搜档网
当前位置:搜档网 › 97系列火焰光度检测器说明书

97系列火焰光度检测器说明书

97系列火焰光度检测器说明书
97系列火焰光度检测器说明书

9790系列气相色谱仪安装使用说明书火焰光度检测器使用说明

GC-9790

气相色谱仪

火焰光度检测器安装使用说明书

浙江福立分析仪器有限公

F U L I

一、概述

火焰光度检测器(FPD)是利用富氢火焰使含磷、硫杂原子的有机物分解,形成激态分子,当它们回到基态时,发出一定波长的光.此光强度与被测组分量成正比。所以,它是以物质与光的相互关系为机理的检测方法,属光度法。因为是分子激发后发射光,故它是光度法中的分子发射检测器。FPD是一种高灵敏度和高选择性的检测器,其特性是对硫为非线性响应,主要用于含硫磷化合物的微量、痕量检测。

GC9790气相色谱仪的火焰光度检测器由FPD检测器、FPD控制电路板、FPD流量控制单元组成。

二、技术参数

检测限:5×10-11gS/s(甲基对硫磷中的S)

1.4×10-12gP/s(甲基对硫磷中的P)

最高使用温度:350℃(带有350℃过温保护功能)

检测方式:空气——氢气火焰光谱法

光检测器:顶端光电倍增管

倍增管电压:最大-700V

微电流放大器特征:

最高灵敏度:1×10-10A/mv

噪声:小于最高灵敏度的1%

漂移:小于最高灵敏度的2%/h(在恒定的环境温度下)

量程:0、1、10、100

补偿电流范围:±6.4×10-8A

三、工作原理

带有样品的载气流出色谱柱同氢气混合到达喷口,并与另外一路空气在喷口形成富氢火焰,烃类和硫磷化合物在火焰中分解,并产生复杂的化学反应,发出特征光。为避免发光中产生的大量水蒸气燃烧产物和高温对光电系统的影响,用石英窗和散热片将发光室和光电系统隔开,火焰罩在石英桶内,一些不耐温的元件(如滤光片、光电倍增管等)通过一套散热组件使其始终保持不高的温度。为了仅接收S和P的特征光,用394nm的滤光片来检测含硫的组分,526nm的滤光片用于检测含磷的组分,当含硫或含磷的组分燃烧后,产生394nm或526nm特征波长的光,而其他波长的光线将被滤掉,加有-700V高压

图1工作原理图

①窗体组件

⑥石英窗组件②罩

⑦石英筒③铝帽

⑧固定螺丝④硅胶片

⑨散热片组件⑤窗体⑩滤光片(S 用或P 用)

五、FPD 流量控制单元

FPD 流量控制单元包括氢气、空气控制两部分,氢气流量由一个稳压阀、一个气阻

FPD 控制电路板由高压、微电流放大器二部分组成。

高压部分最大输出-700V 直流电压,并具有光电倍增管过载保护功能;

微电流放大器包括四档灵敏度,可通过量程设定改变,量程0、1、10、100对应灵敏度依次由高到低。操作如下:

+++++(或)

若是填充柱,伸入检测器端61mm

2.通载气,开主机电源;

3.连接工作站,检查FPD板是否能准确地调零;

4.设定FPD检测器温度,通过键盘操作进行检测器温度设定,设定步骤如下:

++++

(温度设定)(报警温度设定)

设定完毕后,按显示键回到检测器温度显示状态,然后通过键盘操作进行注样器温度设定,设定步骤如下:

++++

(温度设定)(报警温度设定)

设定完毕后,按显示键回到注样器温度显示状态。

5.设定柱箱温度,通过键盘操作进行柱箱温度设定,设定步骤如下;

++++

(温度设定)(报警温度设定)

设定完毕后,按显示键回到柱箱温度显示状态。

6.将面板上FPD检测器窗体加热开关置于开的位置;

7.待温度稳定后,接通氢气,调节氢气流量约60ml/min;

接通空气,调节空气流量约50ml/min;

8.移开铝帽,用点火枪点火(注意FPD控制板上开关必须处于OFF位置);

9.盖上铝帽;

10.推上FPD控制板上的开关处于ON位置;

11.待基线稳定后,进样分析;

12.分析完毕后,将FPD控制面板上的开关置于OFF位置;

13.将面板上FPD检测器窗体加热开关置于OFF位置;

14.关氢气和空气开关。

15.关主机电源。

16.关总电源。

7.2注意事项

1.柱的选择

因为微量的含硫/磷组分容易被吸附,选择柱子应选用活性小的材料作柱子,比如玻璃、聚四氟乙烯、石英。

2.含硫物质的非线性响应

分析含硫物质时必须注意到FPD对含硫物质的响应是非线性的。而与含硫重量的平方成线性。

3.熄火现象

当大量样品进入FPD而空气流量偏大时,容易产生熄火现象。

八、故障排除

故障可能的原因故障排除

1.不出峰A.检测器温度不够高

B.未点着火

C.石英桶污染

D.光电倍增管无高压

E.滤光片未安装

F.光电倍增管损坏

G.不合适的色谱柱

A.加热器断,更换

B.调节流量后点火

C.清洗石英桶

D.修理FPD控制板

E.选择合适的滤光片

F.换光电倍增管

G.更换

九、验收

9.1噪声和漂移的测试

操作条件及参数:

柱箱温度:210℃

注样器温度:230℃

检测器温度:250℃

量程:1(1×10-9A/mV)

基线平直后,调节面板上的调零旋钮,使输出电平接近于零

运行一小时任取30分钟,测量基线噪声和漂移.

