,只能依靠应用软件提供监控接口,并将该接口公布给HA开发商。我们 在市场中发现有些厂商的基于数据库的特别好使,有些公司的产品出现同样状况时却像 傻子一样,这个可能是不同的HA厂商和数据库厂商合作的深浅度有关。 2)网卡; 如果网卡完全挂掉,HA是可以发现并采用行动,但是工作的不正常,这种情况HA可 能不能发现,尤其是抖动的情况发生; 3)存储; 1

负载均衡的基础原理说明

大家都知道一台服务器的处理能力,主要受限于服务器自身的可扩展硬件能力。所以,在需要处理大量用户请求的时候,通常都会引入负载均衡器,将多台普通服务器组成一个系统,来完成高并发的请求处理任务。 之前负载均衡只能通过DNS来实现,1996年之后,出现了新的网络负载均衡技术。通过设置虚拟服务地址(IP),将位于同一地域(Region)的多台服务器虚拟成一个高性能、高可用的应用服务池;再根据应用指定的方式,将来自客户端的网络请求分发到

服务器池中。网络负载均衡会检查服务器池中后端服务器的健康状态,自动隔离异常状态的后端服务器,从而解决了单台后端服务器的单点问题,同时提高了应用的整体服务能力。 网络负载均衡主要有硬件与软件两种实现方式,主流负载均衡解决方案中,硬件厂商以F5为代表目前市场占有率超过50%,软件主要为NGINX与LVS。但是,无论硬件或软件实现,都逃不出基于四层交互技术的“转发”或基于七层协议的“代理”这两种方式。四层的转发模式通常性能会更好,但七层的代理模式可以根据更多的信息做到更智能地分发流量。一般大规模应用中,这两种方式会同时存在。 2007年F5提出了ADC(Application delivery controller)的概念为传统的负载均衡器增加了大量的功能,常用的有:SSL卸载、压缩优化和TCP连接优化。NGINX也支持很多ADC的特性,但F5的中高端型号会通过硬件加速卡来实现SSL卸载、压缩优化这一类CPU密集型的操作,从而可以提供更好的性能。 F5推出ADC以后,各种各样的功能有很多,但其实我们最常用的也就几种。这里我也简单的总结了一下,并和LVS、Nginx对比了一下。

静态负载均衡算法的简单说明

静态负载均衡算法的简单说明 实现的问题: 目前有N个资源Scale1~ScaleN,且这N个资源正在处理个数不等的请求,这时发来M个请求。 如何把M个请求分发到这N个资源中,使得分发完之后这N个资源所处理的请求是均衡的。 名词定义 Scale-资源 Order-请求 compId-每个资源的唯一标识 compId数组-compIdArr 根据每个Scale目前所处理的Order个数多少,从小到大把其对应的compId记录在数组中 负载分配数组-dispatchCountArr 对于dispatchCountArr[i],它的值表示的是可以分发的Order的个数, 分发的compId的范围是在compIdArr[0]到compIdArr[i]之间。 例,如果有3个Scale,它们的compId和当前的Order个数分别为 Scale1:1,Scale2:5,Scale3:12 那么根据这组数据可以构造一个负载分配数组 dispatchCountArr[0]=(5-1)*1=4 表示可以在Scale1上再分配4个Order dispatchCountArr[1]=(12-5)*2=14 表示可以在Scale1和Scale2上平均分配14个Order dispatchCountArr[2]=整型最大值表示可以在Scale1~Scale3上再平均分配任意个Order 当有多个Order订单,需要为每个都分配一个compId时, 1.先从dispatchCountArr[0]开始,如果dispatchCountArr[0]不为0,说明可以把这个订单指派给Scale1, 并且dispatchCountArr[0]的值减1; 2.如果发现dispatchCountArr[0]已经为0,则继续看dispatchCountArr[1], 如果大于0,说明可以再从Scale1和Scale2中取一个进行指派,用dispatchCountArr[1] mod 2产生一个0到1 的index,意思是在Scale1和Scale2之间进行平均分配,取compIdArr[index]作为分配的compId, 同时dispatchCountArr[1]减1 3.如果dispatchCountArr[1]也被减为0,那么继续看dispatchCountArr[2],类似2中的操作, 用dispatchCountArr[2] mod 3产生一个0到2的index,意思是在Scale1到Scale3

相关主题