搜档网
当前位置:搜档网 › 白藜芦醇的合成

白藜芦醇的合成

白藜芦醇的合成
白藜芦醇的合成

白藜芦醇的合成

摘要:白藜芦醇具有多种生物和药理活性,使其广泛应用于食品、医药、保健

品、化妆品等领域。白藜芦醇具有优良药理活性和保健功能其市场需求很大且与日剧增,目前已有大部分国家和地区都开发了白藜芦醇及其制品。白藜芦醇是一种含有芪类结构的非黄酮类多酚化合物。它不仅是植物遭受胁迫时产生的一种能提高植物抵抗病原性攻击和环境恶化的植物抗毒素, 还具有抗癌、抗氧化、调节血脂、影响寿命等多方面有益于人类健康的重要功能。以下对白藜芦醇的理化特性、合成、提取、纯化与检测方法进行了全面总结, 并在其作用的分子机制基础上, 对其生物学活性、基因工程研究及产业化情况进行了重点介绍。发现在传统育种的基础上, 借助于现代生物技术手段, 将白藜芦醇的天然活性保健作用应用于保健食品的开发、作物经济附加值的提高具有广阔的前景。

关键词:白藜芦醇;化学合成;研究进展

Abstract:Resveratrol has multiple biological and pharmacological activities, it is widely used in food, medicine, health products, cosmetics and other fields. Pharmacological activity of resveratrol has an excellent and great demand for health functions and with its market-increasing, there are most of the developed countries and regions of resveratrol and its products.

Key words:resveratrol;chemical synthesis;progres

1 前言

白藜芦醇(Resveratro1),化学名为反式3,4ˊ,5-三羟基二苯乙烯(3,4ˊ,5-Trihydroxy-trans-stilbene),是一种存在于植物中的具有芪类结构的非黄酮类天然多酚化合物,其化学结构式如下所示。

白藜芦醇广泛存在于葡萄、虎杖、决明子和花生等天然植物中, 它是植物在受到生物或非生物威胁时产生的一种植物抗毒素。白藜芦醇生理活性显著, 高效低毒, 有抗肿瘤、抗炎、抗菌、抗氧化、抗自由基、保护肝脏、保护心血管和抗心肌缺血等功能,被喻为继紫杉醇之后又一新的绿色抗肿瘤药物;同时其保健功能也引起了欧美科学家的普遍兴趣, 被美国专著《抗衰老圣典》列为100种最热门有效抗衰老物质之一。由于白藜芦醇在医药和食品工业中的广泛应用, 导致白

藜芦醇需求量的大幅增加。因此,了解白藜芦醇的合成对进一步的发展利用是必要的。

2 白藜芦醇的化学合成法

2.1 Wittig法和Wittig-Homer法

Wittig反应通过磷叶立德与醛、酮反应生成烯烃及氧化膦,是有机合成中常用的双键形成手段。1985年,Moreno-Manas等[7]借鉴了Steynberg的合成方法,利用3,5-二羟基甲苯为起始原料,经过羟基保护、溴代等步骤制备了相应的Wittig盐,再与4-甲基硅氧基苯甲醛反应合成白藜芦醇,但收率只有10%。国内晏日安等以对甲氧基苄醇、3,5-二甲氧基苯甲醛为原料,经溴代、成盐、Wittig 反应、异构化、脱甲基5步反应合成了白藜芦醇,产品纯度较高,但收率不高。近年来出现了很多改进方法解决了收率和分离问题,如在氢氧化钾(粉末)/二氯甲烷液/同两相反应中.以18一冠一6作相转移催化剂。使反应收率大大提高。利用高分子聚苯乙烯作载体以固定三苯基膦,可以解决副产物的分离问题。

Wittig-Homer反应是对Wittig反应的一种改进,是用简单易得的膦酸酯来代替磷叶立德试剂来实现双键的形成,条件温和、操作简便、收率高并具有良好的立体选择性,与Wittig反应比较具有更多的优点。潘华君等以价廉易得的3,5-二羟基苯甲酸为起始原料,经甲醇酯化、苄醚保护酚羟基、还原、溴化、Arbuzov 重排和Wittig-Horner缩合制得3.5,4'-三苄氧基-(E)-二苯乙烯;再用廉价的三氯化铝脱苄醚保护基,成功合成了白藜芦醇,有效降低了原材料成本。此外,引入苄基有利于中间产物的结晶分离,使得操作更简便,收率更高,总收率48%,反应过程如下。

图1 潘华君等合成白藜芦醇的路线

Fig.1 Synthetic routes of resveratrol by Pan Hua-jan

由于通过Wittig或Wittig-Homer反应构造双键条件温和,国内有关白藜芦醇的合成研究大多采用该合成路线。但由于这一合成路线步骤繁多,导致收率不高,此问题仍待解决。

2.2 Perking反应

Perking反应是有机化学中的一个经典反应。1941年Sp?th和Kromp[17]首次利用Perking反应合成了白藜芦醇。他们用3,5-二羟基苯甲醛与对羟基苯乙酸钠缩合得到反式-3,4’,5-三甲氧基二苯乙烯,但因脱羧后未能得到结晶而无法与天然提取物相比。然而Sp?th和Kromp并未放弃,他们将产物脱羧后置于甲醇和盐酸的混合液48h后得到了纯净的反式结晶。2003年,Solladié等对Perking缩合反应进行了改进,以3,5-二异丙氧基苯甲醛和对异丙氧基苯乙酸为原料通过Perking反应得到单一顺式构型的产物,经脱羧反应后,得到以顺式构型为主的混合构型产物,再经异构化、脱保护基得到反式构型的白藜芦醇,总收率为55.2%,反应式下。

图2 Solladi6等合成白藜芦醇的路线

Fig.2 Synthetic routes of resveratrol by Solladié

Perking反应脱羧步骤反应条件苛刻.从而限制了它的应用。若能将Perking 缩合和脱羧反应一步完成,则减少了合成步骤,具有较大的发展潜力。例如.对羟基苯甲醛和苯乙酸在吡啶中反应,直接生成4-羟基芪,收率达86%。但Perking 缩合和脱羧反应一步完成合成白藜芦醇未曾报道。

2.3 利用碳负离子与羰基化合物的缩合反应

碳负离子与羰基发生亲核加成反应,所得的羟基消除后可形成双键,这类反应也可用于白藜芦醇的合成。西班牙的Alonso等使3,5-二甲氧基苄醇的硅衍生物通过强碱作用形成碳负离子,该碳负离子再与茴香醛缩合得中间体1,继而脱水、去甲基,最后得到单一的反式产物,总收率为21%。合成路线如图3所示。

在这一合成路线中,中间体1收率较低只有31%,导致总收率低。Zhang等[在Emma Alonso的金属锂方法基础上以价廉易得的对甲氧基苯甲醇和3,5-二甲氧基苯甲醛为原料,提高了中问产物1的收率(51.3%),并且使用硫酸氢钾代替二甲基亚砜脱水降低了成本。

醛与活泼亚甲基在强碱催化下构建反式二苯乙烯骨架结构,可以避免Wittig 反应中生成的顺反式结构混合物分离纯化的问题。此缩合反应具有反应条件温和、操作简便、选择性好等特点,为白藜芦醇的合成开辟了新的途径。但这一合