要求:

基线噪声:2×10-11A

漂移:5×10-11A/30min

FPD的检测限:

注入1ul FPD标准样品甲基对硫磷—无水乙醇溶液,连续进样6次,记录硫或磷的峰面积和峰高,取其算术平均值,计算对S和P的检测限。

要求:

对甲基对硫磷中的硫S≤5×10-11g/s

对甲基对硫磷中的磷P≤1.4×10-12g/s

检测限的计算:

2N(WNs)2

硫:D FPD=-------------

H(W1/4)2

2NWN P

磷:D FPD=------------

A

式中:D FPD----FPD对磷或硫的检测限(g/s)

N----基线噪声(mV)

A----磷峰面积的算术平均值(mV.s)

W----甲基对硫磷的进样量(g)

H----硫的峰高(mV)

W

----硫的峰高1/4处的峰宽(s)

1/4

甲基对硫磷分子中的硫原子个数×硫的原子量Ns=------------------------------------------

甲基对硫磷的摩尔质量

32

=-------=0.12

263.2

甲基对硫磷分子中的磷原子个数×磷的原子量N P=------------------------------------------

甲基对硫磷的摩尔质量

31

=------=0.118

26.2

用火焰光度检测器的气相色谱法测定硫化物

用火焰光度检测器的气相色谱法测定硫化物,在国内色谱生产厂家中已有部分涉及,但因在定性、稳定性及计算方法等多方面的技术限制,一直未能推广,GC微量硫分析仪是在我公司原有火焰光度检测器的基础上,经过不断改进,定型为微量硫专用分析仪,具有较高的灵敏度,稳定性好,定性、定量准确,操作简便等优点。 1.原理: 硫化物在富氢火焰中能够裂解生成一定数量的硫分子,并且能在该火焰条件下发出394纳米的特征光谱,经干涉滤光片除去其它波长的光线后,用光电倍增管把光信号转换成电信号并加以放大,然后经微机处理并打印出结果。因为光电倍增管本身的放大能力以及我们研制的FPD的特殊性,所以保证了GC微量硫分析仪的高选择性和高灵敏度。 被分析气体样品经色谱柱分离后,不同的硫化物在不同的时刻进入FPD,从而在工作站上出现不同保留时间的色谱峰。因为硫化物响应与硫浓度的平方成正比,所以工作站必须根据开方峰面积和校正系数计算出分析结果并根据保留时间,直接标定和显示各种硫化物的实际含量。 2.定性定量: 用色谱法分析硫化物,定性问题一直未能很好地解决。众所周知,硫化物的存在形式多种多样,而在实际工作中又不可能拥有众多硫化物的标样,这就给广大的硫分析工作者造成了极大的难题。但是,在实际工作中,多数情况下只需要对硫化物进行大致的定性。如只需要看无机硫,低沸点有机硫,高沸点有机硫的的分布情况,以便指导脱硫工作的进行。这种情况在许多化工厂是很普遍的。鉴于这种情况,一般分析人员采用的定性手段为:对无机硫,如硫化氢、二氧化硫,可以用GDX301柱子进行分离以便定性;对低沸点有机硫,如甲硫醇、甲硫醚、硫氧化碳可以用TCP柱子分离以进行定性;而对高沸点有机硫,一般不作定性,大多数采用反吹方式测定其总含量。也可直接用反吹法分析总硫,这也是本仪器的一大特点。 一般而言,在样品气中,如原料天然气、炼厂尾气、煤造气生成的原料气,无机硫、低沸点的有机硫含量占很大比例(几乎达90%以上),因此采用以上方法进行定性定量分析是切实可行的。它不仅简化了分析程序,而且分析结果也比较准确。这样做,不仅可监视样气中的硫含量,而且也为选择脱硫剂和脱硫路线提供了理论依据。 3.色谱柱的选用: 本仪器随机配备了两根色谱柱: A. TCP柱 4×0.5,2米,20%TCP,白色101担体,60~80目。 B. GDX柱,4×0.5,2米,GDX301,60~80目。 一般选用TCP柱做有机硫分析,用GDX柱做无机硫分析。在既有无机硫,又有有机硫的样品分析时,可用双柱TCP柱和GDX柱,两次进样,此时应选02方式。而在进行总硫分析时,可选GDX柱用反吹法来做,选06,07方式或选用01,03(只显示不能画峰图,主要用于在线分析)。选用00,02方式做硫化氢,硫氧化碳和有机总硫。 4.进样: 由于硫化氢具有较强的化学活性,很容易被其他物质吸附而使其含量降低,从而影响测定的准确度。因此在测定过程中,采用吸附性较低的玻璃注射器采集样品,且要求样品的贮存时间不能太长,仪器中凡是样品经过的管线均经过钝化处理。也可采用特殊处理的六通阀自动进样。 5.仪器特点: ①独特的火焰光度检测器结构,操作简便,稳定时间快,采用特殊的火焰结构消除烃类化合物的干扰,使选择性大幅提高; ②在光信号的收集上,采用聚焦的方式,使捕捉到的信号大幅增加,灵敏度成倍数提高; ③采用优质材质及精湛的加工工艺,密封性很好,在实际操作中,抗外界干扰能力大幅提高,稳定性较好; ④在检测器底部,采用加热功能,有效去除冷凝水,使分析精度有很大提高; ⑤整机稳定性较好,操作简便,易于掌握。 6.参考谱图: 常见有机硫在TCP柱上保留时间

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

便携式离子火焰检测器及其使用方法与制作流程

本技术公开了一种便携式离子火焰检测器及其使用方法,包括防护壳,防护壳的内腔设置有火焰检测器本体,火焰检测器本体的两端均贯穿至防护壳的外侧,所述防护壳顶部的左侧和底部的左侧均固定连接有安装板。本技术通过设置防护壳、盒体、安装板、安装孔、火焰检测器本体、垫板、烟雾传感器、第一圆孔、风机、料仓、管盖、进料管、电磁阀、连接管、温度传感器、喷头、支撑板、袋装干燥剂、盒盖、通孔、挡板、壳体、定位套、拨板、开口、连接块、弹簧、滑块、定位块、平板电脑、安装座、蜂鸣器、闪光灯、报警器和电源模块的配合使用,解决了现有的便携式离子火焰检测器不具备防爆功能的问题,该便携式离子火焰检测器,具备防爆功能的优点。 技术要求

