搜档网
当前位置:搜档网 › 第三章 晶体结构

第三章 晶体结构

第三章 晶体结构
第三章 晶体结构

第三章晶体结构

1.

极化能力最强的离子应具有的特性是………………………………………………()

(A) 离子电荷高、离子半径大(B) 离子电荷高、离子半径小

(C) 离子电荷低、离子半径小(D) 离子电荷低、离子半径大

答:(B)

2.

按顺序(用符号>或<)排列下列各组物质的性质:

(1)BaO,CaO,NaI,MgO,NaBr的晶格能大小:______________________________;

(2)K,As,Cl,Cs,Ni的电离能大小:________________________________________。答:(1) MgO > CaO > BaO > NaBr > NaI

(2) Cs < K < Ni < As < Cl

3.

CO2是非极性分子,SO2是_________分子,BF3是__________分子,NF3是_________分子,PF5是_________分子。

答:SO2极性分子BF3非极性分子NF3极性分子PF5非极性分子

4.

根据电负性的概念,判断下列化合物:AlCl3、Al2O3、Al2S3、AlF3中,键的极性大小顺序是______________________________________。

答:AlF3> Al2O3> AlCl3> Al2S3

5.

下列分子中属极性分子的是…………………………………………………………()

(A) SiCl4(g) (B) SnCl2(g) (C) CO2(D) BF3

答:(B)

6.

氯苯的偶极矩是1.73D,预计对二氯苯的偶极矩应当是……………………………()

(A) 4.36 D (B) 1.73 D (C) 0 (D) 1.00 D

答:(C)

7.

下列化合物中,极性最大的是…………………………………………………………()

(A) CS2(B) H2S (C) SO3(D) SnCl4

答:(B)

8.

BF3分子的偶极矩数值( D )为…………………………………………………………()

(A) 2 (B) 1 (C) 0.5 (D) 0

答:(D)

9.

下列物质中,属极性分子的是…………………………………………………………()

(A) PCl5(g) (B) BCl3(C) NCl3(D) XeF2

答:(C)

10.

下列各组判断中正确的是……………………………………………………………()

(A) CH4、CO2非极性分子(B) CHCl3、BCl3、H2S、HCl极性分子

(C) CH4、H2S、CO2非极性分子(D) CHCl3、BCl3、HCl极性分子

答:(A)

11.

CO、HBr、H2O等化合物,在它们各自的分子间作用力分布中,取向力最大的是______,最小的是______;诱导力最大的是______,色散力最大的是______。

答:H2O CO H2O HBr

12.

冰融化要克服H2O分子间的___________________________________作用力。

S粉溶于CS2中要靠它们之间的________________________________作用力。

答:取向力诱导力色散力氢键;色散力

13.

氢键一般具有_________性和_________性,分子间存在氢键使物质的熔沸点________,而具有内氢键的物质的熔沸点往往是_________________。

答:方向,饱和,升高,较低

14.

下列各对分子之间,存在的相互作用力分别是:

(1) CH3Cl和CCl4分子之间存在______________________________________;

(2) CH3Cl和CH3Cl分子之间存在____________________________________;

(3) CCl4和CCl4分子之间存在_______________________________________;

(4) CH3OH和C2H5OH分子间存在___________________________________。

答:(1) 诱导力色散力

(2) 取向力诱导力色散力

(3) 色散力

(4) 取向力诱导力色散力氢键

15.

下列稀有气体分子中,分子间作用力最小的是………………………………………()

(A) He (B) Ne (C) Ar (D) Kr

答:(A)

16.

在单质碘的四氯化碳溶液中,溶质和溶剂分子之间存在着…………………………()

(A) 取向力(B) 诱导力(C) 色散力(D) 诱导力和色散力答:(C)

17.

下列各分子中存在分子内氢键的是…………………………………………………()

(A) NH3(B) C6H8

(C) OH CHO(D)OH CHO

答:(D)

18.

以分子间作用力结合的晶体是………………………………………………………()

(A) KBr(s) (B) CO2(s) (C) CuAl2(s) (D) SiC(s)

答:(B)

19.

下列化合物中,不存在氢键的是……………………………………………………()

(A) HNO3(B) H2S (C) H3BO3(D) H3PO3

答:(B)

20.

下列化合物中,有分子内氢键的化合物是……………………………………………()

(A) H2O (B) NH3(C) CH3F (D) HNO3

答:(D)

21.

下列各物质的摩尔质量近乎相等,其中沸点最高的可能是…………………………()

(A) C2H5OC2H5(B) CH3CH2CH2SH

(C) (CH3)2NC2H5(D) CH3CH2CH2CH2OH

答:(D)

22.