成路线合成步骤过于繁复,亲核反应步收率过低。

图3 Emma Alonso等合成白藜芦醇路线

Fig.3 Synthetic routes of resveratroi by Emma Alonso

2.4 Heck反应

Heck反应是在钯催化剂作用下烯烃或炔烃与芳基卤代物的偶联反应,具有很高的反式立体选择性,而且反应条件温和,操作简便。2002年,Guiso等[21]使用了一种新的方法合成白藜芦醇,利用3,5-二乙酰氧基苯乙烯与对乙酰氧基碘苯发生Heck反应,然后水解即可,总收率达到了70%。合成路线如图4所示。该方法步骤较少,但其中3,5-二乙酰氧基苯乙烯需通过Wittig反应制得。

图4 Guiso等合成白藜芦醇的路线

Fig.4 Synthetic routes of resveratroi by Guiso

2008年,Moro等[23]以重氮盐为离去基团通过三步反应合成了白藜芦醇,总收率达72%。他考察了不同烯烃对中间体3的收率的影响,得出对乙酰氧基苯乙烯(95%)比对甲氧基苯乙烯(53%)好。此合成路线少,立体选择性高,收率高。其合成路线如图5。

图5 Angelica Venturini Moro等合成白藜芦醇的路线

Fig.5 Synthetic routes of resveratrol by Angelica Venturini Moro

此外,为了保证产物构型为单一反式、提高收率、减少反应步骤、降低成本。2003年Jefery和Ferber采用钯催化一锅法合成白藜芦醇,总收率可达80%。此方法把两步Heck反应先后在同一反应器中完成,既简化了反应步骤又可得到单一的反式产物,这一合成方案具有一定的开发前景。

关于Heck反应,其特点是:在底物种类、反应条件、催化剂类型等多方面有较大的选择余地;易于实现高效、高化学与立体选择性;可在较温和的反应条件下实现工业化生产。

2.5 其它合成方法

Julia—Koeienski反应是烯烃合成的一个重要工具。Alonso等首次将其用于合成白藜芦醇,收率和立体选择性方面都取得了满意的结果。

Chang等运用钌碳烯做催化剂,使和固相连结的苯乙烯酯与苯乙烯衍生物进行烯烃置换作用制得白藜芦醇,收率高且是单一构型(反式)产物。

3 结论

综上所述, 白藜芦醇不仅能够提高植物的抗病能力, 对人类的健康也有多方面有益的作用。今后在继续深入研究其作用分子机制的同时, 应进一步明确其具体生物活性及药用机理, 将之更有效的应用于心血管、肿瘤等疾病的预防、治疗及代谢的调节和延长寿命中。同时, 可在挖掘富含白藜芦醇的植物品种或通过人工栽培和育种手段获得高含量白藜芦醇的新品种的基础上, 通过植物细胞克隆技术、基因工程技术, 将芪合酶基因转入植物细胞或水稻、小麦、大豆、花生、马铃薯等重要粮食作物和经济作物等方法, 结合分离、提取白藜芦醇的工艺技术的提高, 进一步加强白藜芦醇的综合开发,提高白藜芦醇及其相关产品的市场竞争力,并保护白藜芦醇资源的可持续开发利用, 在带来巨大经济效益的同时造福人类。

参考文献:

[1] 赵霞, 陆阳, 陈泽乃. 白藜芦醇的化学药理研究进展.中草药, 1998, 29(12): 837?839.

[2] 张兰胜, 刘光明. 白藜芦醇的研究概述. 大理学院学报,

2007, 16(4): 72?74.

[3] 程丽英, 刘树兴. 白藜芦醇研究现状与应用展望. 食品研究与开发, 2005, 26(1): 25?27.

[4] 郭景南, 刘崇怀, 潘兴, 等. 葡萄属植物白藜芦醇研究

进展. 果树学报, 2002, 19(3): 199?204.

[5] Soleas GL, Diamandis EP, Goldberg DM. Resveratrol: Amolecule whose time has come? And gone? Clin Biochem,1997, 30(2): 91?113.

[6] Orsini F, Pelizzoni F, Bellin(i B, et al. Synthesis ofbiologically active polyphenolic glycosides( combretastatinand resvertrol series). Carbohydr Res, 1997, 301(3):95?109.

[7] Orsini F, Verotta L, Lecchi M, et al. Resveratrol derivativesand their role as potassium channels modulators. J NatProd, 2004, 67(3): 421?426.

[8] Wang M, Jin Y, Ho CT. Evaluation of resveratrolderivatives as Potential antioxidants and identification ofa reaction product of resveratrol and 2,2-diphenyl-1-picryhydrazyl radical. J Agric Food Chem, 1999, 47:3974?3977.

[8] Yoshiaki Takaya, Kenji Terashima, Junko Ito, et al.Biomimic transformation of resveratrol. Tetrahedron,2005, 61(43): 10285?10290.

[9] SolladiéG, Pastural-jacopéY, Maignan J. A reinvestigationof resveratrol synthesis by Perkins reaction. Application tothe synthesis of aryl cinnamic acids. Tetrahedron, 2003,59(18): 3315?3321.

[10] 何水林, 郑金贵, 林明, 等. 植物芪类次生代谢物的功能、合成调控及基因工程研究进展. 农业生物技术学报,2004, 12(1): 102?108.

[11] Schwekendiek A, Pfeffer G, Kindl H. Pine stilbenesynthase cDNA, a tool for probing environmental stress.FEBS Lett, 1992, 301(1): 41-44.

[12] Hain R, Reif HJ, Krause E, et al. Disease resistance resultsfrom foreign phytoalexin expression in a novel plantNature, 1993, 361: 153?156.

[13] Hipskind JD, Paiva NL. Constitutive accumulation of aresveratrol glucoside in transgenic alfalfa increasesresistance to Phoma medicaginis. Mol Plant Microbe Interac,2000, 13(5): 551?562.

[14] 田文忠, 丁力, 曹守云, 等. 植物抗毒素转化水稻和转基因植株的生物鉴定. 植物学报, 1998, 40(9): 803?808.

[15] 郭斌, 尉亚辉, 曹炜. He-Ne 激光诱变选育高产白藜芦醇细胞系. 光子学报, 2002, 31(3): 277?280.

[16] Kobayashi S, Ding CK, Nakamura Y, et al. Kiwifruits(Actinidia deliciosa) transformed with a vitis stilbenesynthase gene produce piceid (resveratrol-glucoside).Plant Cell Rep, 2000, 19(2): 904?910.

[17] 魏萌, 王水兴, 陆豫. 虎杖中的白藜芦醇分离、提取及HPLC 检测的研究. 食品科技, 2006, 31(8): 118?120.

[18] 张敏, 曹庸, 于华忠, 等. 虎杖白藜芦醇提取工艺的初步研究. 林产化工通讯, 2004, 38(3): 629.

