搜档网
当前位置:搜档网 › 张弛电路调试过程分析

张弛电路调试过程分析

张弛电路调试过程分析
张弛电路调试过程分析

张弛电路调试过程分析

1,按照以下电路进行调试

其中Q1用的BT33F,使用2N6027,不能点亮灯泡,所以直接换位BT33F,

稳压管D2采用2.4V稳压管,电位器换用的是100K,R2采用的是390欧电阻,C1采用的电容约0.8uf,

1:R3为500欧电阻时:灯泡可点亮

电容C1处波形是:

电阻R4处波形如下图:

灯泡可点亮。

2:R3为1K电阻时:灯泡可点亮电容C1处波形是:

电阻R4处波形如下图:

2:R3为1.5K电阻时:灯泡不可点亮,(R4更换成510欧,波形如下差不多,但是还是不能点亮灯泡,)

电容C1处波形是:

电阻R4处波形如下图:

换小灯泡2W 24V的,还是不能点亮。

6、叮咚音响门铃电路的安装和调试

福 州 市 第 二 高 级 技 工 学 校 教 案 纸 授课教师 林 春 授课班级 06电工电子(1) 教案审批意见 课程名称 电子技能训练 审批人: 年 月 日 授课时间 ( 13 )周 星期( 2、3 ),(11)月( 27、28 )日 课 题 6、叮咚音响电子门铃电路的安装和调试 教学时数 ( 8 )课时 教学目的 通过操作练习,让学生熟悉叮咚音响门铃电路组成特点,掌 握电路的装配和调试,以及简单故障的排除。 教学重点 能独立绘制装配草图并按工艺要求进行装配 教学难点 排除简单的故障 教 具 1、电烙铁1把 2、烙铁架1个 3、尖嘴钳1把 4、电工 刀1把 5、镊子1把 6、焊锡丝1米 7、松香若干 8、器材见配套明细表 作业布置 其 他 教学步骤 1、课堂讲解 3、评分 2、操作练习 4、结束讲评

提要与板书教学过程与内容 一、组织教学 检查学生人数,查看学生穿的鞋是否符合安全操作的要求,宣布今天的学习内容,提出实习纪律要求。 二、教学过程 1、装配要求和方法 (1)准备 将工作台整理好,工具摆放合理,准备好必要的物品。 (2)认真阅读原理图,并绘制出装配草图。。 (3)清点元件 按配套明细表核对元件的数量.型号和规格,如有短缺、差错、应及时补缺和更换。 (4)元件检测 用万用表的电阻栏对元件进行逐一检测,对不符合质量要求的元器件剔除并更换。 (5)元件的预加工 对电阻器.晶体管进行剪脚和上锡加工。晶体管是不耐热的元件,上锡时间不宜过长,防止烫坏PN洁。剪脚时,要 防止晶体二极管的极性搞错。 (6)印制电路板装配工艺要求 1)电阻器、二极管(发光二极管除外)均采用水平安装方式。元件底部距电路板5mm。色标法电阻的色环标志顺序 方向一致。

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

第4章 电路的过渡过程

第4章电路的过渡过程及换路定律本书此前所讨论的电路,不论是直流还是交流,电路的联接方式和参数值是不变的, 电源的输出是恒定的或周期性变化的,电路中的各部分电压也是恒定的或周期性变化的。电路的这种状态称之为稳定状态,简称稳态。 当电路接通、断开或电路各元件的参数变化时,电路中的电压、电流等都在发生改变,从原来的稳定状态变化到另一个新的稳定状态,这个过程称过渡过程。它不能瞬间完成,需要一定的时间(尽管往往是极短暂的),又称暂态过程。电路在过渡过程中的工作状态称暂态。 3.1 过渡过程的产生与换路定律 3.1.1.电路中产生过渡过程的原因 电路中之所以出现过渡过程,是因为电路中有电感、电容这类储能元件的存在。 图3-1(a)中,当接通电源的瞬间,电容C两端的电压并不能即刻达到稳定值U,而是有一个从合闸前的u C=0逐渐增大到u C=U(见图3-1(b))的过渡过程。否则,合闸后的电压将有跃变,电容电流i C=Cdu/dt将为无穷大,这是不可能的。 图3-1 RC串联电路 同样,对于电感电路,图3-2( a)中,当电源接通后,电路的电流也不可能立即跃变到U/R,而是从i L=0逐渐增大到i L=U/R(见图3-2(b))这样一个过渡过程。否则,电感内产生的感生电动势e L=-Ldi/dt将为无穷大,也是不可能的。 图3-2 RL串联电路 过渡过程产生的实质是由于电感、电容元件是储能元件,能量的变化是逐渐的,不