SO2分子之间存在着…………………………………………………………………()

(A) 色散力(B) 色散力加诱导力

(C) 色散力加取向力(D) 色散力加诱导力和取向力

答:(D)

23.

不存在氢键的物质是…………………………………………………………………()

(C) C2H5OH (D) AsH3

(A) H3BO3(B)OH

CHO

答:(D)

24.

下列物质中,存在分子内氢键的是……………………………………………………()

(A) NH3(B) C2H4(C) HI (D) HNO3

答:(D)

25.

下列各对分子型物质中,沸点高低次序不正确的是…………………………………()

(A) HF > NH3(B) S2(g) > O2(C) NH3 > PH3(D) SiH4 > PH3

答:(D)

26.

下列各晶体中,熔化时只需克服色散力的是…………………………………………()

(A) K (B) H2O (C) SiC (D) SiF4

答:(D)

27.

下列物质熔沸点高低顺序正确的是…………………………………………………()

(A) He > Ne > Ar (B) HF > HCl > HBr

(C) CH4 < SiH4 < GeH4(D) W > Cs > Ba

答:(C)

28.

比较下列各组物质的熔点,正确的是…………………………………………………()

(A) NaCl > NaF (B) CCl4 > CBr4

(C) H2S > H2Te (D) FeCl3 < FeCl2

答:(D)

29

其中堆积最紧密的是_____________________________。

答:

30.

Ag+ 半径126 pm,I- 半径216 pm,按半径比规则AgI应具有__________型晶格,正、负离子的配位数之比应是__________;但它却具有立方ZnS型晶格,正、负离子配位数之比__________,这主要是由于______________________造成的。

答:NaCl

6:6

4:4

正、负离子相互极化

31.

金刚石属_______________晶格。单位晶格中的结点数是_______________,单位晶胞中的碳原子数是_____________。

答:面心立方,4 ,8

32.

在氯化钠的一个晶胞中,Na+ 的个数是________,Cl- 的个数是_________,故化学式为_____________________,其中Na+ 和Cl- 的配位数都是__________。

答:4,4 NaCl,6

33.

(1) BBr3熔点-46℃,属________晶体,晶格结点上排列的粒子是_______,微粒之间的作用力为__________________________________________________。

(2) KF熔点880℃,属________晶体,晶格结点上排列的粒子是_________和________,微粒之间的作用力为_____________________________________。

(3) Si熔点1423℃,属________晶体,晶格结点上排列的粒子是________,微粒之间的作用力为__________________________________________________。

答:(1) 分子分子范德华力

(2) 离子正离子和负离子离子间的静电引力

(3) 原子原子共价键结合力

34.

金属Ni为面心立方密堆积结构,晶胞参数a = 3.52 ?(10-8cm),金属Ni原子配位数为______,晶胞中原子数为__________,金属Ni原子半径为_____________,晶胞的密度等于___________________________ g·cm-3。

答:12,4,r = 1.24 10-8 cm(或1.24

A),8.94 g·cm-3

35.

Na2O晶体具有反萤石结构。其中O2- 和Na+ 分别相当于CaF2中的Ca2+ 和F-。它属于_____________晶格。其中O2- 离子的配位数是____,Na+ 离子的配位数是________。在一个Na2O晶胞中有_________个Na+ 和__________个O2- 离子。如果把O2- 离子看成在空间呈球密堆积结构,则Na+ 离子占有了其中的_____________空隙位置。

答:面心立方,8,4,8,4,全部四面体

36.

原子晶体,其晶格结点上的微粒之间的力是__________________,这类晶体一般熔沸点________,例如__________ 和__________两种晶体就是原子晶体。

答:共价键力,高,金刚石,二氧化硅(或立方氮化硼等)

37.

一个金属的面心立方晶胞中的金属原子数是………………………………………()

(A) 2 (B) 4 (C) 6 (D) 8

答:(B)

38.

在NaCl晶体中,Na+ (或Cl-)离子的最大配位数是……………………………………()

(A) 2 (B) 4 (C) 6 (D) 8

答:(C)

39.

试判断下列化合物熔点变化顺序,正确的一组是……………………………………()

(A) MgO > BaO > BN > ZnCl2 > CdCl2

(B) BN > MgO > BaO > CdCl2 > ZnCl2

(C) BN > MgO > BaO > ZnCl2 > CdCl2

(D) BN > BaO > MgO > ZnCl2 > CdCl2

答:(C)

40.

下列物质的熔点由高到低的顺序为…………………………………………………()

a. CuCl2

b. SiO2

c. NH3

d. PH3

(A) a > b > c > d (B) b > a > c > d

(C) b > a > d > c (D) a > b > d > c

答:(B) 41.