酵母菌的培养和观察

酵母菌的培养和观察 目的认识酵母菌的形态特征,了解培养酵母菌的方法。 实验前的思考人类认识和利用酵母菌的历史悠久,早在史前时期,先人们就学会酿酒。约在6000年前,就发明发面的方法。直到十九世纪有了显微镜,人们才窥探到醉母菌的真面目。对酵母菌做纯系培养分类研究的是与巴斯德同时代的丹麦人汉斯,他是为寻求酿造高品质啤酒的途径才去深入研究酵母菌的。 材料器具甜酒酿汁液,新鲜酵母,豆芽;显微镜,载玻片,盖玻皮,玻璃棒,镊子,滴管,吸水纸,酒精灯,石棉网,火柴,漏斗架,玻璃斗,量杯,三角烧瓶,烧杯,天平,量筒,棉絮;蔗糖,乳酸,碘液。 步骤 1.观察酵母菌 (1)用滴管从甜酒酿的汁液中吸取一滴汁液,滴在载玻片上,用针摊开,盖上盖玻片,在低倍镜下就能清楚地看到甜酒酿的汁液中悬浮着无数酵母菌。再换高倍镜仔细观察一个酵母菌,可以看到酵母菌是椭圆形的单个细胞,细胞中有许多小颗粒,也有几个大的液泡(图示)。有的酵母菌的一端长出大小不同的突起,这是酵母菌的芽体。芽体成长脱落,就成为新的个体,有的芽体在从母体脱落前又长出突起。这种繁殖方法叫出芽繁殖。 (2)在盖玻片一边加一滴碘液,从另一边用吸水纸把染液引入盖玻片下。不久就能看到被染成棕褐色的细胞核和变成蓝紫色的淀粉粒。 2.培养酵母菌 (1)用蔗糖液培养在盛有100毫升的三角烧瓶里加5克蔗糖,煮沸。等到溶液稍稍冷却,加一小块鲜酵母,用玻璃棒搅拌均匀;再用棉絮塞紧瓶口。然后把烧瓶放在25~30℃的温暖地方,数小时后就可见到溶液里有气泡产生,并散发出酒味。这是因为酵母菌正在把糖分解成乙醇和二氧化碳。 (2)二三天后吸取溶液在显微镜下观察,就可看到已培养出大量酵母菌。

白藜芦醇的提取工艺

白藜芦醇的提取工艺 专业:化学工程与技术学号:2010001220班级:生研1004班姓名:刘珊珊 摘要:从虎杖等植物中提取的白藜芦醇具有抗肿瘤、抗炎、抗菌、保护肝脏、保护心血管等功能,鉴于白藜芦醇的多种重要的应用价值,本文综述了白藜芦醇的提取方法,其中包括有机溶剂提取法、超声波及微波辅助萃取法等。通过对各种方法的综合比较,找出了最佳优化条件。 关键词:白藜芦醇;提取;正交实验 1.1白藜芦醇的理化性质 白藜芦醇分子式是C14H12O3,相对分子质量为228.25,化学名称为3,4,5’—三羟基—1,2—二苯乙烯,是一种蒽醌萜类化合物,熔点为256~257℃。它主要存在于葡萄、虎杖、花生、朝鲜槐等植物中,尤其在种皮中含量较高[1]。白藜芦醇易溶于甲醇、乙醇、丙酮、乙酸乙酯、氯仿等有机溶剂中。其存在形式主要有四种,分别是顺式-白藜芦醇、反式-白藜芦醇、反式-白藜芦醇糖苷及顺式-白藜芦醇糖苷,但只有反式异构体具有生物活性[2]。 图1反式白藜芦醇的结构式 白藜芦醇是一种天然的抗氧化剂,可降低血液粘稠度,抑制血小板凝结和血管舒张,保持血液畅通,可预防癌症的发生及发展,具有抗动脉粥样硬化和冠心病,缺血性心脏病,高血脂的防治作用。抑制肿瘤的作用还具有雌激素样作用,可用于治疗乳腺癌等疾病。它既是肿瘤疾病的化学预防剂,也是对降低血小板聚集,预防、治疗动脉粥样硬化,心脑血管疾病的化学预防剂。20世纪90年代,我国科技工作者对白藜芦醇的研究不断深入,并揭示其药理作用:抑制血小板非正常凝

聚,预防心肌硬塞、脑栓塞,对缺氧心脏有保护作用,对烧伤或失血性休克引起的心输出量下降有效恢复,并能够扩张动脉血管及改善微循环。 1.2白藜芦醇的提取方法 1.2.1溶剂提取法 溶剂法是国内外最广泛应用的提取方法。常用溶剂主要有水、甲醇、乙醇、乙酸乙酯、乙醚等。溶剂法对设备要求简单,产品得率较高,但缺点是成本高,杂质含量也高。常见报道的溶剂法有三种:浸提法、渗漉法、回流法[3]。浸提法对温度要求不高,但费时较长,效率不高;渗漉法由于保持一定的浓度差,所以提取率较高,浸液杂质较少,但费时较长,溶剂用量大,操作麻烦;回流法较前两种方法效率高,速度快,但容易对受热敏感的原料造成破坏,因此根据不同的原料应采取不同的提取方法。 1.2.2碱性水或碱性稀醇提取法 白藜芦醇具有弱酸性,在碱性条件下酚羟基可以被转变成盐而使水溶性显著增加。碱提取法的原理是利用白藜芦醇这一性质,使其在一定条件下和某些无机碱、碱性盐形成酚盐而从体系里溶解出来;再通过调节溶液pH值的方法使之沉淀而得以分离,从而富集提取白藜芦醇。常用的碱性溶液为NaOH、KOH、Na2CO3、NaHCO3 。 1.2.3超声波提取法 超声技术对中药有效成分提取分离有许多优点,如提高提取率、缩短提取时间、需求温度低等。超声波提取是一种物理破碎过程,对媒质主要产生独特的机械振动作用和空化作用,用超声波辅助提取白藜芦醇,有利于保持较高的白藜芦醇的相对含量[4]。 超声波提取的工艺流程:样品处理→加入适量的提取试剂→热水浸提→超声波提取→离心分离样液→浓缩过滤→固相萃取,富集白藜芦醇→提取物样品[5]。 1.2.4酶解法 近年来文献对白藜芦醇的提取工艺报道较多,但白藜芦醇的提取率和提取物中白藜芦醇的含量较低,生产成本高。如果直接提取,白藜芦醇苷不易转化为白藜芦醇;其次白藜芦醇包裹在细胞壁内,若直接用有机溶剂提取,白藜芦醇难以溶出,酶解作用可以使细胞壁疏松、破裂,减小传质阻力,加速有效成分的释放,从而

146种细菌-真菌-酵母培养基配方

146种培养基配方 ——2009年2月1日星期日by尛森蟲1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 [Note]:When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 3. Azotobacter Medium (固氮菌培养基) KH2PO4 0.2g K2HPO4 0.8g MgSO4.7H2O 0.2g CaSO4.2H2O0.1g Na2MoO4.2H2O Trace(微量) Yeast axtract(酵母膏) 0.5g Mannitol(甘露醇) 20g FeCl3 Tract(微量) Distilled water (蒸馏水) 1000ml Agar (琼脂) 15g Adjust (调) pH to 7.2 适用范围:固氮菌、胶质芽孢杆菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml [Note]:Boil the mixture in autoclave at 121℃for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the li quid , then autoclave at 121℃for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5. Lactic-bacteria Medium I (乳酸菌培养基I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6. Lactic-bacteria Midium Ⅱ(乳酸菌培养基Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7. Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基)