1.一种便携式离子火焰检测器,包括防护壳(1),其特征在于:所述防护壳(1)的内腔设置有火焰检测器本体(5),所述火焰检测器本体(5)的两端均贯穿至防护壳(1)的外侧,所述防护壳(1)顶部的左侧和底部的左侧均固定连接有安装板(3),所述安装板(3)的右侧开设有安装孔(4),所述防护壳(1)内腔顶部的两侧分别固定连接有烟雾传感器(7)和温度传感器(15),所述防护壳(1)的顶部连通有喷头(16),所述喷头(16)的顶部连通有连接管(14),所述连接管(14)的顶部连通有风机(9),所述风机(9)的顶部连通有电磁阀(13),所述电磁阀(13)的顶部连通有料仓(10),所述料仓(10)的顶部连通有进料管(12),所述进料管(12)的顶部套设有管盖(11),所述防护壳(1)的后侧固定连接有安装座(31),所述安装座(31)的右侧固定连接有平板电脑(30),所述安装座(31)的底部固定连接有报警器(34),所述防护壳(1)正表面的两侧均固定连接有定位套(23),所述安装座(31)内腔的前侧活动连接有挡板(21),所述挡板(21)的前侧固定连接有壳体(22),所述壳体(22)正表面的两侧均活动连接有拨板(24),所述壳体(22)的前侧开设有开口(25),所述开口(25)内腔的两侧均活动连接有连接块(26),所述连接块(26)的前侧与拨板(24)固定连接,所述壳体(22)的内腔设置有弹簧(27),所述弹簧(27)的两侧均固定连接有滑块(28),两个滑块(28)相反一侧的后侧均固定连接有定位块(29),所述定位块(29)远离滑块(28)的一端贯穿壳体(22)并延伸至定位套(23)的内腔; 所述平板电脑(30)的输入端电连接有电源模块(35),所述平板电脑(30)的输出端分别与风机(9)、电磁阀(13)和报警器(34)电连接,所述平板电脑(30)分别与烟雾传感器(7)和温度传感器(15)双向电连接。 2.根据权利要求1所述的一种便携式离子火焰检测器,其特征在于:所述防护壳(1)内腔的底部固定连接有盒体(2),所述盒体(2)内腔的顶部活动连接有盒盖(19),所述盒盖(19)的顶部开设有通孔(20),所述通孔(20)的数量为若干个,且均匀分布于盒盖(19)的顶部,所述盒盖(19)底部的两侧均活动连接有支撑板(17),所述支撑板(17)靠近盒体(2)内壁的一侧与盒体(2)的内壁固定连接,所述盒体(2)内腔的底部活动连接有袋装干燥剂(18)。

7890A气相色谱中文指标-ECD-FPD

Agilent 7890A 气相色谱性能指标 1.工作条件: 温度: 15-35℃ 湿度: 5-95% 电源: 220V ± 10% , 50-60HZ 2.气相色谱仪,包括:气相色谱主机,2个分流/不分流进样口,检测器两 个,2个自动进样器(可以同时进样),原装化学工作站。 3. 技术性能 3.1气相色谱: 色谱性能:保留时间重现性: < 0.0008min; 峰面积重现性: < 1% RSD。 3.1.1 主机 *3.1.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,13路电子流量控制 *3.1.1.2 压力调节精度:0.001psi 3.1.1.3 大气压力传感器补偿高度或环境变化 3.1.1.4 程序升压/升流:20阶 3.1.1.5具有4种EPC操作模式:恒温,恒压,程序升压,程序升流 3.1.1.6*扳转式顶盖设计 3.1.2 炉箱 3.1.2.1 操作温度:室温以上4℃至450℃ 3.1.2.2 温度设定:1℃,程序升温间隔 0.1℃ 3.1.2.3 升温速度:120C/ min 3.1.2.4 程序升温:20/21 阶 3.1.2.5 稳定性:< 0.01℃ 3.1.2.6 温度准确度:± 1% 3.1.2.7 炉箱冷却速度:450℃到50℃, 240秒

3.1.3 毛细柱分流/不分流进样口(具有电子压力控制功能) 3.1.3.1 最高温度:400℃ 3.1.3.2 电子参数设定压力,流速和分流比 *3.1.3.3 压力设定范围:0-150psi 3.1.3.4 流量设定范围:0-200ml/分钟N2 0-1250ml/分钟H2 *3.1.3.5 压力设定精度:0.001psi 3.1.3.6 最大载气流量:1250ml/min 3.1.4 150位自动进样器 3.1. 4.1 进样速度:0.1s 3.1. 4.2 进样量:0.1-50ul 3.1. 4.3 具有重叠进样的功能 3.1. 4.4 进样针位置:2-30mm可调 3.1. 4.5 样品容量:2ml 3.1. 4.6 进样精度:RSD<0.6% 3.1.5 电子气路控制电子捕获检测器(Micro-ECD) *3.1.5.1 安装隐含阳极和大体积流速,防止污染 3.1.5.2 最高使用温度:400℃ 3.1.5.3 放射源:<15mCi63Ni箔 *3.1.5.4 最低检测限::<6 fg/mL 林丹 *3.1.5.5 动态范围:>5×105(六氯化苯) 3.1.5.6 数据采集速率:高达50Hz 3.1.6 火焰光度检测器(FPD) 3.1.6.1 EPC电子气路控制 3.1.6.2 最低检测限:<3.6 pg S/sec用十二烷硫醇; ≤60 fg P/sec磷酸丁三酯混合物; 3.1.6.3 硫选择性 = 106 gS/gC 3.1.6.4 动态范围:>103 S十二烷硫醇, 104 P磷酸丁三酯混合物 3.2 化学工作站 3.2.1 软件:中文软件,Win 2000/XP 操作环境 3.2.2 软件可控制仪器

仪器分析试卷4

仪器分析 答卷注意事项: 1、学生必须用蓝色(或黑色)钢笔、圆珠笔或签字笔直接在试题卷上答题。 2、答卷前请将密封线内的项目填写清楚。 3、字迹要清楚、工整,不宜过大,以防试卷不够使用。 4、本卷共 5 大题,总分为100分。 一、选择题 (每题1分,共20分) 1. 与化学分析法相比,仪器分析方法不具有的特点是:() (a)灵敏度高(b)准确度高 (c)分析速度快(d)自动化程度高 2. 红外光谱仪中常用的光源是:() (a)硅碳棒(b)氘灯 (c)空心阴极灯(d)卤钨灯 3. 有色络合物的摩尔吸光系数与下列因素中有关系的是:() (a)比色皿厚度(b)有色络合物浓度 (c)吸收池材料(d)入射光波长 4. 下列说法正确的是:() (a)能发荧光的有机分子一定含有强吸收的共轭双键基团 (b)磷光随温度升高增强 (c)磷光比荧光的寿命短 (d)荧光随温度升高增强 5. 化学发光仪中,使用的光源是:() (a)卤钨灯(b)钨灯 (c)不需要光源(d)高压汞灯 6. 原子吸收分析法中,乙炔-空气火焰中具有还原性的是:() (a)贫燃火焰(b)富燃火焰 (c)化学计量火焰(d)燃助比1:1的火焰