下列物质中不属于“无限分子”的是…………………………………………………( ) (A) 金刚砂 (B) 食盐 (C) 石英 (D) 淀粉 答:(D) 42.

下列元素的单质中熔点最高的是…………………………………………………… ( ) (A) C(金刚石) (B) Ca (C) Al (D) Si 答:(A) 43.

已知金刚石晶胞是类似于立方 ZnS 型的面心立方晶格 ,则晶胞中碳原子数是 ( ) (A) 4 (B) 8 (C) 12 (D) 6 答:(B) 44.

下列物质熔点高低顺序正确的是…………………………………………………… ( ) (A) He > Kr (B) Na < Rb (C) HF < HCl (D) MgO > CaO 答:(D) 45.

下列各组判断中,不正确的是…………………………………………………………( ) (A) CH 4,CO 2,BCl 3非极性分子 (B) CHCl 3,HCl ,H 2S 极性分子

(C) CH 4,CO 2,BCl 3,H 2S 非极性分子 (D) CHCl 3,HCl 极性分子 答:(C) 46.

固体金属钾为体心立方结构,在单位晶胞中钾原子的个数是………………………( ) (A) 1 (B) 9 (C) 2 (D) 6 答:(C) 47.

通过X 射线衍射,测得在铜晶体中,4个铜原子占据边长为0.363 nm 的立方体的体积。设铜的密度为8.92 g ·cm -3,计算1 mol Cu 中所含原子数目。(Cu 的相对原子质量 63.5)。 答:一个铜原子所占据的体积 :

V =4

)1063.3(3

8-?= 1.196 ? 10-23 (cm 3)

一个铜原子的质量为 1.196 ? 10-23 ? 8.92 = 1.067 ? 10-22 (g) N 0 ? 1.067 ? 10-22 = 63.5 N 0 = 5.95×1023

48.

CsI 晶体结构与CsCl 相同,假定相邻的Cs + 离子和I - 离子彼此接触,Cs + 离子半径为165 pm ,I -离子半径为220 pm ,Cs 和I 的相对原子质量分别为132.9和126.9。计算CsI 晶体的密度。

答:CsI 具有简单立方的晶格形式,其中8 个I - 位于立方体的顶角,体心处有1个Cs +。由于相邻的Cs + 与I - 彼此接触,所以

立方体的体对角线为 2(R (Cs +) + R (I -)) = 2 (165 + 220) = 770 (pm)

所以立方体的边长a 为3

770

= 445 (pm)

立方体的体积 V = a 3 = 8.81 ? 107 (pm 3)

因为每个晶胞内有一对CsI ,所以m =23

10

023.69

.1269.132?+= 4.31 ? 10-22 (g) 23

22

10

81.81031.4--??==V m ρ= 4.89 (g ·cm -3) 49.

Ag 的密度为10.6 g ·cm -3,其立方晶胞边长为0.408 nm ,Ag 的相对原子质量是107.9,通过计算确定Ag 的晶格类型。

答:)

10023.6/(9.1076.10)10408.0(23

37???-= 4.0 故晶格类型为面心立方。 50.

钨具有体心立方格子,每个格子顶点被一个原子占据,试计算钨原子的金属半径(钨的密度为19.30 g ·cm -3,相对原子质量183.9)。

答:设晶胞的棱长为a (cm),其中有二个钨原子,因此1 mol 钨原子所占体积为:

2

10023.623

3??a cm 3

所以钨的密度为:3

2310023.62

9.183a

???= 19.30 (g ·cm -3) 因而 a = 3.163 ? 10-8 cm

在体心立方格子中,在顶角上的原子和体心原子相接触,因此钨原子的金属

半径等于晶胞对角线长度的1/4,即 r =4

3

a = 0.1370 (nm)

51.

金属钾具有体心立方晶格,已知K 原子半径为0.231 nm ,相对原子质量39.1,计算: (1) K 原子的空间利用率;(2) K 的密度。

答:(1) K :体心立方晶格 3a 2 = (4r )2 r =

4

3a 所以空间利用率为 3

3

)43(34a a π? 2 ? 100% = 68.0%%

(2)23393

1002.6)10231.0(3

4

101.39????=

--πρ ?68.0 % = 8.56 ? 102 (kg ·m -3)

52.