BY4741酿酒酵母菌使用说明

BY4741酿酒酵母菌 BY4741Strain BY4741菌信息: 培养基:YPD 菌株类别:酵母菌 培养条件:28℃,有氧,YPD 质粒转化:电激 保存方式:30%甘油,-20℃ 基本应用:用于蛋白表达 BY4741菌使用说明: 四区划线培养,挑单菌落接种培养使用并保存甘油菌。 BY4741操作说明: 1,本品包含一份甘油菌,使用本甘油菌时可以不用完全融解,在甘油菌表面蘸取少量涂板或进行液体培养即可。也可以完全融解后使用,但随着冻融次数的增加,细菌的活力会逐渐下降。 2,为保证菌种纯正,避免其它细菌污染,尽量先划平板,然后再挑单克隆菌落进行后续操作。 冷冻管开封: 用浸过75%酒精的脱脂棉严格消毒冷冻管盖。 BY4741菌株复溶: 无菌环境中旋开装有复溶液的滴瓶盖,吸取1ml左右复溶液,加入到冷冻管中。轻轻振荡,使冻干菌株溶解呈悬浮状。 BY4741菌株复壮: 用无菌吸管吸取菌悬液,转移到复溶液滴瓶中。做好标识,在适宜温度下培养。细菌在30-35℃培养箱中培养24-48h,真菌在23-28℃培养箱中培养24-72h(必要时,可适当延长培养时间)。 BY4741菌株传代: 将得到的菌株的新鲜培养物转接到适宜的固体培养基及液体培养基中(尽量增大接种量:如用无菌吸管吸取≥50μl新鲜培养物至固体培养基,边移动边缓慢释放),适宜温度下培养,用以菌株的保藏、传代及制备工作菌株。 注意事项: 1、菌种活化前,将冷冻管保存在低温、清洁、干燥的环境中,长时间室温下放置会导致

菌种衰退; 2、冷冻管开封、冻干粉复溶、菌株恢复培养等操作应在无菌条件下进行; 3、一些菌种经过冷冻干燥保存后,延迟期较长,部分需连续两次继代培养才能正常生长; 4、苛养菌的培养需采用含特定营养成分的培养基,敬请正确选择,不清楚时来电询问; 5、某些厌氧菌的培养,自开封到接种完成,均需以无氧气体充填,以保持厌氧状态;培养过程中亦要保持厌氧状态; 6、某些菌种,如肺炎链球菌、流感嗜血杆菌、淋病奈瑟菌等需要5-10%CO2促进生长; 7、如发现冷冻管盖松动、复溶液浑浊等异常情况,应停止使用对应产品。 8、部分菌种有致病性、扩散性,请专业人员在专业环境下有保护性操作。 BY4741菌保藏条件: -20℃保存(复溶液于2-8℃保存) 保藏时间: 2-10年,应根据菌种状况及时转接

酿酒酵母对葡萄酒中白藜芦醇含量的影响研究_崔艳

生物工程 白藜芦醇(Resveratrol),属多酚类物质,是用来抑制有害微生物及其在植物中的积累的小分子抗毒素[1]。常以低聚物和高聚物的形式存在(如ε-Viniferin、α-viniferin和白蔹素ampelopsin A),具有抗癌、抗氧化、防衰老等作用[2]。它有顺、反式糖苷和顺、反式醇4种形式[3],研究发现在葡萄果实中它主要以糖苷及反式白藜芦醇存在[4]。在葡萄酒中4种形式都有,含量受葡萄品种、酵母和工艺条件等影响[5-6]。葡萄酒中白藜芦醇有3个来源:一是发酵期经果胶酶诱导和乙醇的浸出由果皮转移到酒体中的;二是由酿酒酵母代谢产生,如图1酵母通过盐酸苯丙醇胺途径合成了香豆酰辅酶A(可少量存在于果汁中,多在酿酒酵母中积累),它可以和存在于酿酒酵母中的丙二酸单酰辅酶A一起在白藜芦醇合成酶的作用下生成白藜芦醇[7];三是苹-乳发酵过程中由一些白藜芦醇低聚物及黄烷和白藜芦醇的缩合单宁在β-葡萄糖苷酶作用下分解而来的[3],Steynberg等发现葡萄科植物中并没有此类缩合物,说明不是由果浆而来,是酵母代谢积累的结果[8]。故筛选具有合成香豆酰辅酶A和β-葡萄糖苷酶能力的酿酒酵母,研究酵母对葡萄酒中白藜芦醇的含量得影响是必要的。 苯丙氨酸 ↓解氨酶 肉桂酸 ↓肉桂酸4-羟化酶 对羟基肉桂酸 ↓辅酶A连接酶 香豆酰辅酶A ↓白藜芦醇合成酶丙二酸单酰辅酶A→白藜芦醇+4CoASH乙酰辅酶+4CO 2 1材料与方法 1.1材料与仪器 1.1.1材料 葡萄原料:产于天津宝坻葡萄基地的赤霞珠、梅鹿 酿酒酵母对葡萄酒中白藜芦醇含量的影响研究 崔艳,吕文,王娜,刘昱,刘金福 (天津农学院食品科学系,天津300384) 摘要:为了检测酵母菌对于葡萄酒中白藜芦醇含量的影响,以天津产区的不同葡萄品种为原料,分别用两种筛选出的本土酵母CS18、GS10和商用酵母QA23进行红、白葡萄酒的发酵。采用高效液相色谱(HPLC)对酒中的四种白藜芦醇异构体进行了检测分析。结果表明:由本室筛选的具有β-葡萄糖苷酶活力的CS18菌株酿造的葡萄酒白藜芦醇含量最高。 关键词:酿酒酵母;白藜芦醇;白藜芦醇苷;高效液相色谱 Effect of Saccharomyces Cerevisiae on Resveratrol Contents in Wine CUI Yan,L譈Wen,WANG Na,LIU Yu,LIU Jin-fu (Dept.of food science and eningeering,Tianjin Agriculture University,Tianjin300384,China)Abstrct:In order to explore effect of Saccharomyces cerevisiae on contents of resveratrol in wine,different varieties of grapes drom Tianjin were used as raw materials respectively to make wine,and innocubated with two indigenous Saccharomyces cerevisiae strains,commerial strain as control.The quantification of four isomers of resveratrol was carried out by high performance liquid chromatography(HPLC).The result showed:resveratrol contents of wines fermented by CS18strain selected withβ-glucosidase activity was the highest. Key words:Saccharomyces cerevisiae;resveratrol;piceid;high performance liquid chromatography 基金项目:国家高技术研究发展计划(2007AA10Z314);天津农学院科研发展基金计划(2008N001) 作者简介:崔艳(1972—),女(汉),讲师,硕士,研究方向:发酵工程。 图1酿酒酵母代谢合成白藜芦醇的途径 Fig.1The biosynthesis of resveratrol from phenylalanine 2011年8月第32卷第8期 食品研究与开发 F ood Research And Development 108