能发生突变,需要一个过程。而电容元件储有的电场能W C =C 2/2 C u ,电感元件储有的磁场能W L =L 2/2L i ,所以电容两端电压u C 和通过电感的电流i L 只能是连续变化的。 因为能量的存储和释放需要一个过程,所以有电容或电感的电路存在过渡过程。 产生过渡过程的内因:电路中存在储能元件 ,C L u i ; 外因:电路出现换路时,储能元件能量发生变化。 3.1.2.换路定律 电路工作状态的改变如电路的接通、断开、短路、改路及电路元件参数值发生变化等,称换路。由以上分析可知,换路瞬间,电容两端的电压u C 不能跃变,流过电感的电流i L 不能跃变,这即为换路定律。用t=0-表示换路前的终了瞬间,t=0+表示换路后的初始瞬间,则换路定律表示为 C C L L (0)(0)(0)0u u i i +-+-=? ?=? () (2-86) 注意,换路定律只说明电容上电压和电感中的电流不能发生跃变,而流过电容的电 流、电感上的电压以及电阻元件的电流和电压均可以发生跃变。 换路定律的解释如下: 自然界物体所具有的能量不能突变,能量的积累或释放需要一定的时间。所以 电容C 存储的电场能量21 2 Wc Cu =不能突变使得C u 不能突变;同样,电感 L 储 存的磁场能量21 2 L L W Li =不能突变使得L i 不能突变。 从电路关系分析(以图3-1为例): C C C du E iR u RC u dt =+=+ 若c u 发生突变,c du i dt =∞?=∞,这是不可能的。 根据换路定律可以确定换路后过渡过程的初始值,其步骤如下: 1)分析换路前 (t=0-)电路,求出电容电压、电感电流,即u C (0-)、i L (0-)。 2)由换路定律确定u C (0+)及i L (0+)。 3)进而计算出换路后(t=0+)电路的各参数即过渡过程的初始值。 例 图3-2(a )中,已知: R =1k Ω, L =1H , E =20 V ,开关闭合前i L =0A ,设t=0时开关闭合,求(0),(0)L L i u ++。 解:根据换路定律 (0)(0)0 A L L i i +-==

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

实验五--一阶RC电路的过渡过程实验

实验五一阶RC电路的过渡过程实验 一、实验目的 1、研究RC串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC电路的零状态响应(电容C充电) 在图5-1(a)所示RC串联电路,开关S在未合上之前电容元件未充电,在t= 0时将开关S合上,电路既与一恒定电压为U的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a) (b) 图5-1RC电路的零状态响应电路及uC、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t 0时电路的微分方程为 电容元件两端电压为 其随时间的变化曲线如图5-1(b) 所示。电压uc按指数规律随时间增长而趋于稳定值。 电路中的电流为 电阻上的电压为

其随时间的变化曲线如图5-1 (b)所示。 2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示,RC串联电路。开关S在位置2时电容已充电,电容上的电压 uC= U0,电路处于稳定状态。在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是电容放电的过程。 (a)(b) 图5-2 RC电路的零输入响应电路及u C、u R、i随时间变化曲线 根据基尔霍夫电压定律,列出t>0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2(b)所示。它的初始值为U0,按指数规律衰减而趋于零。 τ =RC 式中τ = RC,叫时间常数,它所反映了电路过渡过程时间的长短,τ越大过渡时间就越长。 电路中的电流为 电阻上电压为 其随时间变化曲线如图5-2(b)所示。 3、时间常数τ 在RC串联电路中,τ为电路的时间常数。在电路的零状态(电容充电)响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是电路零输入(电容放电)响应衰减到初始值的36.8%所需要时间[2]。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3-5)τ的时间,过度过程就基本结束,电路进入稳态。