铁为面心立方晶格,如Fe 原子半径为127pm ,试求铁金属晶体中的晶胞边长。 答:设晶胞边长为 a

则:2a 2 = (4r )2,a =2

4

? 127 = 359 (pm)

1-2 常见的晶体结构及其原胞、晶胞

§1-2 常见的晶体结构及其原胞、晶胞 1) 简单晶体的简单立方(simple cubic, sc) 它所构成的晶格为布喇菲格子。例如氧、硫固体。基元为单一原子结构的晶体叫简单晶体。 其特点有: 三个基矢互相垂直(),重复间距相等,为a, 亦称晶格常数。其晶胞=原胞;体积= ;配位数(第一近邻数) =6。(见图1-7) 图1-7简单立方堆积与简单立方结构单元 2) 简单晶体的体心立方( body-centered cubic, bcc ) , 例如,Li,K, Na,Rb,Cs,αFe,Cr,Mo,W,Ta,Ba等。其特点有:晶胞基矢, 并且,其惯用原胞基矢由从一顶点指向另外三个体心点的矢量构成:(见图1-9 b) (1-2) 其体积为;配位数=8;(见图1-8)

图1-8体心立方堆积与体心立方结构单元 图1-9简单立方晶胞(a)与体心立方晶胞、惯用原胞(b) 3) 简单晶体的面心立方( face-centered cubic, fcc ) , 例如,Cu,Ag, Au,Ni,Pd,Pt,Ne, Ar, Xe, Rn, Ca, Sr, Al等。晶胞基矢, 并且每面中心有一格点, 其原胞基矢由从一顶点指向另外三个面心点的矢量构成(见图1-10 b): (1-3)

其体积=;配位数=12。,(见图1-10) 图1-10面心立方结构(晶胞)(a)与面心立方惯用原胞(b) 4) NaCl结构(Sodium Chloride structure),复式面心立方(互为fcc),配位数=6(图1-11 a)。 表1-1 NaCl结构晶体的常数 5) CsCl结构(Cesuim Chloride structure),复式简单立方(互为sc),配位数=8(图1-11 b)。 表1-2 CsCl结构晶体的常数

第三章 晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷得反应方程式。 【解】MgO形成肖特基缺陷时,表面得Mg2+与O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: 该方程式中得表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷 状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷得反应方程式。 【解】AgBr中半径小得Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中得缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入得1个F-离子位于基质晶体中F-离子得位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为:可以验证该方程式符合上述3个原则。 再以负离子为基准,假设引入3个F-离子位于基质中得F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中得位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为: 此方程亦满足上述3个原则。当然,也可以写出其她形式得缺陷反应方程式,但上述2个方程所代表得

缺陷就是最可能出现得。 【例3-4】写出CaCl2加入KCl中得缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: 以负离子为基准,则缺陷反应方程式为: 这也就是2个典型得缺陷反应方程式,与后边将要介绍得固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: (1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 (2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷得形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质与压力下到达平衡。该过程得缺陷反应可用 或 方程式表示,晶体中得氧以电中性得氧分子得形式从TiO2中逸出,同时在晶体中产生带正电荷得氧空位与与其符号相反得带负电荷得来保持电中性,方程两边总有效电荷都等于零。可以瞧成就是Ti4+被还原为Ti3+,三价Ti占据了四价Ti得位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个

第十四章 的偏振和晶体光学

第十四章 光的偏振和晶体光学 1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射 光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。 解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=??? ? ??-====θθθn n n n o ①()()()() 06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+-- =θθθθθθθθp s r r 002 22 2 min max min max 8.93=+-=+-=p s p s r r r r I I I I P ②o B n n 3354.11tan tan 1121 =?? ? ??==--θ ③()() 4067.0sin 1sin ,0,57902120 21=+-- ===-==θθθθθθθθs p B B r r 时, 02 98364 .018364.011 ,8364.01=+-===-=P T r T p s s 注:若2 21 122,,cos cos p p s s t T t T n n ηηθθη=== )(cos ,212 2 22 2 0min 0max θθ-=+-= ==p s s p s p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。 解:每片玻璃两次反射,故10片玻璃透射率( ) 20 22010.83640.028s s T r =-== 而1p T =,令m m I I in ax τ=,则m m m m I I 110.02689 0.94761I I 10.02689ax in ax in p ττ---= ===+++