常用细菌培养基配方

常用抗生素 氨苄青霉素(ampicillin)(100mg/ml) 溶解1g氨苄青霉素钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 羧苄青霉素(carbenicillin)(50mg/ml) 溶解0.5g羧苄青霉素二钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以25ug/ml~50ug/ml的终浓度添加于生长培养基。 甲氧西林(methicillin)(100mg/ml) 溶解1g甲氧西林钠于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以37.5ug/ml终浓度与100ug/ml氨苄青霉素一起添加于生长培养基。 卡那霉素(kanamycin)(10mg/ml) 溶解100mg卡那霉素于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 氯霉素(chloramphenicol)(25mg/ml) 溶解250mg氯霉素足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以12.5ug/ml~25ug/ml的终浓度添加于生长培养基。 链霉素(streptomycin)(50mg/ml) 溶解0.5g链霉素硫酸盐于足量的无水乙醇中,最后定容至10ml。分装成小份于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 萘啶酮酸(nalidixic acid)(5mg/ml) 溶解50mg萘啶酮酸钠盐于足量的水中,最后定容至10ml。分装成小份于-20℃贮存。常以15ug/ml的终浓度添加于生长培养基。 四环素(tetracyyline)(10mg/ml) 溶解100mg四环素盐酸盐于足量的水中,或者将无碱的四环素溶于无水乙醇,定容至10ml。分装成小份用铝箔包裹装液管以免溶液见光,于-20℃贮存。常以10ug/ml~50ug/ml的终浓度添加于生长培养基。 常用培养基 LB培养基 将下列组分溶解在0.9L水中: 蛋白胨10g 酵母提取物5g 氯化钠10g 如果需要用1N NaOH(~1ml)调整pH至7.0,再补足水至1L。注:琼脂平板需添加琼脂粉12g/L,上层琼脂平板添加琼脂粉7g/L。(实验室一般都不调PH) SOB培养基 将下列组分溶解在0.9L水中: 蛋白胨20g 酵母提取物5g 氯化钠0.5g 1 mol/L 氯化钾2.5ml

白藜芦醇的代谢作用——解决争论的焦点

白藜芦醇的代谢作用——解决争论的焦点 白藜芦醇是一种多酚,广泛存在于红酒等植物性食品中,因其多种健康功效而备受关注。白藜芦醇的有益作用是多种多样的;它们包括线粒体功能的改善、防止肥胖和与肥胖有关的疾病,如2型糖尿病、抑制炎症和癌细胞生长以及预防心血管功能障碍等等。有关白藜芦醇代谢影响的研究进行得最久,现在还包括一些临床试验,这些试验产生的结果有好有坏。关于白藜芦醇的许多争论还没有得到解决。在这里,我们将审查这些争论,并特别强调其代谢作用的机制,以及如何从白藜芦醇中吸取的教训可以帮助开发出利用白藜芦醇效果,但又没有白藜芦醇的不良特性的治疗方法 由于癌症、糖尿病和神经退行性疾病等衰老慢性病已成为社会日益沉重的负担, 我们继续寻找能够解决这些问题的药物。找到一种能减少衰老的整体影响的药物可以增加人类的健康跨度和寿命。一种一直被证明能延长从单细胞生物到哺乳动物的生物寿命的方法之一是限制热量。这个概念最初是在McCay 等人表明热量限制可以延长大鼠的寿命时发现的[1]。最近, 热量限制已被证明可以延长从酵母到哺乳动物的一系列物种的寿命[2]。随着肥胖的日益流行, 人们已经清楚地看到, 限制人类卡路里摄入的尝试很可能会失败。因此, 许多人一直在寻找可以作为热量限制模仿剂的化合物。专注于影响酵母中热量限制对酵母寿命的影响的途径发现, sir2 酶是一个关键的中介[3]。一个高通量屏幕为激活剂的酿酒酶发现了小分子白藜芦醇(3, 5, 4 '-三羟基曲芬) [4]。白藜芦醇是一种天然产品, 可以在包括红葡萄在内的几种植物物种中找到。在20世纪90年代, 白藜芦醇首先被注意作为"法国悖论" 的一个潜在的解释, 然后被描述为环氧合酶抑制剂和潜在的化学预防分子[5]。自从白藜芦醇作为一种潜在的热量限制剂被发现以来,已经被证明在心血管疾病、代谢性疾病、癌症和神经退行性疾病中具有有益的作用。许多研究都集中在白藜芦醇如何能够产生如此广泛的影响,分子靶点是什么,以及白藜芦醇治疗是否对人类有益。本文就白藜芦醇的直接作用靶点、白藜芦醇在动物体内的下游效应以及目前人体临床试验的研究现状进行了综述。 在众多的困惑中,白藜芦醇潜在地在细胞中有几个直接的目标,这一点已经很清楚了。虽然最初的发现是作为环氧化酶抑制剂,它后来被确认为Sirt1的激活剂[4]一种磷酸二酯酶的抑制剂[6]是F1-ATPase的抑制剂[7]一种雌激素受体的抑制剂[8]和一个调制器的无数其他目标。白藜芦醇的多药性引发了关于其下游效应的最相关目标的许多争论,其中大部分围绕着它是否真的是Sirt1的激活物,以及白藜芦醇在体内是否对下游效应负责。 由于酿酒酵母SIR2基因具有调节酵母寿命的能力,因此sirtuin家族的蛋白质开始受到关注。结果表明,由于热量限制所导致的复制寿命的延长取决于SIR2的存在[3]虽然最近的一篇论文对由于热量限制而导致寿命延长的幅度提出了质疑[9].它进一步表明,删除Sir2同源体在其他生物体消融热量限制对寿命的影响[10,11],虽然不是在所有系统测试的[12,13]。提高Sirt1在酵母中的表达可以延长酵母的寿命[14]蠕虫[15]苍蝇[10]其中一组不能在线虫和果蝇中重复这些效应[16]此后,原来的研究小组在秀丽隐杆线虫中重复了他们的结果,尽管效果较小[17].在果蝇中,已有研究表明,在脂肪体中过量表达Sir2可以延长寿命[18].哺乳动物的sirtuins由7种蛋白质组成,称为Sirt1-Sirt7。Sirt1是与酵母SIR2最接近的同源基因,由于受到热量限制和寿命延长的影响而被广泛研究。在小鼠中过表达Sirt1可部分抑制热量限制[19,20]和大脑过度表达Sirt1可延长寿命[21].然而,在小鼠中过量表达的某些效应似乎与白藜芦醇的作用相矛盾,包括当老鼠被放入动脉粥样硬化饮食时,动脉粥样硬化增加[22]线粒体和心功能下降[23]. 由于有证据显示出提高sirtuin活性以模拟限食的效应,豪茨等人对人Sirt1活化剂进行了高通量筛选,并确定白藜芦醇是最有效的激活剂[4]有人认为白藜芦醇通过降低酶的肽基和NAD+底物的Km来激活Sirt1。收藏指正。该筛选涉及使用荧光标记的肽底物,称为氟脱