实验六 一阶RL电路的过渡过程实验

dt di L 实验六 一阶RL 电路的过渡过程实验 一、实验目的 1、研究RL 串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 在电路中,在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RL 电路的零状态响应(电感L 储存能量) 图6-1 (a) 是RL 串联电路。在t = 0时将开关S 合上,电路既与一恒定电压为U 的电压接通。 根据克希荷夫电压定律,列出t ≥0时电路的微分方程为 i R + = U (a) (b) (c) 图6-1 RL 电路的零状态响应电路及、、 随时间变化曲线 电路中的电流为 电阻上电压为 电感上的电压为 其随时间的变化曲线如图6-1(b )、(c)所示。 2、RL 电路的零输入响应(电感L 释放能量)

在图6-2(a) 所示RL串联电路,开关S是合在位置2上,电感元件中通有电流。在t = 0时将开关从位置2合到位置1,使电路脱离电源,RL电路被短路。此时电路为零输入响应。 (a) (b) (c) 图6-2RL电路的零输入响应电路及、、随时间变化曲线根据克希荷夫电压定律,列出t≥0时电路的微分方程为 电路中的电流为 其随时间的变化曲线如图6-2 (b) 所示。它的初始值为I 0,按指数规律衰减而趋于零。 式中τ叫做时间常数,它反映了电路过渡过程时间的长短。 电路中电阻上电压为 电路中电感上电压为 其随时间的变化曲线如图6-2(c)所示。 3、时间常数τ 在RL串联电路中,τ为电路的时间常数。在电路的电路零状态响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是零输入响应减到初始值的36.8%所需要时间。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3—5)τ的时间,过度过程就基本结束,电路进入稳态。 三、实验内容及步骤 1、脉冲信号源 在实际实验中,采用全数控函数信号发生器的矩形波形做为实验信号电源,由它产生一个固定频率的矩形波,模拟阶跃信号。在矩形波的前沿相当于接通直流电源,电容器通过电阻充电。矩形波后沿相当于电路短路,电容器通过电阻放电。矩形波周期性重复出现,电路就不断的进行充电、放电。

三.模拟电路安装与调试.

第三章模拟电子电路安装与调试 第一节单相桥式整流、滤波电路的安装与调试应知:单相桥式整流、滤波电路的工作原理 应会:单相桥式整流、滤波电路的安装与调试 教学内容: 一、电路原理图: 图2.1.1 三、安装: 1。分发元器件,处理好元器件管脚及其好坏,清点元器件。 2。用沙布打磨氧化的管脚及万能板,预先放置好元器件,并考虑好走线位置。3。把元器件焊在万能板上,检查有无虚焊,漏焊。 4。依电路原理图焊上连接导线,注意焊接工艺。

四、调试: 1。按原理自左向右进行检查,是否连线正确合理,有无虚焊、漏焊。 五、故障检查:若输出电压Vd为零,则应检查电源是否连接正常;若接通电源熔断丝立即熔断,说明有短路现象,应检查电路是否连线错误。若Vb为4V左右,则有二极管断路;若Vc为8V左右,则电容脱焊或损坏。 六、注意事项: 1。不可把二极管及滤波电容的极性接反,否则会烧坏元器件。 2。焊接时,注意焊接时间,防止焊坏元器件。 3。连导线时注意依图连接,正确处理好连线的方式。 4.通电前要仔细检查电路连接是否有误,否则容易烧坏元件。 5.调试时,要注意用电安全,注意是否有短路现象。 6.调试后,要详细做好记录,看数据是否正确。 *七、用示波器测波型,并绘制在下面:(为选修内容) a点:变压器输出正弦波: b点:整流波型: c点:滤波波型: d点:二次滤波波型:

第二节串联型稳压电源的安装与调试 应知:串联型稳压电源电路的工作原理 应会:串联型稳压电源电路的安装与调试 教学内容: 一、电路原理图: 图2.2.1 二、电路分析: V1-V4组成整流电路,C1滤波,电阻R1与稳压管V6提供一个基本稳定的电压,称基准电压,V5起调节电压的作用称为调整管,R2为集电极电阻,R3为负载电阻,以保证输出断开时,输出电压仍在稳定范围之内。 电路稳压过程如下: Vi ↑→Vo↑→ V be↓→ Ib ↓→ Ic ↓→Vce↑→Vo ↓ 三、元件明细表:

电工技术--第三章 电路的暂态分析

电工技术--第三章电路的暂态分析

第三章电路的暂态分析 一、内容提要 本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。其次介绍换路定律及电路中电压和电流初始值的计算方法。第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。 二、基本要求 1、了解性电路的瞬变过程的概念及其产生的原因; 2、掌握换路定律,学会确定电压和电流的初始值; 3、掌握影响瞬变过程快慢的时间常数的物理意义; 4、掌握影响巡边过程快慢的时间常数的物理意义; 5、学会对RC和RL电路的瞬变过程进行分析。

三、学习指导 电路的暂态分析,实际上就是对电路的换路 进行分析。所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。 在直流激励下,换路前,如果储能元件储能 有能量,并设电路已处于稳态,则在- =0t 的电路中,电容C 元件可视为开路,电感L 元件可视作短路,只有这样,2L L 2C C 2 121Li W Cu W ==及才能保证;换路前,如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+ =0t 的电路中,可将电容元件短路,电感元件开路。 特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。 对一阶线性电路,求解暂态过程的方法及步骤 1、经典法

其步骤为: (1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量 (4)按照换路定律确定暂态过程的初始值,定出积分常数。 对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下: (1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路; (2)求等效电源的电动势(或短路电流)和内阻; (3)计算电路的时间常数;C 电路,eq C R =τL 电路eq R L =τ。 (4)将所得数据代入由经典法得出的式子。 ①RC电路的零状态响应: ;,,0R 00C τττt t t e U u e R U i e U u ----=-== ②RC电路的零状态响应: ;,),1(R C τττt t t Ue u e R U i e U u ----==-=

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

第三章 电路板的设计安装及调试

第三章电路板的设计安装及调试

第三章电路板的设计安装及调试 3.1 Protel 99 SE简介 Protel 99 SE是基于Windows95/98/2000/XP环境的新一代电路原理图辅助设计与绘制软件,其功能模块包括电路原理图设计、印制电路板设计、无网格布线器、可编程逻辑器件设计、电路图模拟/仿真等到。它是集电路设计与开发环境于一体的软件。各模块具有丰富的功能,可以实现电路设计与分析的目的。 1 电路设计的主要部分: ●用于原理图设计的Schematic模块。 该模块主要包括设计原理图的原理图编辑器,用于修改、生成零件库编辑器以及各种报表的生成器。 ●用于电路板设计的PCB设计模块。 该模块主要包括用于设计电路板的电路板编辑器,用于修改、生成零件封装编辑器以及电路板组件管理器。 ●用于PCB自动布线的Route模块。 ●用于可编辑逻辑器件设计的PLD模块。 该模块主要包括具有语法意识的文本编辑器、用于编译和仿真设计结果的PLD经及仿真波形观察窗口。 ●用于电路仿真的Simulate模块。 该模块主要包括一个能力强大的数/模混合信号电路仿真器,能提供连续的模拟信号和离散的数字信号仿真。 2 Protel 99 SE有如下特点: ?支持层次化设计 ?丰富而灵活的编辑功能 ?强大的自动化功能 ?在线库编辑及完善的库管理