第三章晶体结构与性质全章教案

第三章晶体结构与性质 第一节晶体常识 第一课时 教学目标: 1、通过实验探究理解晶体与非晶体的差异。 2、学会分析、理解、归纳和总结的逻辑思维方法,提高发现问题、分析问题和解决问题的能力。 3、了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。 教学重难点: 1、晶体与非晶体的区别 2、晶体的特征 教学方法建议:探究法 教学过程设计: [新课引入]:前面我们讨论过原子结构、分子结构,对于化学键的形成也有了初步的了解,同时也知道组成千万种物质的质点可以是离子、原子或分子。又根据物质在不同温度和压强 下,物质主要分为三态:气态、液态和固态,下面我们观察一些固态物质的图片。 [投影]:1、蜡状白磷;2、黄色的硫磺;3、紫黑色的碘;4、高锰酸钾 [讲述]:像上面这一类固体,有着自己有序的排列,我们把它们称为晶体;而像玻璃这一类 固体,本身原子排列杂乱无章,称它为非晶体,今天我们的课题就是一起来探究晶体与非晶体的有关知识。[板书]:—、晶体与非晶体 [板书]:1、晶体与非晶体的本质差异 [提问]:在初中化学中,大家已学过晶体与非晶体,你知道它们之间有没有差异? [回答]:学生:晶体有固定熔点,而非晶体无固定熔点。 [讲解]:晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,那么他 们在本质上有哪些差异呢? [投影]晶体与非晶体的本质差异 [板书]:自范性:晶体能自发性地呈现多面体外形的性质。 [解释]:所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。 [板书]:注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。 [投影]:通过影片播放出,同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:那么得到晶体的途径,除了用上述的冷却的方法,还有没有其它途径呢?你能列举 哪些? [板书]:2、晶体形成的一段途径: (1)熔融态物质凝固; (2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。

第一章 晶体结构缺陷习题及解答

第一章 晶体结构缺陷习题与解答 1.1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错 解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的 间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。(b )滑移方向与位错线垂直的位错称为刃型位错。位错线与滑移方向相互平行的位错称为螺型位错。 1.2试述晶体结构中点缺陷的类型。以通用的表示法写出晶体中各种点缺陷的表示符号。试举例写出CaCl 2中Ca 2+置换KCl 中K +或进入到KCl 间隙中去的两种点缺陷反应表示式。 解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。在MX 晶体中,间隙原子的表示符号为M I 或X I ;空位缺陷的表示符号为:V M 或V X 。如果进入MX 晶体的杂质原子是A ,则其表示符号可写成:A M 或A X (取代式)以及A i (间隙式)。 当CaCl 2中Ca 2+置换KCl 中K +而出现点缺陷,其缺陷反应式如下: CaCl 2?→?KCl ?K Ca +' k V +2Cl Cl CaCl 2中Ca 2+进入到KCl 间隙中而形成点缺陷的反应式为: CaCl 2?→?KCl ??i Ca +2'k V +2Cl Cl 1.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么? 解:位置平衡是指在化合物M a X b 中,M 格点数与X 格点数保持正确的比例 关系,即M :X=a :b 。电中性是指在方程式两边应具有相同的有效电荷。质量平衡是指方程式两边应保持物质质量的守恒。 1.4(a )在MgO 晶体中,肖特基缺陷的生成能为6ev ,计算在25℃和1600℃时热缺陷的浓度。 (b )如果MgO 晶体中,含有百万分之一mol 的Al 2O 3杂质,则在1600℃时,MgO 晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。 解:(a )根据热缺陷浓度公式: =N n exp (- kT 2G ?) 由题意 △G=6ev=6×1.602×10-19=9.612×10-19J K=1.38×10-23 J/K T 1=25+273=298K T 2=1600+273=1873K 298K : =N n exp ??? ? ??????---2981038.1210612.92319=1.92×10-51

第3讲 晶体结构与性质

限时规范训练 [单独成册]限时50分钟 A 组(20分钟) 1.在解释下列物质性质的变化规律与物质结构间的因果关系时,与氢键或化学键的强弱无关的变化规律是( ) A .H 2O 、H 2S 、H 2Se 、H 2Te 的热稳定性依次减弱 B .熔点:Al >Mg >Na >K C .NaF 、NaCl 、NaBr 、NaI 的熔点依次降低 D .CF 4、CCl 4、CBr 4、CI 4的熔、沸点逐渐升高 解析:选D 。D 项中四种物质熔、沸点逐渐升高,是由于随着相对分子质量增大范德华力依次增大。 2.已知铜的晶胞结构如图所示,则在铜的晶胞中所含铜原子数及配位数分别为( ) A .14、6 B .14、8 C .4、8 D .4、12 解析:选D 。(1)晶胞中所含原子的计算方法,晶胞顶点上的原子占18,棱上的原子占14 ,面上的原子占12 ,体心上的原子为1,根据以上规律就可计算晶胞所含的原子数。(2)金属晶体中金属原子的配位数即为距离该原子最近的金属原子的数目。在Cu 的晶胞中,顶角原子为8个晶胞共用,面上的铜原子为两个晶胞共用,因此,金属铜的一个晶胞的原子数为8×18 +6×12 =4。在Cu 的晶胞中,与每个顶点的Cu 原子距离相等的铜原子共有12个,因此其配位数为12。 3.最近发现一种由M 、N 两种原子构成的气态团簇分子,如图所示。实心球●表示N 原子,空心球○表示M 原子,则它的化学式为( ) A .M 4N 4 B .MN C .M 14N 13 D .M 4N 5 解析:选C 。关键点是该物质为气态团簇分子,故属于分子晶体。与离子晶体、原子晶

