搜档网
当前位置:搜档网 › 三角函数的定义域与值域题库

三角函数的定义域与值域题库

三角函数的定义域与值域题库
三角函数的定义域与值域题库

专题三:三角函数的定义域与值域(习题库)

一、选择题

1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为()

A、[﹣,]

B、

[,]

C、[2kπ+,2kπ+](k∈Z)

D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴,

解答(k∈Z)

∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D.

2、函数的定义域是()

A、.

B、.C

、D、.

解答:由题意可得sinx ﹣≥0?sinx

≥又x∈(0,2π)

∴函数的定义域是.故选B.

24、函数的定义域为()

A 、

B 、

C 、

D 、

解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+),

∴,故选D.

2、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是()

A、[1,] B 、C 、D 、

解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx=

=

=又∵∴

∴则1≤f(x)≤故选A.3、函数y=﹣cos2x+sinx ﹣的值域为()

A、[﹣1,1]

B、[﹣,1]

C、[﹣,﹣1]

D、[﹣1,]

解答:函数y=﹣cos2x+sinx ﹣=﹣(1﹣2sin2x)+sinx ﹣

=sin2x+sinx﹣1=﹣

∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y 有最小值为﹣.

sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B.

4、函数值域是()

A 、

B 、

C 、D、[﹣1,3]

解答:因为,所以sinx∈[],2sinx+1∈故选B

5、函数的最大值是()

A、5

B、6

C、7

D、8

解答:∵=

=∈[﹣7,7] ∴函数的最大值是7

6、若≤x≤,则的取值范围是()

A、[﹣2,2] B 、C 、D 、

解答:=2(sinx+cosx)=2sin (),

∵≤x≤,∴﹣≤≤,∴≤﹣sin ()≤1,

则函数f(x )的取值范围是:.故选C.

8、若,则函数y=的值域为()

A 、

B 、

C 、

D 、

解答:函数

y=

=

=

因为,所以

sin∈(0

,)

∈故选D

10、函数,当f(x)取得最小值时,x的取值集合为()

A 、B

C 、D

解答:∵函数,∴当sin (﹣)=﹣1时函数取到最小值,∴﹣=﹣+2kπ,k∈Z函数,∴x=﹣+4kπ,k∈Z,

∴函数取得最小值时所对应x的取值集合:

为{x|x═﹣+4kπ,k∈Z} 故选A.

11、函数y=sin2x﹣sinx+1(x∈R)的值域是()

A、[,3]

B、[1,2]

C、[1,3]

D、[,3]

解答:令sinx=t,则y=t2﹣t+1=(t ﹣)2+,t∈[﹣1,1],

由二次函数性质,当t=时,y

取得最小值.

当t=﹣1时,y取得最大值3,∴y∈[,3] 故选A.

12、已知函数,则f(x)的值域是()

A、[﹣1,1] B 、C

、D 、

解答:解:由题=,

当x∈[

,]时,f(x)∈[﹣1,];当x∈[﹣,]时,f(x)∈[﹣1,]

可求得其值域为.故选D.

13、函数的值域为()

A 、

B 、C、[﹣1,1] D、[﹣2,2] 解答:=﹣sinxcosx+cos2x =cos2x ﹣sin2x=cos(2x+)

∴函数的值域为[﹣1,1] 故选C.

14

、若

≥,则sinx的取值范围为()

A 、

B 、

C 、∪

D 、∪

解答:

≥,∴

解得x∈[,)∪(,] ∴sinx ∈故选B

15、函数y=sin2x+2cosx在区间[﹣,]上的值域为()

A、[﹣,2]

B、[﹣,2)

C、[﹣,]

D、(﹣,]

解答:∵x∈[﹣,] ∴cosx∈[﹣,1]

又∵y=sin2x+2cosx=1﹣cos2x+2cosx=﹣(cosx﹣1)2+2

则y∈[﹣,2] 故选A

二、填空题(共7小题)

16、已知,则m的取值范围是.

解答:∵=2(sinθ+cosθ)=2sin(θ+),

∴﹣2≤≤2,∴m≥,或m≤﹣,

故m的取值范围是(﹣∝,﹣]∪[,+∞).

17、函数在上的值域是___________.

解答:因为

故故答案为:

18、函数的值域为.