酵母菌霉菌常用培养基的配方

酵母菌、霉菌常用培养基得配制 一、目得要求 了解合成培养基、半合成培养基与天然培养基得配制原理、学习与掌握麦芽汁培养基、马铃薯葡萄糖培养基、豆芽汁葡萄糖培养基与察氏培养基得配制方法。 二、基本原理 麦芽汁培养基与马铃薯葡萄糖培养基被广泛用于培养酵母菌与霉菌。马铃薯葡萄糖培养基有时也可用于培养放线菌。豆芽汁葡萄糖培养基也就是培养酵母菌及霉菌得一种优良培养基。察氏培养基主要用于培养霉菌观察形态用。麦芽汁培养基为天然培养基,马铃薯葡萄糖培养基与豆芽汁葡萄糖培养基二者均为半合成培养基,而察氏培养基则为合成培养基。培养基配方中出现得自然pH系指培养基不经酸、碱调节而自然呈现得pH。 三、实验材料 (一)药品 葡萄搪、蔗糖、NaN03、K2HP04、KCl、MgSO4·7H2O,FeS04、琼脂。(二)仪器 天平、高压蒸汽灭菌锅。 (三)玻璃器皿 移液管、试管、锥形瓶、烧杯、量筒、培养皿、玻璃漏斗等。 (四)其她物品 药匙、pH试纸、称量纸、记号笔、棉花、纱布、线绳、塑料试管盖、牛皮纸、报纸、新鲜麦芽汁、黄豆芽、马铃薯等。 四、实验内容 (一)麦芽汁培养基得配制 1、培养基成分 新鲜麦芽汁一般为10—15波林、 2.配制方法

(1)用水将大麦或小麦洗净,用水浸泡6—12h,置于15℃阴凉处发芽,上盖纱布,每日早、中、晚淋水一次,待麦芽伸长至麦粒得两倍时,让其停止发芽,晒干或烘干,研磨成麦芽粉,贮存备用。 (2)取一份麦芽粉加四份水,在65℃水浴锅中保温3-4h,使其自行糖化,直至糖化完全(检查方法就是取0。5ml得糖化液,加2滴碘液,如无蓝色出现,即表示糖化完全)。 (3)糖化液用4-6层纱布过滤,滤液如仍混浊,可用鸡蛋清澄清(用一个鸡蛋清,加水20m1,调匀至生泡沫,倒入糖化液中,搅拌煮沸,再过滤)、 (4)用波美比重计检测糖化液中糖浓度,将滤液用水稀释到10—15波林,调pH 至6、4。如当地有啤酒厂,可用未经发酵,未加酒花得新鲜麦芽汁,加水稀释到10—15波林后使用。 (5)如配固体麦芽汁培养基时,加入2%琼脂,加热融化,补充失水。 (6)分装、加塞、包扎、 (7)高压蒸汽灭菌100 Pa灭菌20 min。 (二)马铃薯葡萄糖培养基得配制 1、培养基成分 马铃薯20g 葡萄糖 2 g 琼脂1、5—2g 水100ml自然pH 2.配制方法 (1)配制20%马铃薯浸汁取去皮马铃薯200g,切成小块,加水1000m1。80℃浸泡lh,用纱布过滤,然后补足失水至所需体积、100Pa灭菌20 min。即成20%马铃薯浸汁,贮存备用、

霉菌和酵母菌介绍及检测方法

霉菌和酵母菌介绍及检测方法 一、霉菌和酵母菌介绍: 霉菌和酵母菌及其检验酵母菌是真菌中的一大类,通常是单细胞,呈圆形,卵圆形、腊肠形或杆状。霉菌也是真菌,能够形成疏松的绒毛状的菌丝体的真菌称为霉菌。 霉菌和酵母广泛分布于自然界并可作为食品中正常菌相的一部分。长期以来,人们利用某些霉菌和酵母加工一些食品,如用霉菌加工干酪和肉,使其味道鲜美;还可利用霉菌和酵母酿酒、制酱;食品、化学、医药等工业都少不了霉菌和酵母。但在某些情况下,霉菌和酵母也可造成中腐败变质。由于它们生长缓慢和竞争能力不强,故常常在不适于细菌生长的食品中出现,这些食品是pH低、湿度低、含盐和含糖高的食品、低温贮藏的食品,含有抗菌素的食品等。由于霉菌和酵母能抵抗热、冷冻,以及抗菌素和辐照等贮藏及保藏技术,它们能转换某些不利于细菌的物质,而促进致病细菌的生长;有些霉菌能够合成有毒代谢产物-霉菌毒素。霉菌和酵母往往使食品表面失去色、香、味。例如,酵母在新鲜的和加工的食品中繁殖,可使食品发生难闻的异味,它还可以使液体发生混浊,产生气泡,形成薄膜,改变颜色及散发不正常的气味等。因此霉菌和酵母也作为评价食品卫生质量的指示菌,并以霉菌和酵母计数来制定食品被污染的程度。目前已有若干个国家制订了某些食品的霉菌和酵母限量标准。我国已制订了一些食品中霉菌和酵母的限量标准。 二、检验方法: 霉菌和酵母的计数方法,与菌落总数的测定方法基本相似。主要步骤为:将样品制作成10倍梯度的稀释液,选择3个合适的稀释度,吸取1mL于平皿,倾注培养基后,培养观察,计数。对霉菌的计数,还可以采用显微镜直接镜检计数的方法。 具体检测标准参见: GB4789.15-94,《中华人民共和国国家标准食品卫生微生物检验霉菌和酵母计数》三、说明: 1.样品的处理。为了准确测定霉菌和酵母数,真实反映被检食品的卫生质量,首先应注意样品的代表性。对大的固体食品样品,要用灭菌刀或镊子从不同部位采取试验材料,再混合磨碎。如样品不太大,最好把全部样品放到灭菌均质器杯内搅拌2min。液体或半固体样品可用迅速颠倒容器25次来混匀。 2.样品的稀释:为了减少榈稀释倍数的误差,在连续递增稀释时,每一稀释度应更换一根吸管。在稀释过程中,为了使霉菌的孢子充分散开,需用灭菌吸管反复吹吸50次。 3.培养基的选择:在霉菌和酵母计数中,主要使用以下几种选择性培养基。 马铃薯-葡萄糖-琼脂培养基(PDA):霉菌和酵母在PDA培养基上生长良好。用PDA作平板计数时,必项加入抗菌素以抑制细菌。 孟加拉红(虎红)培养基:该培养基中的孟加拉红和抗菌素具有抑制细菌的作用。孟加拉红还可抑制霉菌菌落的蔓延生长。在菌落背面由孟加拉红产生的红色有助于霉菌和酵母菌落的计数。 高盐察氏培养基:粮食和食品中常见的曲霉和青霉在该培养基上分离效果良好,它具有抑制细菌和减缓生长速度快的毛霉科菌种的作用。 4.倾注培养。每个样品应选择3个适宜的稀释度,每个稀释度倾注2个平皿。培养基熔化后冷却至45℃,立即倾注并旋转混匀,先向一个方向旋转,再转向相反方向,充分混合均匀。培养基凝固后,把平皿翻过来放温箱培养。大多数霉菌和酵母在25-30℃的情况下生长良好,因此培养温度25~28℃。培养3d后开始观察菌落生长情况,共培养5d观察记录结果。 5.菌落计数及报告:选取菌落数10~150之间的平板进行计数。一个稀释度使用两个平