7. 在原子吸收法中, 背景干扰主要是:() (a)原子化器中产生的被测元素的发射谱线 (b)原子化器中产生的干扰元素的发射谱线 (c)原子化器中产生的分子吸收 (d)原子化器中产生的非共振线 8. 石墨炉原子化器的升温程序如下:() (a)灰化、干燥、原子化和净化 (b)干燥、灰化、净化和原子化 (c)干燥、灰化、原子化和净化 (d)净化、干燥、灰化和原子化 9.红外吸收光谱的产生是由于: ( ) (a)分子外层电子、振动、转动能级的跃迁 (b)分子外层电子、转动能级的跃迁 (c)分子振动-转动能级的跃迁 (d)分子外层电子的能级跃迁 10. 已知光栅单色器的倒线色散率为2 nm/mm,欲测Co 240.73 nm的吸收值,为 防止Co 240.63 nm干扰,应选择狭缝宽度为:()(a)0.01mm (b)0.05mm (c)0.1mm (d)0.15mm 11. 普通的玻璃pH电极不能用于测定强碱性NaOH溶液的pH, 是由于:( ) (a)OH-离子在电极上的响应(b)NH4+离子在电极上的响应 (c)Na+离子在电极上的响应(d)玻璃pH电极对H+离子不响应12. 在下列分析方法中,不需要基准物质和标准溶液的是:() (a)电位分析法(b)电导分析法 (c)电解分析法(d)极谱分析法 13. 库仑分析的基本原理是基于:() (a)法拉第电解定律(b)欧姆定律 (c)比尔定律(d)罗马金-赛柏公式 14. 经典极谱分析中,影响方法检出限的主要因素是:() (a)迁移电流(b)充电电流 (c)扩散电流(d)对流电流 15. 在循环伏安法中,电位扫描方式为:() (a)常规脉冲(b)方波 (c)锯齿波(d)三角波 16. 与恒电流电解分析方法相比,恒电位电解分析方法具有较高的:()

火焰光度计检定装置操作规程

编号:JL12-理化-作业-101 火焰光度计检定装置的 操作规程 编写:年月日 审核:年月日 批准:年月日 理化实验室

火焰光度计检定装置的操作规程 1目的 为了规范测试、校准或检定过程,严格执行检定规程,保证量值传递的准确性,保证结果的客观公正性,特制定该操作规程。 2测量标准的组成 2.1检校设备 火焰光度计用标准物质的浓度 4准备工作 4.1仪器安装要求 仪器应置于水平无震动的工作台上,操作时不得有摇动现象。 4.2气体管路 气路连接正确,不得有漏气现象,气源压力应符合出厂说明规定的指标。 5量传参数和量值点 根据JJG 630-2007《火焰光度计检定规程》,火焰光度计检定装置的量传参数是:元素分析。量传量值点是:稳定性、重复性、线性误差、检测限、滤光片透光特性、响应时间、样品吸喷量。 6操作步骤 6.1外观检查

参照规程5.1要求,逐一进行检查。 6.2绝缘电阻检定 在未接通电源时,打开仪器开关,用兆欧表测量电源进线端(相线或中线)与机壳间的绝缘电阻。 6.3稳定性检定 6.3.1仪器通电并点火,经预热稳定(不超过30min )后,用空白溶液(二次蒸馏水或去离子水)校正零点。 6.3.2按下述方法校准仪器 采用标准曲线回归方式的仪器:用0.06mmol/L K 与0.3mmol/L N a 的混合标准溶液进行激发,指针式仪器将仪器示值调至50%,数显式仪器将仪器示值调至100.0。如上述方法不适用,则根据仪器数显范围,进行最佳化调节。 采用浓度直读方式的仪器,参照仪器说明书用适当浓度的校准溶液进行校准。 6.3.3用0.06mmol/L K 与0.3mmol/L N a 的混合标准溶液连续进样15s ,待稳定后连续观测并读出仪器示值与初值间的最大偏移量,计算仪器示值的相对最大变化量;然后在5min 内,对仪器不做任何调整并重复6次测量,每次测量间隔1min ,计算仪器各次示值与初值间的最大偏移量,求出6次仪器示值的相对最大变化量。测量过程中进样管插入溶液的深度应没有相对明显的改变。仪器示值的相对最大变化量R 由下式计算: R= %100??I I (3) 式中:I ?——仪器示值与初值间的最大偏移量 I ——仪器初值。 注:对于某些测量量程较高的浓度直读式仪器,可选择量程中间浓度点进行稳定性检定;对于内标法仪器,应按照仪器说明书的规定在空白和标准溶液中加入适当浓度的内标元素进行相关检定项目的检定。 6.4重复性检定 6.4.1用空白溶液(二次蒸馏水或去离子水)校正仪器零点后,按照6.3.3.2对仪器进行校准,对同一标准溶液重复进行7次连续独立测量(每次测量前允许调零),测量过程中进样管插入溶液的深度应没有相对明显的改变。 6.4.2仪器测量的重复性以7次测量值的相对标准偏差表示: RSD= %1006 )(1 7 1 2 ?-∑=i i I I I (4) 式中:RSD ——相对标准偏差,%; i I ——单次测量值;

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告 化学 固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义 有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。 有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。 有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。 表1 有机磷农药相关环境质量或排放标准 环境质量或排 放标准标准号排放限值 浓度单 位 土壤环境质量 标准 GB15618-1995 无相关排放标准 乐果对硫 磷 甲基对硫磷 马拉硫 磷 浸出液 危险废物毒性 标准浸出毒性 鉴别GB5085.3-2007 8 0.3 0.2 5 mg/L 生活垃圾填埋 污染控制标准 GB16889-2008 无相关排放标准展览馆用地土 壤环境质量标 准 HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准 在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。 现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。 三、研究的方法与技术路线: 考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。 技术路线: 四、研究的总体安排与进度:

紫外线火焰检测器ZWJ说明书

ZWJ-306紫外线火焰监测器 产品名称:ZWJ-306紫外线火焰检测器关键字搜索:ZWJ-306紫外线火焰检测器、紫外线火焰监测器、火焰检测器、火焰监测器 一、概述: ZWJ-306紫外线火焰监测器主要用于燃气、燃油工业燃烧器的火焰监测,燃料燃烧时辐射一定频率的光谱,UV传感器对燃烧光谱不间断采集分析,经智能频率合成模块计算输出模拟火焰信号,火焰信号经电容自动跟随漂移反馈模块电路处理得出稳定火焰信号,从而实现UV传感器至监测器间的分布电容自动匹配,传感器与监测器间的连接距离最远可达600M米而无需调整电容匹配电位器,同时监测器还设置监测灵敏度调节电位器和熄火延时关阀调节电位器,进一步方便用户使用。 传感器信号线(4号线)抗对地、对火线短路,抗分布电容并自动调整,检测灵敏度高,抗干扰性强,不受日光、红外热辐射、炉堂高温等的影响,确保燃烧系统安全运行。本产品获中国专利,专利号为2004200414545。 二、主要技术参数: 工作电源:200V~240V·AC 50/60Hz 功耗:<3W 传感器工作电流:<50μA 传感器光谱范围:185~280nm 检测距离:不小于2m(1支火焰高度为45mm蜡烛) 检测响应时间:<0.2S 熄火延时关阀时间:1~7秒可调 点火时间:5~7秒 传感器与监测器连接电缆:不小于600m

三、监测器工作程序: 通电后,监测器同时输出定时点火信号(端子5、6)及燃料阀打开信号(端子6、7),若点火成功,则点火信号关闭后继续输出燃料阀打开信号; 若点火失败,则关闭点火信号及燃料阀打开信号,并输出无源报警信号。 四、监测器接线端子定义如下: 1、电源火线 2、电源零线 2、3、4对应接UV传感器线码2、3、4 5、6输出点火信号,220V·AC容量5A 6、7输出阀开信号,220V·AC,容量5A 8、9输出无源常开,有火闭合 9、10输出无源常闭,有火断开 五、尺寸: 壳体:ABS工程塑料(防水型) 颜色:灰色 体积:158×90×41mm 安装尺寸:182×52mm矩形安装(长宽预留200×100) 安装孔:φ7.0mm 探头安装螺纹:M20×1.5 探头直径:φ36mm 探头长度:138mm 六、安装: 紫外线火焰监测器是一种非接触式火焰监测器,用户安装时请将探头对准火焰。 探头使用的最高温度为100℃,用户在燃烧器或其他高温设备上使用时,探头前的检测通道必须通风冷却,防止炉膛高温传导辐射损坏传感器,冷却风要求干燥、洁净。 检测通道直径不小于Φ18,探头的安装螺纹为M20×1.5。 七、调试: 该监测器具有布线分布电容自动跟踪调整处理芯片,能在布线分布电容不大于0.47uF的条件下,自动调节以匹配布线分布电容,UV传感器和监测器连线最大可超过600米,具有更宽的适用范围,现场安装使用特别方便,无需用户调整匹配电位器。 模块左上方的蓝色方形电位器可以调节监测器的灵敏度及布线分布电容自动跟踪深度,出厂已调好,用户无需调节。

电离火焰检测器

DLJ-305电离火焰检测器 一、概述: DLJ-305电离式火焰监测器主要用于燃气工业燃烧器的火焰检测,是根据燃料燃烧产生离子的原理研制的,精选进口军工集成器件装配,采用军工高速光电器件传输火焰信号,检测灵敏度高,抗干扰性强,可对火焰进行连续监测,并能排除积碳、布线电容的影响,只对火焰敏感,对高温无反应。 二、主要技术参数: 电源电压:200~240V·AC 50/60HZ 火焰探头:I(离子型) 检测响应时间:<0.2S 熄火延时关阀时间:1~7秒可调 点火时间:5~7秒 探头距离:≤200米 探头电极耐温:≤1300℃(长期) 三、监测器工作程序: 接通电源,监测器输出定时点火信号和电磁阀打开信号,若点火成功,则点火信号关闭后继续输出燃料阀打开信号;若点火失败,则关闭点火信号及燃料阀打开信号,并输出无源报警信号。 四、监测器接线端子定义如下: 1、接离子探头 2、电源零线 3、电源火线 4、5输出点火信号,220V·AC容量5A 6、7输出阀开信号,220V·AC,容量5A 8、9输出无源常开,有火闭合

9、10输出无源常闭,有火断开 五、尺寸: 壳体:ABS工程塑料(防水型) 颜色:灰色 体积:158×90×41mm 安装尺寸:182×52mm矩形安装(长宽预留200×100) 安装孔:φ7.0mm 离子探头安装螺纹:M14×1.25(或按客户要求订做) 离子探头直径:φ12 伸入火焰区Φ4 离子探头电极材质:pyromax高温合金 离子探头长度:按客户要求订做 安装检测电极必须能接触到火焰,检测孔Φ12.5mm,电极长期工作温度1300℃,不需冷却。 六、安装: 该监测器检测火焰采用接触式检测方式,安装检测电极时,必须使中心电极在监测时能接触到火焰,检测电极的中心电极必须对地绝缘,不要接触燃烧器内的金属材料或耐火材料。 检测电极的中心电极材料选用特殊的抗高温氧化材料,安装检测电极时,不需要通风冷却,检测电极可以在1300℃的高温下长期使用,最高使用温度不大于1400℃,请用户选择合适的位置安装。 该监测器使用单电极检测,如用户使用隔离交流电源,请将隔离电源输出端的一根线接地,同时接入监测器端子2上。 七、调试: 为了提高绝缘性能以减小布线分布电容,最好用耐压500V的导线布线,控制室外的检测线最好采用空中布线,尽量不采用地沟布线。检测线不应与其它电源线或信号线混在一起。用户在不接通电源的情况下,请测量检测输出端对地的电阻值,电阻値必须大于20MΩ,测量用三用表,不能用摇表测量,以免损坏控制器。 在无火焰情况下,打开模块盖,接通电源,顺的时针缓慢调节模块左上方的蓝色方形灵敏度调节电位器,直到继电器吸合,绿色指示灯亮,然后反时针缓慢电位器,使绿色指示灯灭,继电器刚好释放为标准,再反时针调2圈,这时监测器调试好。 模块中央的圆形电位器调节熄火关阀时间,调节范围为1~7秒,顺时针调节关阀时间延长,反之阀时间减短,依火焰燃烧稳定状态设置关阀时间,适用不同的工况需要。 监测器灵敏度在出厂时已调试完毕,一般情况下不需要重新调试。