解答:由题意是减函数,﹣1≤sinx≤1,从而有函数的值域为,故答案为

20、

(理)对于任意,不等式psin2x+cos4x≥2sin2x恒成立,则实数p的范围为.

解答:∵psin2x+cos4x≥2sin2x ∴psin2x≥2sin2x﹣1﹣sin4x+2sin2x=4sin2x﹣sin4x﹣1

∴p≥4﹣(sin2x+)而sin2x+≥2

∴4﹣(sin2x+)的最大值为2则p≥2故答案为:[2,+∞)

21、函数的值域是.

解答:令t=sinx+cosx=,t2=1+2sinxcosx

∵∴x+∴从而有:

f(x)==﹣2

在单调递增

当t+1=2即t=1时,此时x=0或x=,函数有最小值

当t+1=1+即t=时此时x=,函数有最大值2﹣2

故答案为:[﹣2]

22、函数的定义域为.

解答:要使函数有意义,必须解得,

故答案为:(0,).

三、解答题(共8小题)

例1.(1)已知f(x)的定义域为[0,1],求f(cosx)的定义域;

(2)求函数y=lgsin(cosx)的定义域;

分析:求函数的定义域:(1)要使0≤cosx≤1,(2)要使sin(cosx)>0,这里的cosx以它的值充当角。

解析:(1)0≤cosx<12k π-≤x≤2kπ+,且x≠2kπ(k∈Z)。

∴所求函数的定义域为{x|x∈[2k π-,2kπ+]且x≠2kπ,k∈Z}。

(2)由sin(cosx)>02kπ<cosx<2kπ+π(k∈Z)。又∵-1≤cosx≤1,∴0<cosx≤1。故所求定义域为{x|x∈(2k π-,2kπ+),k∈Z}。

23、(2007?重庆)已知函数.

(Ⅰ)求f(x)的定义域;

(Ⅱ)若角a在第一象限,且cosa=3/5,求f(a)

解答:(Ⅰ)由≠0得x+≠kπ,即x≠,

故f(x )的定义域为.

(Ⅱ)由已知条件得.

从而=

==.

24、(2006?上海)求函数的值域和最小正周期.解答:

===

∴函数的值域是[﹣2,2],

最小正周期是π;

25、设,定义.

(Ⅰ)求函数f(x)的周期;

(Ⅱ)当时,求函数f(x)的值域.

解答:(Ⅰ)=sinxcosx﹣cos2x=﹣=,∴周期T=π.

(Ⅱ)∵,∴,

∴,∴f(x )的值域为.

26、已知函数:

(1)求函数f(x)的周期、值域和单调递增区间;

(2)当时,求函数f(x)的最值.

解答:(1)=sin2x+cos2x+=sin(2x+)+

∴函数的最小正周期T==π,﹣1≤sin(2x+)≤1,故函数的值域为[﹣,] 当2kπ﹣≤2x+≤2kπ+,即kπ﹣≤x≤kπ+,函数单调增,

故函数的单调增区间为[kπ﹣,kπ+](k∈Z)

(2)

∵∴2x+∈[,]

∴当2x+

=时函数的最小值为﹣;当2x+=时函数的最大值为+=1

27、已知函数.

(I)求f(x)的单调递增区间;

(Ⅱ)若不等式f(x)≥m 对都成立,求实数m的最大值.解答:(I )因为=

由得

所以f(x )的单调增区间是;

(Ⅱ)因为,所以所以

所以故m≤1,即m的最大值为1.28、已知函数

(1)求的值;

(2

)写出函数函数在上的单调区间和值域.

解答:=

(1)当时,f(x)=2﹣sinx﹣cosx ,故.(2)当时,|cosx|=﹣cosx,|sinx|=sinx,

故,当时,

故当是,函数f(x)单调递增,

当时,函数f(x )单调递减;函数的值域是.

29、已知函数

(1)设ω>0为常数,若y=f(ωx )在区间上是增函数,求w的取值范围(2)设集合,若A?B,求实数m的取值范围.解答:(1)

∵f(ωx)=2sinωx+1在上是增函数.

∴,即

(2)由|f(x)﹣m|<2得:﹣2<f(x)﹣m<2,即f(x)﹣2<m<f(x)+2

∵A?B,∴当时,f(x)﹣2<x<f(x)+2恒成立.

∴[f(x)﹣2]max<m<[f(x)+2]min

又时,∴m∈(1,4)

30、已知点A(1,,0),B(0,,1),C(2sinθ,cosθ).