3.2 原理图的绘制 1 加载元件库 在绘制电路图前,首先要添加几个常用的原理图库,这样查找元件就很方便。常用的原理图库有五个:MISCELLANEOUS DEVICE.LEB,INTER DATABOOK,NES DATABASE,TI DATABASE,SIM.DDB,其中很多元件都在杂元件库MISCELLANEOUS DEVICE.LEB中。 2 放置元件 将电路原理图中需要的元件都从原理图库中添加到原理图中,并根据电需要将元器件排列好。 3 设置元器件的参数 双击元器件,在弹出的对话框中对元器件的封装、编号、管脚号等进行设置。 4 绘制电路原理图 将元器件布好局后,执行画导线命令,将原理图连接成一个完整的电子数字钟电路图。此时记住,一定要在电路图的旁边放一个电源插件,以供以后为电路板提供电源。 5 生成网络报表 在绘制完原理图后,一定要为电路图生成一个网络报表。执行Design- Create Netlist菜单命令。绘制电路图的最主要的目的就是为了将设计电路转换成一个有效的网络表,经供其它后续处理程序使用。这样也可以检查出电路的连接网络是否跟自己要制作的电路要求一致。 网络表是联系原理图和PCB板中间的文件,PCB板布线需要网络文件(.net)。这样在PCB板中才能根据网络来连接线,所以一定要生成网络报表,并确保其没有空漏。 3.3 PCB的绘制 Protel 99 SE会为印制电路板生成各种报表。这些报表可以给用户提供有关设计过程及设计内容的详细资料。这些资料主要包括设计过程中的电路板状

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

第3章--电路暂态分析-答案

第3章 电路的暂态分析 练习与思考 3.1.1 什么是稳态?什么是暂态? 答:稳态是指电路长时间工作于某一状态,电流、电压为一稳定值。暂态是指电路从一种稳态向另一种稳态转变的过渡过程。 3.1.2 在图3-3所示电路中,当开关S 闭合后,是否会产生暂态过程?为什么? 图3-3 练习与思考3.1.2图 答:不会产生暂态过程。因为电阻是一个暂态元件,其瞬间响应仅与瞬间激励有关,与以前的状态无关,所以开关S 闭合后,电路不会产生暂态过程。 3.1.3 为什么白炽灯接入电源后会立即发光,而日光灯接入电源后要经过一段时间才发光? 答:白炽灯是电阻性负载,电阻是一个暂态元件,其暂态响应仅与暂态的激励有关,与以前的状态无关;而日光灯是一个电感性负载,电感是一个记忆元件,暂态响应不仅与暂态激励有关,还与电感元件以前的工作状态有关,能量不能发生突变,所以日光灯要经过一段时间才发光。 3.2.1任何电路在换路时是否都会产生暂态过程?电路产生暂态的条件是什么? 答:不是。只有含有储能元件即电容或电感的电路,在换路时才会产生暂态过程。电路产生暂态的条件是电路中含有储能元件,并且电路发生换路。 3.2.2若一个电感元件两端电压为零,其储能是否一定为零?若一个电容元件中的电流为零,其储能是否一定为零?为什么? 答:若一个电感元件两端电压为零,其储能不一定为零,因为电感元件电压为零,由 dt di L u =只能说明电流的变化率为零,实际电流可能不为零,由2 2 1Li W L =知电感储能不为零。 若一个电容元件中的电流为零,其储能不一定为零,因为电容元件电流为零,由 dt du C i =只能说明电压变化率为零,实际电压可能不为零,由2 2 1)(Cu t W C =知电容储能不为零。 3.2.3在含有储能元件的电路中,电容和电感什么时候可视为开路?什么时候可视为短路? 答:电路达到稳定状态时,电容电压和电感电流为恒定不变的值时,电容可视为开路,电感可视为短路。 3.2.4 在图3-13所示电路中,白炽灯分别和R 、L 、C 串联。当开关S 闭合后,白炽灯1立即正常发光,白炽灯2瞬间闪光后熄灭不再亮,白炽灯3逐渐从暗到亮,最后达到最亮。请分析产生这种现象的原因。