液化气中微量硫化物的形态鉴定

液化气中微量硫化物的形态鉴定 本文利用毛细管色谱柱及脉冲火焰光度检测器对中石化济南分公司生产的液化气中的硫化物进行了鉴定,发现与现有的微库仑仪定硫法及配有原子发射光谱检测器的气相色谱定硫法相比,该方法具有操作简便、灵敏度高等优点,适于炼厂液化气及其它气体中微量硫化物的分析鉴定。 炼厂液化气中的硫化物通常是其深加工过程中使催化剂中毒的毒物,将影响后续产品质量,需要加以脱除[1 ]。为此首先必须对其中的硫化物进行分析鉴定,从而有针对性地选择或优化脱硫工艺。对于液化气中的硫化物,目前主要采用气相色谱技术分离液化气中的各种硫化物并加以检测,以前的研究者采用色谱-火焰光度检测器(GC - FPD)[2 ]、色谱-双火焰光度检测器(GC - DFPD)[3 ]、色谱-火焰电离和火焰光度检测技术(GC - FI - FPD)[4 ]和色谱-质谱法(GC - MS)[5 ]等技术进行了测定,尽管在定性方面取得了一定进展,但操作繁琐,烃类色谱峰与硫化物色谱峰互相干扰,辨识困难,并对色谱柱的分离性能提出了更高的要求[6 ]。 气相色谱-脉冲火焰光度检测技术(GC - PFPD) ,是近年发展起来

的一种对硫化物进行分析检测的新技术[7 ]。与传统的GC - FPD相比,由于采用了脉冲火焰燃烧技术、硫滤光片过滤烃类发光技术,以及采用不同延迟时间门放大器分别接受S和C发光,因此具有灵敏度高、S/ C选择性好(可高达107) 、没有烃类淬灭等优点[8 ]。本文利用GC - PFPD建立了液化气中硫化物形态鉴定及含量分析的方法,利用该方法对中石化济南分公司液化气中硫化物进行鉴定,共分析出9种硫化物,并查明了影响后续丙烯聚合装臵的硫化物形态与含量。 1 实验仪器及样品 本研究所使用的样品为中石化济南分公司生产的液化气,其中C3组分占40 %以上、C4组分占45 %以上、C2组分占10 %左右。 1. 1 仪器与试剂 气相色谱仪,脉冲火焰光度检测器(PF2PD) ,石英毛细管色谱柱:30m×0. 32mm; 气相色谱仪,原子发射光谱检测器(AED) ; 氧化微库仑定硫仪。 硫化物标样有:羰基硫、硫化氢、甲硫醇、乙硫醇、二甲基硫醚及二甲基二硫标准气体;正丙硫醇(分析纯);二乙二硫醚(纯度> 99 %)

火焰光度计工作原理及操作方法

火焰光度计工作原理及操作方法 1、工作原理 火焰光度计是以发射光谱为基本原理的一种仪器,它利用火焰本身提供的热能,激发碱土金属中的部分原子,使这些原子吸收能量后跃迁至上一个能量级,这个被释放的能量具有特定的光谱特征,即一定的波长范围。例如,将食盐置于火焰中,火焰成黄色,就是因为钠原子在火焰中回落到正常能量级时所释放的能量的光谱是黄色的。人们常称之为火焰反应。不同碱金属在火焰中的颜色是不同的,配上不同的滤光片,就可以进行定性测试。而火焰的强度又正比与溶液中所含原子的浓度,这就构成了定量测定的基础。这个方法称为火焰光度法,这类仪器称为火焰光度计。 由于火焰温度不是很高,使被测原子释放的能量有限。同时,在燃烧过程中,有自吸、自浊现象存在,所以只有在低浓度范围中的测试才是线性的。 火焰光度计是一种相对测量的仪器,被测样品的浓度值是在同一测试条件下标准样品的浓度的相对值。所以,测试前必需首先制备一组相应的标准样品,然后进行标定操作,人工或通过仪器绘制曲线,最后才能对被测样品进行测试,得到其浓度值或其它需要的数据。 (3)打开液化气钢瓶上的开关按下燃气调节旋钮点火,点火应采用点动方法,即压下 2、标液配制: a.氧化钠标准储备液:称取9.4293±0.0001g预先经500~600℃灼烧半小时的氯化钠高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液5mg/ml; b.氧化钾标准储备液:称取1.5829±0.0001g预先经500~600℃灼烧半小时的氯化钾高纯试剂溶于水,移入1L的容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此溶液1mg/ml; c.氧化钠和氧化钾混合标准溶液:分别取50.00ml氧化钠标准储备液和25.00ml氧化钾标准储备液于500ml容量瓶中,用水稀释至标线,摇匀。储于塑料瓶中。此液0.5mg/ml氧化钠和0.05mg/ml氧化钾;

fpd检测器

书名:气相色谱检测方法(第二版)作者:吴烈钧编著 火焰光度检测器 第一节引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出气相色谱FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的气相色谱检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。 第二节工作原理和响应机理 一、工作原理 图6-1为FPD系统示意图。它主要由二部分组成:火焰发光和光、电信号系统。 火焰发光部分由燃烧器(4)和发光室(2)组成,各气体流路和喷嘴等构成燃烧器,又称燃烧头。通用型喷嘴由内孔和环形的外孔组成。气相色谱柱流出物和空气混合后进入中心孔,过量氢从四周环形孔流出。这就形成了一个较大的扩散富氢火焰、烃类和硫、磷确化合物在火焰中分解,并产生复杂的化学反应,发出特征光。硫、磷在火焰上部扩散富氢焰中发光,烃类主要在火焰底部的富氧焰中发光,故在火焰底部加一不透明的遮光罩(3)挡住烃类光,可提高FPD的选择性。为了减小发光室的体积,可在喷嘴上方安一玻璃或石英管(1),以降低检测器的响应时间常数。 右为光、电信号部分,为了避免发光中产生的大量水蒸气,燃烧产物和高温对光、电系统的影响,用石英窗(5)和散热片(6)将发光室和光电系统隔开。因FPD不是将所有的光变成电信号,而是用滤光片(7)选择硫、磷特征光。图6-2为硫、磷和碳的相对光谱响应曲线,当硫化物进人火焰,.形成激发态的S2*分子,此分子回到基态发射出波长为320~480nm的光,