(Ⅰ)若,求tanθ的值;

(Ⅱ)设O为坐标原点,点C 在第一象限,求函数的单调递增区间与值域.

解答:(Ⅰ)∵A(1,0),B(0,1),C(2sinθ,cosθ)

∵∵

∴化简得2sinθ=cosθ.

∵cosθ≠0(若cosθ=0,则sinθ=±1,上式不成立),∴

(Ⅱ)∵,

∴y=2sinθ+2cosθ=

∴求函数的单调递增区间为

值域是

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法 三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下. 1 配方分析法 如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法. 例1求函数y=2cos2x+5sinx-4的值域. 解原函数可化为 当sinx=1时,y max=1; 当sinx=-1时,y min=-9, ∴原函数的值域是y∈[-9,1]. 注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意. “cosx”,再求已知函数的最值 例2求下列函数的最值,并求出相应的x值.

y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max= 3 求反函数法 如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.

∴原函数的值域是 4 应用函数的有界性 上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下. 解由原式可得 (3y-1)sinx+(2y-2)cosx=3-y, 则上式即为 利用函数的有界性有 ∴原函数的值域是

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

三角函数的定义域、值域和最值

三角函数的定义域、值 域和最值 -CAL-FENGHAI.-(YICAI)-Company One1

三角函数的定义域、值域和最值 一 知识点精讲: 1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)r x =αcos 定义域为R. (3)x y = αtan 定义域为 ? ?? ???∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域为 {}Z k k ∈≠,|παα. 2 三角函数的值域 ① )0(,sin ≠+=a b x a y 型 当0>a 时,],[b a b a y ++-∈ ; 当0

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

三角函数的图像与性质教案

三角函数的图像与性质教案 考纲要求 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性. 2.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在(-π 2,π 2)上的性质. 要点识记 1个必会思想——整体思想的运用 研究y=A sin(ωx+φ)(ω>0)的单调区间、值域、对称轴(中心)时,首先把“ωx+φ”视为一个整体,再结合基本初等函数y=sin x的图象和性质求解. 2个重要性质——三角函数的周期性与单调性 (1)周期性:函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最 小正周期为π |ω|. (2)单调性:三角函数的单调性应在定义域内考虑,注意以下两个三角函数单调区间的不同: ①y=sin(π 4-x),②y=sin(x- π 4). 教材回归 判断下列说法是否正确(请在括号内填“√”或“×”). (1)y=cos x在第一、二象限上是减函数.(×) (2)y=k sin x+1,x∈R,则y的最大值是k+1 . (×) (3)y=cos(x+π 3)在[0,π]的值域是[-1, 1 2].(√) (4)y=sin(2x+5 2π)是非奇非偶函数.(×) 考向一三角函数的定义域、值域 例1(1)[2014·天津高考]函数f(x)=sin(2x-π 4)在区间[0, π 2]上的最小值为() A. -1 B. - 2 2 C. 2 2 D. 0 (2)函数y=lg(2sin x-1)+1-2cos x的定义域是________.

[解析] (1)∵x ∈[0,π2],∴2x -π4∈[-π4,34π], ∴y ∈[-22,1],选B 项. (2)由题意,得????? 2sin x -1>0,1-2cos x ≥0, 即????? sin x >12,cos x ≤12, [2k π+π3,2k π+56π)(k ∈Z ) 变式练习 1.已知f (x )的定义域为[0,1],则f (cos x )的定义域为__[2k π-π2,2k π+π2](k ∈Z ) ______. 2.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 __2__. 3.函数y =2cos 2x +5sin x -4的值域为____[-9,1]____. [易错点拨] 求解三角函数的最值和值域时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得,因此要把这两个最值点弄清楚,不然极易出现错误. 三角函数定义域、值域的求解策略 (1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值). 考向二 三角函数的单调性 例2 (1)[2014·唐山模考]已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个

函数的定义域和值域映射

函数定义域、值域、解析式、映射 知识点一:求各种类型函数的定义域 类型一: 含有分母和偶次方根 例1 求下列函数的定义域 1. y= 3102++x x 2. y = 类型二: 偶方根下有二次三项式 例2 求下列函数的定义域 1.. 1 ||1 42 -+-=x x y 2.2 3 568 4x x x y ---= 类型三:含有零次方和对数式 例3 求下列函数的定义域(用区间表示) (1)02 )23() 12lg(2)(x x x x x f -+--=; 练习:求下列函数的定义域 1. y=x x -||1 2. 122+--=x x y