第3章 电路的暂态分析

第3章电路的暂态分析 本章教学要求: 1.理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义。 2.掌握换路定则及初始值的求法。 3.掌握一阶线性电路分析的三要素法。 4.了解微分电路和积分电路。 重点: 1.换路定则; 2.一阶线性电路暂态分析的三要素法。 难点: 1.用换路定则求初始值; 2.用一阶线性电路暂态分析的三要素法求解暂态电路; 3.微分电路与积分电路的分析。 稳定状态:在指定条件下电路中电压、电流已达到稳定值。 暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。 换路: 电路状态的改变。如:电路接通、切断、短路、电压改变或参数改变。 电路暂态分析的内容: (1) 暂态过程中电压、电流随时间变化的规律。 (2) 影响暂态过程快慢的电路的时间常数。 研究暂态过程的实际意义: 1. 利用电路暂态过程产生特定波形的电信号,如锯齿波、三角波、尖脉冲等,应用于电子电路。 2. 控制、预防可能产生的危害,暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。 3.1 电阻元件、电感元件与电容元件 3.1.1 电阻元件

描述消耗电能的性质。 根据欧姆定律:u = R i ,即电阻元件上的电压与通过的电流成线性关系。 电阻的能量: 表明电能全部消耗在电阻上,转换为热能散发。电阻元件为耗能元件。 3.1.2 电感元件 描述线圈通有电流时产生磁场、储存磁场能量的性质。 电流通过一匝线圈产生 (磁通),电流通过N 匝线圈产生 (磁链), 电感: ,L 为常数的是线性电感。 自感电动势: 其中:自感电动势的参考方向与电流参考方向相同,或与磁通的参考方向符合右手螺旋定则。 根据基尔霍夫定律可得: 将上式两边同乘上 i ,并积分,则得:磁场能W = 即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。电感元件不消耗能量,是储能元件。 3.1.3 电容元件 描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。 电容: 当电压u 变化时,在电路中产生电流: 将上式两边同乘上 u ,并积分,则得:电场能W = 即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。电容元件不消耗能量,也是储能元件。 3.2 储能元件和换路定则 1. 电路中产生暂态过程的原因 产生暂态过程的必要条件: d d 0 ≥== ?? t Ri t ui W t 2t ΦN Φψ=i N Φi ψL ==t i L t ψe d d d )d(d )d(d d -=-=-=- =t Li t N ΦL t i L e u d d =-=L 200 2 1d d Li i Li t ui t i = = ? ? u q C = t u C i d d d d == t q 2 00 2 1 d d Cu u Cu t ui t u ==??

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

实验五一阶RC电路的过渡过程的multisim实验分析解析

实验五 一阶RC 电路的过渡过程实验 一、实验目的 1、研究RC 串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC 电路的零状态响应(电容C 充电) 在图5-1 (a)所示RC 串联电路,开关S 在未合上之前电容元件未充电,在t = 0时将开关S 合上,电路既与一恒定电压为U 的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a) (b) 图5-1 RC 电路的零状态响应电路及u C 、u R 、i 随时间变化曲线 根据基尔霍夫电压定律,列出t > 0时电路的微分方程为 (注:dt du C i CU q dt dq i c c === ,故,) 电容元件两端电压为 其随时间的变化曲线如图5-1 (b) 所示。电压u c 按指数规律随时间增长而趋于稳定值。 电路中的电流为 电阻上的电压为 其随时间的变化曲线如图5-1 (b) 所示。

2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示, RC串联电路。开关S在位置2时电容已充电,电容上的电压u C= U0,电路处于稳定状态。在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是电容放电的过程。 (a) (b) 图5-2RC电路的零输入响应电路及u C、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t >0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2 (b)所示。它的初始值为U0,按指数规律衰减而趋于零。 τ=R C 式中τ = RC,叫时间常数,它所反映了电路过渡过程所用时间的长短,τ越大过渡时间就越长。 电路中的电流为 电阻上电压为 其随时间变化曲线如图5-2 (b)所示。 3、时间常数τ 在RC串联电路中,τ为电路的时间常数。在电路的零状态(电容充电)响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是电路零输入(电容放电)响应衰减到初始值的36.8%所需要时间[2]。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3-5)τ的时间,过度过程就基本结束,电路进入稳态。 三、实验内容及步骤 1、脉冲信号源