气相色谱FPD检测器在线分析磷化氢气体

浙江理工大学学报,第26卷,第2期,2009年3月 Journal of Zhejiang Sci2Tech U niversity Vol.26,No.2,Mar.2009 文章编号:167323851(2009)022******* 气相色谱FPD检测器在线分析磷化氢气体 俞晓晶a,丁高松a,金达莱a,汪丽娜b,王 勇c,姚奎鸿a (浙江理工大学,a.材料工程中心;b.分析测试中心;c.教务处,杭州310018) 摘 要:利用气相色谱方法,采用火焰光度检测器(FPD),对磷化氢气体进行了较为系统的气相分析,建立了快速、灵敏、可靠的磷化氢工业在线分析。调节色谱操作参数,验证实验数据的可靠性;用焰光度检测器检测,测量的灵敏度为2.48×1014μV?s/g,最小检测限为1.6129×10-13g/s;以柱效为评价指标,优化检测磷化氢的色谱操作条件,得出最佳柱箱温度和载气流速分别在140℃左右、80mL/min附近。 关键词:磷化氢;气相色谱;火焰光度检测器(FPD);在线分析 中图分类号:TQ016 文献标识码:A 0 引 言 磷化氢(P H3),又称磷烷,是一种重要的电子气体[123]。P H3有毒性、危险性非常大。我国P H3研究起步于“六五”期间,光明化工研究设计院受原化工部资金的支持,开展P H3的合成、净化、分析等系列研究,“七五”期间我国的南京特气公司(现改为华厦气体公司),也曾开展此方面的工作[4]。目前国内P H3大部分用户都采用进口的P H3用来进行5%的N22P H3配制[4]。P H3在国际上销售价格较高,国际上几大气体公司都有超纯P H3销售。由于涉及自主知识产权问题,有关电子气体的生产、净化、包装、分析等技术多在国际属于高度保密,可参考借鉴的相关资料非常稀少。 在线分析仪器是现代工业生产中不可缺少的一部分,并且起着“指导者”和“把关者”的作用。为保证质量和生产安全,各种工业生产,特别是连续自动化生产都离不开关键的质量监控,这是众所周知的事实[5]。随着IC产业国际化竞争日益加剧,开展电子气体的自主研究与生产势在必行,精确的分析也必不可少。作为一种重要的半导体器件掺杂源气体,P H3的定性与定量分析,特别是P H3在线测定方法的建立显得十分重要[6]。 磷化氢定量及定性分析方法主要有钼蓝比色法和气相色谱法。前者操作费时,灵敏度低,不适用于大量样品和低浓度样品的测定;后者方便快捷,但样品预处理复杂,而且由于磷化氢容易受外界因素如光和氧气等的影响,目前国内仍未将色谱法作为磷化氢分析的标准方法[7]。但是,针对P H3的在线分析,气相色谱法仍具有不可替代的快速和便捷的优点。 灵敏度和检测限是气相色谱仪检测器的主要性能指标[8],火焰光度检测器(FPD)是一种只对含硫、含磷化合物有高选择性、高灵敏度的检测器[9211],FPD检测器用于对磷化氢进行系统的气相在线分析尚未见报道。 本文主要采用火焰光度检测器(FPD)对磷化氢(P H3)进行在线系统模拟检测,通过调节柱箱温度和载气流速等色谱参数,在对其实验值和理论值进行比较证明其可靠性的同时,以色谱柱的柱效为性能指标,选择适用于在线分析磷化氢的最佳色谱条件。 收稿日期:2008-01-25 基金项目:浙江省科技厅分析测试科技计划项目(2007F70025) 作者简介:俞晓晶(1985- ),男,浙江武义人,硕士研究生,从事半导体及无机材料研究。

PFPD检测器与FPD的比较

PFPD检测器 1.PFPD描述 脉冲式火焰光度检测器(PFPD)是最新设计的火焰光度检测器。最适合于含硫和磷化合物的选择性检测。PFPD检测器也能够选择性的测定28种特定的元素。和标准的FPD测s比较,PFPD可获得更高的检测限(10倍),更大的选择性(10-1000),更强的可靠性和更低的操作成本。它的双通道模拟输出功能允许S和P,S和C或任意两种元素产生的信号同时输出。 操作原理: PFPD主要使用反应气体未端的扩散火焰。火焰中气相反应的结果, 使一些分子产生特征的发射光谱及发射的延迟。种不同的发射光谱及延迟可以用于增强PFPD的选择性减少噪音, 提高检测灵敏度。由于使用不连续扩散火焰,燃烧室所用气体流量大大降低( 大约1/10 )。另外, 电子门脉冲性能使噪音控制在门脉冲窗口之外,进一步增强了检测器的性能。 主要测定的28种元素S, P (主要应用) C, N, As, Br, Pb (关键应用) B, Al, Si, V, Cr, Mn, Fe, Ni, Cu, Ga, Ge, Se, Ru, Rh, In, Sb, Te, W, Bi, Eu(其他应用) 2. 火焰脉冲步骤 PFPD的火焰脉冲是因为氢气和空气的流速不能承受火焰的连续燃烧。火焰脉冲包含四个步骤: ■充满:空气和氢气混合并在两处进入燃烧室。部分燃烧气与柱馏出物向上移动进入燃烧室,另一股气流经过石英室外围进入点火室。 ■点火:点火室含有一个连续加热的点火线圈,当混合燃烧气到达点火室时,点火开始。 ■延烧:燃烧的火焰自点火室向下延烧至燃烧室,当延烧至底部时火焰熄灭。值此延烧阶段,自色谱柱进入燃烧室的待测分子在火焰中被分解为简单的分子或原子。 ■光激发:从延烧过程至结束,感兴趣的样品原子经过反应形成电子激发态,此时火焰熄灭,火焰背景发射在延烧后约0.3毫秒时完成,而硫磷分子碎片的发射要经