3.()f x = 4.)13(log 2+=x y 5. 函数y =1122---x x 的取定义域是( ) A.[-1,1] B.(][)+∞-?-∞-,11, C.[0,1] D.{-1,1} 6. 求函数的定义域。 知识点二:抽象函数定义域 类型一:“已知f(x),求f(…)”型 例1:已知f(x)的定义域是[0,5],求f(x+1)的定义域。 类型二: “已知f(…) ,求f(x)”型 例2:已知f(x+1) 的定义域是[0,5],求f(x)的定义域。 类型三: “已知f(…),求f(…)”型 例3:已知f(x+2)的定义域为[-2,3),求f(4x-3)的定义域。 练习: 1、函数()f x 的定义域是[0,2],则函数(2)f x +的定义域是 ___________. 2、已知函数()f x 的定义域是[-1,1],则(2)(1)f x f x +++的定义域为 ___________.

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

函数的定义域和值域

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1) 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x

专项复习16三角函数的值域与最值

高三数学理科复习十六——三角函数的值域与最值 一、【知识复习与自学质疑】 1.求下列函数的最大值、最小值 (1)2sin cos ;3 y x x = (2)y = (3)212sin 1;2y x ??=-++ ??? (4)2515sin 416y x ??=-+ ?? ? 2.(1)若4x π≤ ,则()2cos sin f x x x =+的最小值是_________ (2)若 2x π ≤,则()sin f x x x =的值域是 3.(1)函数2cos sin x y x -= ()0x π<<的最小值是 (2)函数2cos 12cos 1x y x +=-的值域是 二、【例题精讲】 例1、已知1sin sin 3x y += ,求2sin cos y x -的最大值与最小值. 例2、求函数sin cos sin cos y x x x x =++的最大值. 例3、已知函数()22cos sin sin cos 3f x x x x x x π? ?=+-+ ??? ,求函数()f x 的最大值、最小值以及取得最值时的x 的值。

【矫正反馈】 1.(1)已知()0,θπ∈,函数23sin 13sin y θθ =+的最大值是___________________________ (2)已知()0,x π∈,函数2sin sin y x x =+的最小值是_____________________ (3)函数()223sin ,sin y x x k k Z x π= +≠∈的值域是____________________________ 2.设,当0,2x π??∈????时,()f x 的最大值为4,则a =_____________ 3.函数()2sin cos 36y x x x R ππ????=--+∈ ? ?????的最小值等于____________________ 4.函数sin 2sin x y x =+的值域为 ;函数sin cos 2 x y x =+的值域为 5.函数sin 2sin y x x =-的值域是_________________ 6.若()22cos 2cos 22sin 136f x x x x ππ????=-+ -++ ? ?????,则()f x 的最大值为_________ 7.函数()()sin 2cos 2y x x =--的最大值、最小值分别是_____________________________ 【迁移应用】 8.已知函数()22sin 23sin cos f x a x a x x a b =-++的定义域是,2ππ?????? ,值域是[]2,5,求,a b 的值. 9.求函数()24sin cos2f x a x x =--的最大值和最小值.(a R ∈)

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

高中数学-三角函数图像及性质与值域及最值

高中数学总复习-三角函数 第5课 三角函数的图像和性质(一) 【考点导读】 1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质; 2 2 2. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像; 3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】 动的最小正周期T _____L_;初相 —- 2. 三角方程2sin(_ - x)=1的解集为 4. 要得到函数y sinx 的图象,只需将函数 y cos x ______ - ____ 个单位. 【范例解析】 例 1.已知函数 f (x) 2sin x(sin x cosx). (I) 用五点法画出函数在区间 ——上的图象,长度 为一个周期; 2’ 2 (H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而 1. 已知简谐运动 f(x) 2sin (3X )( 2)的图象经过点(0,1),则该简谐运 3.函数 y Asin( x )( 0, 尹R)的部分图象如图所示,则函数表达为 y 4si n( x ) 8 4 的图象向右平移

分析:化为Asin( x )形式.得到?