酵母菌在人类生活中的应用

酵母菌在人类生活中的应用 摘要:涉及到人类食品中的酵母菌种类繁多,其中不同种类有不同的功能,这使得酵母菌在食品中有着广泛的用途,与人类的生活息息相关,随着科学技术的发展,酵母菌一定可以为人类的生活做出更大的贡献。 关键字:酵母菌应用前景 酵母菌是子囊菌、担子菌等几科单细胞真菌的通称。依照荷兰科学家Loddoy在1970年提出的分类系统,将有无形成有性孢子作为分类的起点,属上的分类主要依据形态,种的规划主要依据生理的特性,将酵母菌分为三个亚门:1.能形成子囊孢子的酵母属子囊亚门,共4个科22个属139种酵母。2.能产生冬孢子和担孢子的酵母菌,属于担子菌亚门、冬孢子纲、黑粉菌目、黑粉菌科共9个科。3.能产生掷孢子的酵母菌,属于担子菌亚门、东孢子纲、掷包酵母科、科内有三属。4.不能产生有性孢子,尚未发现有性过程的酵母属于半知菌亚门,共12个属170个种。但就我国目前所常用的分类是将酵母菌分为:鲜酵母、活性干酵母、即发酵母。酵母菌在生物界中的种类繁多,其在人类生活中也得到广泛的应用。据科学家推测,早在史前三千多年,人类就已经懂得酵母的发酵技术,虽不知原理,但却已有相当丰富的经验。据考古学家考证,在史前2500年的埃及Theban法王填墓内找到经发酵的面包实体和证明酒和啤酒酿造的壁画和宝物,以及在公元前2698年中国史记记载了自黄帝开始已有教民烹煮面食的记载,都证明人类在这之前就已懂得种植稻米、小麦以及储存、磨粉和利用酵

母调制不同的食物。由此看来,酵母菌的利用已深入人类的发展史。 1.酵母菌在发酵乳制品中的应用 随着科学技术的发展,酵母菌在酿造、奶制品、焙烤食品等有着飞速的发展。内蒙古农业大学的贺银风教授探究了国内外传统的发酵乳制品中乳酸菌和酵母菌的相互作用关系,指出了酵母菌在发酵品中的与乳酸菌有着同样的作用,菌种间相互促进和相互制约控制产品的风味特点、营养特征、医疗和保健作用。这为研究酵母菌在乳制品中的应用提供了理论的参考,不同的乳制品中的酵母菌存在着多样性,往往是多种酵母菌的共同作用形成不同的风味,不同的品质,而不同地区也有着自己特有的酵母菌,这是由于酵母菌的多样性所决定的。酵母菌在发酵乳制品中存在着许多的优点,主要是对于干酪的成熟有着诸多作用,例如:“(1)酵母菌能利用凝乳中由于乳酸菌的乳糖发酵所产生的乳酸,使凝乳的pH值有所提高,由起初的5到6左右。酸度的降低,刺激了对干酪成熟也有促进作用的细菌的生长繁殖;(2)某些酵母菌能产生胞外蛋白分解酶和脂肪分解酶,分解干酪中的蛋白质和脂肪,加速干酪的成熟,使干酪中可溶性含蛋物和辛酸、癸酸等其他高级脂肪酸增加L3J,对干酪的风味和结构起着至关重要的作用;(3)干酪内部的某些酵母菌能发酵牛奶中的乳糖,产生少量的CO,影响干酪的组织结构;(4)某些酵母菌能影响干酪某些风味物质如甲基酮的形成[IJ];(5)酵母菌能产生多种水溶性维生素,增加干酪的营养价值;(6)酵母菌在干酪中的生长繁殖和代谢作用,还能抑制腐败微生物和梭状芽孢杆菌的生长LIJ5。酵母菌在乳制食品中的主要

酵母菌霉菌常用培养基的配方

酵母菌、霉菌常用培养基的配制 一、目的要求 了解合成培养基、半合成培养基和天然培养基的配制原理。 学习和掌握麦芽汁培养基、马铃薯葡萄糖培养基、豆芽汁葡萄糖培养基和察氏培养基的配制方法。 二、基本原理 麦芽汁培养基和马铃薯葡萄糖培养基被广泛用于培养酵母菌和霉菌。马铃薯葡萄糖培养基有时也可用于培养放线菌。豆芽汁葡萄糖培养基也是培养酵母菌及霉菌的一种优良培养基。察氏培养基主要用于培养霉菌观察形态用。麦芽汁培养基为天然培养基,马铃薯葡萄糖培养基和豆芽汁葡萄糖培养基二者均为半合成培养基,而察氏培养基则为合成培养基。培养基配方中出现的自然pH系指培养基不经酸、碱调节而自然呈现的pH。 三、实验材料 (一)药品 葡萄搪、蔗糖、NaN03、K2HP04、KCl、MgSO4·7H2O,FeS04、琼脂。 (二)仪器 天平、高压蒸汽灭菌锅。 (三)玻璃器皿 移液管、试管、锥形瓶、烧杯、量筒、培养皿、玻璃漏斗等。 (四)其他物品 药匙、pH试纸、称量纸、记号笔、棉花、纱布、线绳、塑料试管盖、牛皮纸、报纸、新鲜麦芽汁、黄豆芽、马铃薯等。 四、实验内容 (一)麦芽汁培养基的配制

1.培养基成分 新鲜麦芽汁一般为10-15波林。 2.配制方法 (1)用水将大麦或小麦洗净,用水浸泡6-12h,置于15℃阴凉处发芽,上盖纱布,每日早、中、晚淋水一次,待麦芽伸长至麦粒的两倍时,让其停止发芽,晒干或烘干,研磨成麦芽粉,贮存备用。 (2)取一份麦芽粉加四份水,在65℃水浴锅中保温3-4h,使其自行糖化,直至糖化完全(检查方法是取0.5ml的糖化液,加2滴碘液,如无蓝色出现,即表示糖化完全)。 (3) 糖化液用4-6层纱布过滤,滤液如仍混浊,可用鸡蛋清澄清(用一个鸡蛋清,加水20 m1,调匀至生泡沫,倒入糖化液中,搅拌煮沸,再过滤)。 (4)用波美比重计检测糖化液中糖浓度,将滤液用水稀释到10-15波林,调pH 至6.4。如当地有啤酒厂,可用未经发酵,未加酒花的新鲜麦芽汁,加水稀释到10-15波林后使用。 (5)如配固体麦芽汁培养基时,加入2%琼脂,加热融化,补充失水。 (6)分装、加塞、包扎。 (7)高压蒸汽灭菌100 Pa灭菌20 min。 (二)马铃薯葡萄糖培养基的配制 1、培养基成分 马铃薯20g 葡萄糖 2 g 琼脂 1.5-2g 水100ml 自然pH

酵母菌简介

酵母 英语名称:yeast 酵母菌是一些单细胞真菌,并非系统演化分类的单元。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌主要的生长环境是潮湿或液态环境,有些酵母菌也会生存在生物体内。 【生理】 和乙醇来获取能量。 酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳 C6H12O6 (葡萄糖)→2C2H5OH + 2CO2 在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。 【特征】 多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。酵母菌是单细胞真核微生物。酵母菌细胞的形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等。比细菌的单细胞个体要大得多,一般为1~5微米′5~30微米。酵母菌无鞭毛,不能游动。酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。酵母菌的细胞形态酵母菌的细胞形态酵母菌细胞结构的显微照片酵母菌的菌落。 大多数酵母菌的菌落特征与细菌相似,但比细菌菌落大而厚,菌落表面光滑、湿润、粘稠,容易挑起,菌落质地均匀,正反面和边缘、中央部位的颜色都很均一,菌落多为乳白色,少数为红色,个别为黑色。啤酒酵母的菌落红酵母的菌落各种酵母菌的菌落。 【生殖】 酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子(一般是四个),在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。 【酵母菌的生长条件】