体不同,它不存在共用与均摊问题,因此该物质的化学式就是其分子式,由14个M原子和13个N原子组成,故应选C。 4.萤石(CaF2)是一种难溶于水的固体。下列实验事实能说明CaF2一定是离子晶体的是() A.CaF2难溶于水,其水溶液的导电性极弱 B.CaF2的熔点较高,硬度较大 C.CaF2固体不导电,但在熔融状态下可以导电 D.CaF2在有机溶剂(如苯)中的溶解度极小 解析:选C。难溶于水,其水溶液的导电性极弱,不能说明CaF2一定是离子晶体;熔、沸点较高,硬度较大,也可能是原子晶体,B项不能说明CaF2一定是离子晶体;固体不导电但熔融状态下可以导电,一定有自由移动的离子生成,C项说明CaF2一定是离子晶体;CaF2在有机溶剂(如苯)中的溶解度极小,只能说明CaF2是极性分子,不能说明CaF2一定是离子晶体。 5.关于如图所示堆积模型的说法不正确的是() A.此种最密堆积为面心立方最密堆积 B.该种堆积方式空间利用率为74% C.该种堆积方式可用符号“…ABCABC…”表示 D.金属Mg就属于此种最密堆积 解析:选D。从图示可以看出,该堆积模型的第一层和第四层重复,可用符号“…ABCABC…”表示,属于面心立方最密堆积,空间利用率为74%,而Mg属于六方最密堆积,所以D项不正确。 6.在金刚石的晶体中,含有由共价键形成的碳原子环,其中最小的环上所需碳原子数及每个碳原子上任意两个C—C键间的夹角是() A.6个120°B.5个108° C.4个109°28′D.6个109°28′ 解析:选D。根据金刚石的晶体结构特点可知,最小的环上有6个碳原子。由于每个碳原子都是形成4个相同的共价键,所以基本构型是正四面体,键角是109°28′,故选D。 7.下列关于化学键的叙述中,正确的是() A.金属晶体内部都有“自由电子”,都存在金属键

第三章晶体结构与性质

第三章晶体结构与性质 第二节分子晶体与原子晶体(第1课时) 【学习目标】 1.说出分子晶体的定义、构成微粒、粒子间的作用力及哪些物质是典型的分 子晶体。 2.以冰和干冰为典型例子描述分子晶体的结构与性质的关系,解释氢键对冰晶 体结构和和物理性质的影响。 【预学能掌握的内容】 【自主学习】 一.分子晶体 1.定义:________________________________ 2.构成微粒________________ 3.粒子间的作用力:____________________ 4. 较典型的分子晶体有:①②_______ 单质 ③氧化物④⑤ 此外,还有少数盐是分子晶体,如 5.分子晶体的物理性质:熔沸点较____、易升华、硬度____。固态和熔融状态 下都。 6.分子间作用力对物质的性质有怎么样的影响? 一般说来,对与组成和结构相似的物质,相对分子量越大,分子间作用力越 ____,物质的熔沸点也越____。但是有些氢化物的熔点和沸点的递变却与此不 完全符合,如:NH 3 ,H 2 O和HF的沸点就出现反常,因 为这些分子间存在____键。 7.分子晶体的结构特征: (1)只有范德华力,无分子间氢键-分子晶体的结构特征 为。如:C60、干冰、I2、O2。 如右图所示,每个CO2分子周围有个紧邻的 CO2分子。 (2)有分子间氢键-不具有分子密堆积特征。如:冰 中每个水分子周围只有个紧邻的水分子,这一 排列使冰晶体中水分子的空间利用率不高,留有相当大 的空隙。 【预学中的疑难问题】 【合作探究】 1.大多数分子晶体的结构特征 (1)大多数分子晶体采用堆积 (2)若用一个小黑点代表一个分子,试画出大多数分子晶体的晶胞图 (3)干冰晶体 ①二氧化碳分子在晶胞中处于什么位置? ②一个干冰晶胞中含有几个分子? ③每个CO2分子周围有几个距它最近的分子? ④干冰晶体中CO 2 分子的排列方向有几种 ④干冰和冰,那种晶体密度大?试从晶体结构特征解释。