列表,取点,描图: x 335 88888 y11逅1 1 V21 故函数y f(x)在区间[-,2]上的图象是: (U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x ) 4 4 1 的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不 4 2 变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标 4 4 伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将 4 y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到 4 y 1 - 2 sin(2x -)的图像. 1 解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得 2 到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到 8 解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x 2(sin 2x cos — 4 cos2xs in ) 4 2sin(2x 4 ).

三角函数的定义域与值域题库

. 专题三:三角函数的定义域与值域(习题库) 一、选择题 1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为() A、[﹣,] B、[,] C、[2kπ+,2kπ+](k∈Z) D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z) 分析:由题意知,求出x的围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴, 解答(k∈Z) ∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D. 2、函数的定义域是() A、. B、. C、 D、. 解答:由题意可得sinx﹣≥0?sinx≥又x∈(0,2π)∴函数的定义域是.故选B. 3、函数的定义域为() A、B、 C、D、 解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+), ∴,故选D. 4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是() A、[1,] B、 C、 D、

解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx= ==又∵∴ ∴则1≤f(x)≤故选A. 5、函数y=﹣cos2x+sinx﹣的值域为() A、[﹣1,1] B、[﹣,1] C、[﹣,﹣1] D、[﹣1,] 解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣ =sin2x+sinx﹣1=﹣ ∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣. sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B. 6、函数值域是() A、B、C、D、[﹣1,3] 解答:因为,所以sinx∈[],2sinx+1∈故选B 7、函数的最大值是() A、5 B、6 C、7 D、8 解答:∵= =∈[﹣7,7] ∴函数的最大值是7 8、若≤x≤,则的取值围是() A、[﹣2,2] B、 C、 D、 解答:=2(sinx+cosx)=2sin(), ∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1, 则函数f(x)的取值围是:.故选C.

1 函数定义域和值域

第一讲 函数定义域和值域 ★★★高考在考什么 【考题回放】 1.函数f (x )=x 21-的定义域是 ( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2.函数) 34(log 1 )(2 2-+-=x x x f 的定义域为 (A ) A .(1,2)∪(2,3) B .),3()1,(+∞?-∞ C .(1,3) D .[1,3] 3. 对于抛物线线x y 42=上的每一个点Q ,点()0,a P 都满足a PQ ≥,则a 的取值范围是 ( B ) A .()0,∞- B .(]2,∞- C .[]2,0 D .()2,0 4.已知)2(x f 的定义域为]2,0[,则)(log 2 x f 的定义域为 ]16,2[ 。 5. 不等式x x m 22 +≤对一切非零实数x 总成立 , 则m 的取值范围是 (,-∞__。 6. 已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0) f f '的最小值为 。 52 ★★★高考要考什么 一、 函数定义域有两类:具体函数与抽象函数 具体函数:只要函数式有意义就行---解不等式组; 抽象函数:(1)已知)(x f 的定义域为D ,求)]([x g f 的定义域;(由D x g ∈)(求得x 的范围就是) (2)已知)]([x g f 的定义域为D ,求)(x f 的定义域;(D x ∈求出)(x g 的范围就是) 二、 函数值域(最值)的求法有: 直观法:图象在y 轴上的“投影”的范围就是值域的范围; 配方法:适合一元二次函数 反解法:有界量用y 来表示。如02 ≥x ,0>x a ,1sin ≤x 等等。如,2 211x x y +-= 。 换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围。注意三角换元的应用。

三角函数的定义域与值域题库

专题三:三角函数的定义域与值域(习题库) 一、选择题 1、函数f(x)的定义域为[﹣,],则f(sinx)的定义域为() A、[﹣,] B、[,] C、[2kπ+,2kπ+](k∈Z) D、[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z) 分析:由题意知,求出x的范围并用区间表示,是所求函数的定义域;解答:∵函数f(x)的定义域为为[﹣,],∴, 解答(k∈Z) ∴所求函数的定义域是[2kπ﹣,2kπ+]∪[2kπ+,2kπ+](k∈Z)故选D. 2、函数的定义域是() A、. B、. C、 D、. 解答:由题意可得sinx﹣≥0?sinx≥又x∈(0,2π)∴函数的定义域是.故选B. 3、函数的定义域为() A、B、 C、 D、 解答:由题意得tanx≥0,又tanx 的定义域为(kπ﹣,kπ+), ∴,故选D. 4、函数f(x)=cosx(cosx+sinx),x∈[0,]的值域是() A、[1,] B、 C、 D、