火焰光度计标准操作规程

目的:建立FP6410火焰光度计标准操作规程,规范检验人员的操作。 范围:本规程适用于本公司FP6410火焰光度计的操作。 职责:QC检验人员按本规程实施操作,QC负责人监督本规程的执行。 内容: 1操作步骤 1.1 在正式测试前,正确的选择仪器上的浓度开关、空气压力、燃气压力等参数,进行设置。 1.2 打开主机电源开关,打开空气压缩机电源开关,将进样毛细管放入蒸馏水中。 1.3打开液化气钢瓶开关,执行点火操作。 1.4按“确认”键,进入初始菜单,选择元素、单位和校正方法。 1.5选“标定”,按“确认”键进入“标定菜单”。 1.6在“标定菜单”中,输入序号,选“标定”,按“确认”进入数据输入屏幕,按确定的格式设置标准数据输入,检查无误后,按“确认”键。以此类推,输入所有标样序号的数据。 1.7在点火预热25分钟后,在确信用最高浓度的标准溶液进样时,模拟量不会溢出(即模拟量不超过1000)的前提下,用标准溶液逐个进样,得到标准曲线。 1.8在“标定菜单”中选择“测试”,按“确认”键进入样品测试操作,按序号依次进样,待数据稳定,选“确定”,按“确认”存储数据。 1.9检查数据,按标定操作重做结果有疑问的样品。测试完成(按实际扩大或缩小)计算结果。 1.10关机前,在燃烧状态下用蒸馏水清洗5分钟,然后先关液化气钢瓶开关,再关主机电源开关及空气压缩机电源开关。 1.11 清洁仪器和工作台,填写仪器使用记录。

2.注意事项 2.1燃气和助燃气(空气)必须是干燥的,纯净而没有污染的,不要在湿度很高、粉尘很多的环境中使用仪器。 2.2仪器与钢瓶周围不能摆放易燃易爆物品。实验环境必须通风良好,有条件的地方可设置强制排气装置或在通风橱中操作仪器仪器。 2.3必须使用稳定的220V的电源电压,工作环境附近不能有功率较大、频率启动的电气设备。接地线必须可靠接地,不能用零线代替接地线。 2.4操作过程中,燃烧室与烟囱罩都是非常烫的,不能将身体凑近或者用手触摸这些地方,也不要从上而下张望。 2.5从废液杯里流出的排放液要集中收集,适当处理,不要随意处置。 2.6定期保养清洗雾化室、燃烧头。雾化室清洗后前盖板上喷射器的安装螺母一定要反复拧紧;碰撞球与喷口的间隙要重新仔细调整。如果做了高盐样品测试,蒸馏水喷烧的时间要适当延长。 2.7一些表面张力较大的样品,需要加入适量的表面活性剂,同时注意在样品标准空白中加入的量要相同。 2.8 标准测试液必须精确配置。长期保存时,请注意保存条件,并要加入适当的抑菌剂。任何样品不能存放在钠玻璃的器皿中。 2.9 样品中不能含有颗粒状物质,最好过滤后使用。操作中经常注意液面高度,使塑料毛细管只吸取上层溶液。

GC126-FPD火焰光度检测器使用说明书

1 GC126-FPD火焰光度检测器 1.1引言 1.1.1 GC126-FPD火焰光度检测器概述 GC126-FPD火焰光度检测器是GC126气相色谱仪中选配的特种检测器之一,是专门用于检测含磷化物及含硫化物;是一种高选择性及高灵敏度的检测器。它只对含磷化物、硫化物有响应,而其它元素对它无干扰或干扰很小,因此这种检测器可以应用在石油化工中的含硫化物的微量检测。特别是自然界生物体内含磷、含硫化合物很多,新合成有机磷化物、硫化物、农药中的大量杀虫剂、杀菌剂都是含磷、含硫的有机化合物,而这些农药的残留量测定必须依赖于对磷、硫有高灵敏度及高选择性的火焰光度检测器(特别是对硫化物唯有采用火焰光度检测器测定)。 故火焰光度检测器可以广泛应用在生物、农业、环保、化工、医药、食品等行业的质量检验。 GC126-FPD火焰光度检测器有两个单元所组成,其一是火焰光度控制器包括微电流放大器和负高压稳压输出;其二是火焰光度检测器。本使用说明书仅对GC126-FPD火焰光度检测器的结构原理、操作方法和仪器保养、检修作较详细的说明。 1.1.2 GC126-FPD火焰光度检测器基本参数 1.1. 2.1 技术指标 检测限:对磷:Dt≤2×10-11g/s(p)(甲基对硫磷) 对硫:Dt≤1×10-10g/s(s)(甲基对硫磷) 基线噪声:≤10μV P;108;衰减1/32 (1mV量程) S;108;衰减1/8 (1mV量程) 基线漂移:≤30μV/30min 线性范围:对磷:103 对硫:102 启动时间:检测器开机≤2h应能正常工作。

1.1. 2.2 检测器使用要求 电源电压:220V±22V,50Hz±0.5Hz 功率:≤100W 环境温度:+5℃~35℃ 相对湿度:≤85% 环境条件:检测器安装室内应没有腐蚀性气体及不致使电子器件的放大器、色谱数据处理机及色谱工作站正常工作的电场和电磁场存在,检 测器安装后工作台应稳固,不能有振动,以免影响检测器正常工 作。在接氢气瓶或氢发生器的室内2m内不得有火种存在或发火 装置的可能性。 1.1. 2.3 外形体积 510mm(长)×370mm(宽)×200mm(高) 1.1. 2.4 重量 1kg(该重量是指本检测器所带附件及备件经包装后的重量参考值)。 1.1. 2.5 检测器成套性 GC126-FPD火焰光度检测器一台 附件、备件清单、合格证、说明书与检测器同装纸箱。 1.1.3 开箱与验收 收到仪器后,应该校对检测器型号与选购的检测器订单是否相符合。同时开箱检查仪器在运输过程中是否有损坏,若有明显损坏现象应立即与本厂质量检验科联系酌情处理。检测器自用户购买日起14个月内,厂方免费为用户进行非用户人为所至的故障修理。

相关主题