第三章《晶体结构与性质》《晶体的常识》教学设计

第三章《晶体结构与性质》《晶体的常识》教学设计 一、教学目标 1、知识与技能 (1)知道获得晶体的几种途径 (2)理解晶体的特点和性质及晶体与非晶体的本质区别 (3)初步学会确定一个晶胞中平均所含粒子数的方法 2、过程与方法 (1)收集生活素材,结合已有知识和生活经验对晶体与非晶体进行分类 (2)学生通过观察、实验等方法获取信息 (3)学会运用比较、分类、归纳、概括等方法对获取的信息进行加工 3、情感态度与价值观 (1)培养学生科学探究的方法 (2)培养学生的动手能力、观察能力、自主学习的能力,保持对生活中化学的好奇心和探知欲,增强学生学习化学的兴趣。 二、教学重点 1、晶体的特点和性质及晶体与非晶体的本质区别 2、确定一个晶胞中平均所含粒子数的方法 三、教学难点 1、确定一个晶胞中平均所含粒子数的方法 四、教学用品 课前学生收集的各种固体物质、玛瑙耳坠和水晶项链、蜂巢、晶胞实物模型、乒乓球、铁架台、酒精灯、蒸发皿、圆底烧瓶、碘、水、多媒体等 五、教学过程 1.新课导入: [教师]上课前,我已经请同学们收集了一些身边的固体物质,大家都带来了吗?(学生:带来了)你们都带来了哪些固体呢?(学生七嘴八舌,并展示各自的固体)[教师]同学们带来的固体物质可真是琳琅满目啊!但是,我们每个人可能只带了几样,想知道别人收集了哪些固体物质吗?(学生:想)下面我们请前后四个同学组成一个小组,然后互相交流一下收集的各种固体物质,并讨论如何将这些固体物质进行分类呢? [分组讨论]互相交流各自所带的物品,并分类(教师进行巡视) [教师]:请这组同学将你们带来的固体和交流的结果汇报一下。 [学生汇报]:(我们讨论后觉得将粗盐、明矾、樟脑丸分为一类;塑料、玻璃片、橡胶分为另一类。教师追问:你们为什么会这样分呢?生:根据这些有规则的几何外形,而另一些没有。) [教师总结]这组同学收集的物品很丰富,并通过组内讨论确定了分类依据,然后进行了恰当的分类。其实,同学们也许没有留心观察,我们身边还有许多美丽的固体,当然也有的可能是我们日常生活中不易接触到的。下面,我们就一起欣赏一下这些美丽的固体。 [视频投影]雪花放大后的形状、烟水晶、石膏、毒砂、绿柱石、云母等晶体实物(并配以相应的解说,给学生了解到这些固态物质都有规则的几何外形。) [教师讲述]我们就将这些有规则几何外形的固体称之为晶体,而另一些没有规则几何外形的固体称之为非晶体。 [板书]一、晶体与非晶体 设计意图:课前请同学收集身边的固态物质,然后在课堂上展示,并分组交流讨论,最后进行分类,并在课堂上汇报。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化

第一章 晶体结构与晶体中的缺陷

第一章晶体结构与晶体中的缺陷 一、名词解释 1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷; 3.刃位错与螺位错;4.固溶体;5.非化学计量化合物: 二、填空与选择 2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。 3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。 4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一) 5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。这种以Al3+取代Si4+的现象,称为。( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代)) 6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构) 7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英) 8.晶体结构中的热缺陷有和二类。 9.CaO掺杂到ZrO2中,其中置换了。由于电中性的要求,在上述置换同时产生一个空位。以上置换过程可用方程式表示。10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。 11.晶体线缺陷中,位错线与和垂直的是位错;位错线与二者平行的是位错。

第3讲 晶体结构与性质

第3讲晶体结构与性质 【考纲点击】 (1)了解晶体的类型,了解不同类型晶体中构成微粒及微粒间作用力的区别;(2)了解晶格能的概念,了解晶格能对离子晶体性质的影响;(3)了解分子晶体结构与性质的关系;(4)了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系;(5)理解金属键的含义,能用金属键理论解释金属的一些物理性质,了解金属晶体常见的堆积方式;(6)了解晶胞的概念,能根据晶胞确定晶体的组成并进行相关的计算。 1.常见晶体模型 晶体晶体结构晶体详解 离子晶体NaCl (型) (1)每个Na+(Cl-)周围等距且紧邻的Cl- (Na+)有6个,每个Na+周围等距且紧邻 的Na+有12个。(2)每个晶胞中含4个 Na+和4个Cl- CsCl (型) (1)每个Cs+周围等距且紧邻的Cl-有8 个,每个Cs+(Cl-)周围等距且紧邻的Cs +(Cl-)有6个。(2)如图为8个晶胞,每个 晶胞中含1个Cs+、1个Cl- CaF2 (型) 在晶体中,每个F-吸引4个Ca2+,每个 Ca2+吸引8个F-,Ca2+的配位数为8,F -的配位数为4 金属晶体简单立 方堆积 典型代表Po,空间利用率52%,配位数 为6