解答:∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx= ==又∵∴ ∴则1≤f(x)≤故选A. 5、函数y=﹣cos2x+sinx﹣的值域为() A、[﹣1,1] B、[﹣,1] C、[﹣,﹣1] D、[﹣1,] 解答:函数y=﹣cos2x+sinx﹣=﹣(1﹣2sin2x)+sinx﹣ =sin2x+sinx﹣1=﹣ ∵﹣1≤sinx≤1,∴当sinx=﹣时,函数y有最小值为﹣. sinx=1时,函数y 有最大值为1,故函数y 的值域为[﹣,1],故选B. 6、函数值域是() A、B、 C、D、[﹣1,3] 解答:因为,所以sinx∈[],2sinx+1∈故选B 7、函数的最大值是() A、5 B、6 C、7 D、8 解答:∵= =∈[﹣7,7] ∴函数的最大值是7 8、若≤x≤,则的取值范围是() A、[﹣2,2] B、 C、 D、 解答:=2(sinx+cosx)=2sin(), ∵≤x≤,∴﹣≤≤,∴≤﹣sin()≤1, 则函数f(x)的取值范围是:.故选C.

三角函数最值与值域专题

三角函数最值与值域专题 三角函数的最值问题是高考的一个重要内容,要求掌握求三角函数最值的常见方法。 类型一:利用1cos 1sin ,≤≤x x 这一有界性求最值。 例1:求函数x x y sin 21sin --= 的值域。 解:由x x y sin 21sin --=变形为(1)sin 21y x y +=+,知1y ≠-,则有21sin 1y x y +=+,21|sin |||11y x y +=≤+22221||1(21)(1)1y y y y +?≤?+≤++203 y ?-≤≤,则此函数的值域是2[,0]3 y ∈- 例2,若函数cos y a x b =+的最大值是1,最小值是7-,求a,b 练习:1,求函数1cos 3cos x y x -=+的值域 3][1-∞-∞(,,+) 2,函数x y sin =的定义域为[a ,b],值域为]2 1,1[-,则b-a 的最大值和最小值之和为b A .34π B .π2 C .38π D .π4 类型二:x b x a y cos sin += 型。此类型通常可以可化为sin cos )y a x b x x ?=+=+求其最值(或值域)。 例1:求函数3sin 4cos ,(0,)2y x x x π =+∈的最值。 解:343sin 4cos 5sin(),cos ,sin 55 (,),(3,5] 2y x x x x y ???π ???=+=+==+∈+∈ 2,求函数)3sin()6sin(ππ++- =x x y (R x ∈)的最值。 解法:)12sin(2]4)6sin[(2)6cos()6sin(π ππππ+=+-=-+-=x x x x y ,∴函数的最大值为2,最小值为2-。 练习:1,函数y=3sin(x+20°) +5sin(x+80°)的最大值是: ( c ) A 、215B 、216C 、7 D 、8 2,已知函数x x f 2sin )(=,)62cos()(π+=x x g ,直线x =t (t ∈?? ????2,0π)与函数f (x )、g (x )的图像分别交于M 、N 两点,则|MN |的最 类型三:)0(sin sin 2≠++=a c x b x a y 型。此类型可化为)0(2≠++=a c bt at y 在区间]1,1[-上的最值问题。 例1:求函数1sin 3cos 2++=x x y (R x ∈)的最值 解:49)23(sin 1sin 3sin 122+- -=++-=x x x y ∴函数的最大值为4 9,最小值为4325- 例2:求函数1sin 3cos 2++=x a x y (R a ∈,R x ∈)的最大值。 解:1sin 3cos 2 ++=x a x y 转化为2sin sin 2y x x =-+配方得: ①当123>a ,即332>a 时,在sinx=1,13max +=a y

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

三角函数的定义域、值域和最值

三角函数的定义域、值域和最值 一 知识点精讲: 1 三角函数的定义域 (1)r y = αsin 定义域为R. (2)r x = αcos 定义域为R. (3)x y = αtan 定义域为 ? ?? ? ??∈+≠ Z k k ,2|ππ αα. (4)y x = αcot 定义域为{}Z k k ∈≠,|παα. 2 三角函数的值域 ① )0(,sin ≠+=a b x a y 型 当0>a 时,],[b a b a y ++-∈ ; 当0

相关主题