RL电路的过渡过程

RL 电路的过渡过程 摘 要:一个电路从原来的稳定状态向新的稳定状态变化需要经过另一个时间过程,这就是电路的过渡过程。电路的过渡过程虽然往往很短暂,但它的作用和影响很重要。本文将用数学分析方法对RC 及RL 一阶线性电路进行全面分析,目的就在于认识和掌握有关的规律,利用过渡过程特性的有利的一面,对其有害的一面进行预防或抑制。 关键词:过度过程,放电过程,充电过程,零状态,非零状态 I .RC 电路的过渡过程 1.1 RC 电路的放电过程 设开关原在位置2,电路达到稳态后,电容电压等于U,在0t =时开关突然倒向位置1,则在0t ≥时,按照基尔霍夫电压定律列出电路方程 0C iR u += 因为 C du i C dt = 故得 0C C du RC u dt += (1) 这是一个一阶、线性、常系数、齐次微分方程,其通解为 pt C u Ae = 将上式代入式(1),消去公因子,pt Ae 则得到该微分方程的特征方程 10RCP += 该特征方程根(特征根)为 1 p RC =- 因此,式(1)的通解为 t RC C u Ae -= 其中A 为待定的积分常数,由初始条件确定。根据换路定律,换路瞬间电容上的电压不能突变,即在0t +=时,C u =U ,故有A =U 。于是微分方程(1)的解为 t t RC C u Ue Ue τ --== (2) 将电容电压C u 随时间的变化曲线画在图(2)(a )中,这是一个指数曲线,其初始值为U ,衰减的终了值为零。 式(2)中τ=RC ,称为RC 电路的时间常数,它决定了电压C u 衰减的快慢。τ的单位 图(1)RC 电路

实验三 单相交流调压电路实验

北京信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相范围要求。 二.实验内容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

简单RC 电路的过渡过程

实验六简单RC电路的过渡过程 一、实验目的 1.研究RC电路在零输入、阶跃激励和方波激励情况下,响应的基本规律和特点。 2.学习用示波器观察分析电路的响应。 二、原理及说明 1、一阶RC电路对阶跃激励的零状态响应就是直流电源经电阻R向C充电。对于图6-1所示的一阶电路,当t=0时开关K由位置2转到位置1,由方程: 初始值: Uc(0 - )=0 可以得出电容电流随时间变化的规律: 上述式子表明,零状态响应是输入的线性函数。其中τ=RC,具有时间的量纲,称为时间常数,它是反映电路过渡过程快慢程度的物理量。τ越大,暂态响应所持续的时间越长,即过渡过程时间越长。反之,τ越小,过渡过程时间越短。 图6-1 2、电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。即电容器的初始电压经电阻R放电。在图6-1中,让开关K于位置1,使初 始值Uc(0 -)=U ,再将开关K转到位置2。电容器放电由方程: 可以得出电容器上的电压和电流随时间变化的规律:

如用方波信号源激励,RC电路的方波响应,在电路的时间常数远小于方波周期时,前半周期激励作用时的响应就是零状态响应,得到电容充电曲线;而后半周期激励为0,相当于电容通过R放电,电路响应转换成零输入响应,得到电容放电曲线。由于方波是周期信号,可以用普通示波器显示出稳定的图形,以便于定量分析。充电曲线当幅值上升到最大值的63.2%和放电曲线幅值下降到初始值的36.8%所对应的时间即为一个τ,图6-2所示。 图6-2 方波激励作用下RC一阶电路电容电压波形 三、实验设备 1.电路实验箱 2.信号发生器 3.双踪示波器 四、实验内容 用示波器观察RC电路的方波响应。 认清实验线路板上R、C元件的布局及其标称值,个开关的通断位置等等。按下面三中情况选取不同的R、C值 1)R=10KΩ,C=1000PF 2)R=10KΩ,C=3300PF 3)R=30KΩ,C=3300PF 组成如图6-2所示的RC充放电电路,信号发生器的信号为方波信号,Um=3V,,将激励与响应的信号输入到示波器,测时间常数τ,观察并描绘响应波f=1KH Z 形。

相关主题