酿酒工程毕业论文题目

毕业论文(设计) 题目 学院学院 专业 学生姓名 学号年级级指导教师 教务处制表 二〇一三年三月二十日

酿酒工程毕业论文题目 本团队专业从事论文写作与论文发表服务,擅长案例分析、仿真编程、数据统计、图表绘制以及相关理论分析等。 酿酒工程毕业论文题目: 纳豆激酶基因在酿酒酵母中表达的研究 利用酿酒酵母菌富集硒的研究 武威市酿酒葡萄优质丰产栽培研究 基于WSN的茅台酿酒过程监测系统的实现 已糖转运子hxt7p对酿酒酵母生长及发酵的影响 酿酒酵母菌关键酶基因剔除对谷胱甘肽及氨基酸合成的影响 酿酒酵母Pdr5p对麦角甾醇代谢的影响及其机制研究 组蛋白修饰对pre-mRNA选择性剪接影响的分子机制研究 乙酰辅酶A对酿酒酵母生理代谢的影响 金融加速效应的不对称现象分析 宁夏产区酿酒葡萄品质与葡萄酒质量的研究 重组酿酒酵母酯代谢酶EHT1、EEB1、TGL3的表达及其活性研究 海藻糖对酿酒酵母1912菌株酒精耐受性及发酵影响的研究 酿酒酵母AFR1过量表达与MPK1及MIH1缺失导致的合成致死 高产β-葡萄糖苷酶酿酒酵母的筛选及其发酵特性的研究 河西走廊酿酒葡萄独龙干整形修剪技术及效果研究

酿酒酵母MAPK途径及VPS家族基因对镉离子耐受调节的鉴定 代谢工程改造酿酒酵母生产L-乳酸 拟南芥AZI1基因对酿酒酵母生长和蒜薹灰霉菌侵染的抑制作用 人类Ihh和酿酒酵母Sod2的结构与功能研究 詹氏甲烷球菌NifH1和酿酒酵母Ndl1的克隆、表达、纯化及初步晶体学分析四只蒽醌染料对酿酒酵母毒性效应的研究 酿酒酵母PKA催化亚基的活性比较研究 酿酒酵母PP2C类蛋白磷酸酯酶对线粒体ATP酶活性的调控 酿酒酵母发酵对苦荞中D-手性肌醇含量的影响 拟南芥RPL36B基因在酿酒酵母中有效剪接所需要的顺式作用元件 提高葡萄酒酿酒酵母(Saccharomyces ellipsoideus)不对称还原合成(R)-扁桃酸效率的研究 葡萄酿酒酵母催化不对称还原制备(R)-扁桃酸 套袋对酿酒葡萄果实及葡萄酒的影响 水分胁迫对酿酒葡萄黑比诺幼苗生理生化特性的影响 富钼酿酒酵母的单倍体和原生质体复合诱变选育及其生物学功能研究 酿酒酵母中AFR1在G1/S和G2/M阶段的功能 利用遗传工程方法构建高产甘油酿酒酵母菌株 酿酒酵母Rck2蛋白的结构与功能研究 酿酒葡萄幼胚体细胞胚胎发生 酿酒酵母高转化率酒精发酵工艺条件优化研究 酿酒酵母S期检查点通路上web2基因与ddc2基因的位置关系 海藻糖在提高酿酒酵母耐铝性中的作用 酿酒酵母高得率菌株的构建及发酵工艺优化的研究 酿酒葡萄体细胞胚的诱导和保存 中国主要酿酒葡萄产区葡萄白粉菌有性世代的调查与研究 利用酿酒酵母生物合成谷胱甘肽及其分离纯化的初步研究 酿酒葡萄皮渣中反式白藜芦醇的提取纯化及其抗氧化性的研究 酿酒酵母和水生假丝酵母原生质体融合研究

146种常见培养基的配方

146种常用培养基配方 THE COMPOSITION OF MEDIA 培养基及成分 1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 [Note]:When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 3. Azotobacter Medium (固氮菌培养基) KH2PO4 0.2g K2HPO4 0.8g MgSO4.7H2O 0.2g CaSO4.2H2O 0.1g Na2MoO4.2H2O Trace(微量) Yeast axtract(酵母膏) 0.5g Mannitol(甘露醇) 20g FeCl3 Tract(微量) Distilled water (蒸馏水) 1000ml Agar (琼脂) 15g Adjust (调) pH to 7.2 适用范围:固氮菌、胶质芽孢杆菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml

白藜芦醇的合成及其性质

白藜芦醇的合成及其性质 摘要: 白藜芦醇是一种含有芪类结构的非黄酮类多酚化合物。它不仅是植物遭受胁迫时产生的一种能提高植物抵抗病原性攻击和环境恶化的植物抗毒素, 还具有抗癌、抗氧化、调节血脂、影响寿命等多方面有益于人类健康的重要功能。以下对白藜芦醇的理化特性、合成、提取、纯化与检测方法进行了全面总结, 并在其作用的分子机制基础上, 对其生物学活性、基因工程研究及产业化情况进行了重点介绍。发现在传统育种的基础上, 借助于现代生物技术手段, 将白藜芦醇的天然活性保健作用应用于保健食品的开发、作物经济附加值的提高具有广阔的前景。它的开发和利用, 必将为食品及制药工业新产品的开发提供新的挑战与机遇。 关键词白藜芦醇功能合成性质产业化 白藜芦醇(Resveratrol)是含有芪类结构的非黄酮类多酚化合物。广泛存在于葡萄、松树、虎杖、决明子和花生等天然植物或果实当中, 到目前为止至少已在21 科、31 属的72 种植物中被发现。它是许多植物受到生物或非生物胁迫(如真菌感染、紫外照射等)时产生的一种植物抗毒素。白藜芦醇除了能提高植物的抗病性, 研究发现它还有有益于人类健康的多种生物学活性及药理作用, 深受生物医学界的重视。以下综述了白藜芦醇的性质特点、合成、分离、纯化和检测方法的研究进展, 并对其生物学活性、作用的分子机制、其在植物中相关基因工程研究及产业化情况进行了重点探讨。 1 白藜芦醇的发现 白藜芦醇是1940 年日本人首次从毛叶藜芦(Veratrum grandiflorum)的根中获得的。1963 年, Nonomura 等提出白藜芦醇是某些草药治疗炎症、脂类代谢和心脏疾病的有效成分。1976 年, Langcake和Pryce发现在葡萄(Vitis riparia)的叶片中存在白藜芦醇, 其合成在遭受紫外线照射、机械损伤及真菌感染时急剧增加, 并且能够抵抗灰霉菌(Botrytiscinerea)的侵染, 是植物体在逆境或遇到病原侵害时分泌的一种抗毒素, 故称之为“植物杀菌素”。后白藜芦醇开始受到葡萄育种学家和植物病理学家的重视。 2 性质特点 白藜芦醇化学名称为3, 5, 4 - 三羟基二苯乙烯(3, 5, 4 -trihydroxysitlbene), 分子式为C14H12O3, 分子量为228.25 kD, 是无色针状晶体, 难溶于水, 易溶于乙醇、

相关主题