体心立方堆积典型代表Na、K、Fe,空间利用率68%, 配位数为8 六方最密堆积典型代表Mg、Zn、Ti,空间利用率74%, 配位数为12 面心立方最密堆积典型代表Cu、Ag、Au,空间利用率74%, 配位数为12 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面 心又各占据1个CO2分子。(2)每个CO2 分子周围等距紧邻的CO2分子有12个 混合型晶体石墨 晶体 层与层之间的作用力是分子间作用力, 平均每个正六边形拥有的碳原子个数是 2,C采取的杂化方式是sp2杂化 原子晶体金刚石 (1)每个碳原子与相邻的4个碳原子以共 价键结合,形成正四面体结构。(2)键角 均为109°28′。(3)最小碳环由6个C组成 且六原子不在同一平面内。(4)每个C参 与4条C—C键的形成,C原子数与C—C 键数之比为1∶2 SiO2 (1)每个Si与4个O以共价键结合,形成 正四面体结构。(2)每个正四面体占有1 个Si,4个“ 1 2O”,n(Si)∶n(O)=1∶2。 (3)最小环上有12个原子,即6个O,6 个Si 2.物质熔沸点高低比较规律 (1)不同类型晶体熔沸点高低的比较 一般情况下,不同类型晶体的熔沸点高低规律:原子晶体>离子晶体>分子晶体,如:金刚石>NaCl>Cl2;金属晶体>分子晶体,如:Na>Cl2(金属晶体熔沸点有的很

人教版高中化学选修3知识点总结第三章晶体结构与性质

第三章晶体结构与性质 课标要求 1.了解化学键和分子间作用力的区别。 2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。 3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。 5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。 要点精讲 一.晶体常识 1.晶体与非晶体比较 2.获得晶体的三条途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接凝固(凝华)。 ③溶质从溶液中析出。 3.晶胞 晶胞是描述晶体结构的基本单元。晶胞在晶体中的排列呈“无隙并置”。 4.晶胞中微粒数的计算方法——均摊法 如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。中学中常见的晶胞为立方晶胞 立方晶胞中微粒数的计算方法如下:

注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状 二.四种晶体的比较 2.晶体熔、沸点高低的比较方法 (1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子 晶体>分子晶体。 金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)原子晶体 由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅 (3)离子晶体

一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。 (4)分子晶体 ①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。 ②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。 ③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。 ④同分异构体,支链越多,熔、沸点越低。 (5)金属晶体 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。 三.几种典型的晶体模型

第一章 金属的晶体结构习题答案

第一章 金属的晶体结构 (一)填空题 3.金属晶体中常见的点缺陷是 空位、间隙原子和置换原子 ,最主要的面缺陷是 。 4.位错密度是指 单位体积中所包含的位错线的总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式的空间格子叫做 晶格 ,而晶胞是指 从晶格中选取一个能够完全反应晶格特征的最小几何单元 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是 [111] ,而面心立方 晶格是 [110] 。 7 晶体在不同晶向上的性能是 不同的 ,这就是单晶体的 各向异性现象。一般结构用金属 为 多 晶体,在各个方向上性能 相同 ,这就是实际金属的 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 和 面缺陷 三种缺陷。位错是 线 缺陷。 9.常温下使用的金属材料以 细 晶粒为好。而高温下使用的金属材料在一定范围内以粗 晶粒为好。 10.金属常见的晶格类型是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2), 那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜是 面心 结构的金属,它的最密排面是 {111} ,若铜的晶格常数a=0.36nm, 那么最密排面上原子间距为 0.509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方晶格的有 α-Fe 、Cr 、 V ,属于面心立方晶格的有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格的有 Mg 、 Zn 。 14.已知Cu 的原子直径为0.256nm ,那么铜的晶格常数为 。1mm 3Cu 中的原子数 为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为 . 16.在立方晶系中,某晶面在x 轴上的截距为2,在y 轴上的截距为1/2;与z 轴平行,则 该晶面指数为 (140) . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有 金属键 的 结合方式。 18.同素异构转变是指 当外部条件(如温度和压强)改变时,金属内部由一种金属内部由 一种晶体结构向另一种晶体结构的转变 。纯铁在 温度发生 和 多晶型转变。 19.在常温下铁的原子直径为0.256nm ,那么铁的晶格常数为 。 20.金属原子结构的特点是 。 21.物质的原子间结合键主要包括 离子键 、 共价键 和 金属键 三种。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不 相同的。 (N) 2.金属多晶体是由许多结晶位向相同的单晶体所构成。 ( N) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 4.体心立方晶格中最密原子面是{111}。 Y 5.金属理想晶体的强度比实际晶体的强度高得多。N 6.金属面心立方晶格的致密度比体心立方晶格的致密度高。 7.实际金属在不同方向上的性能是不一样的。N 8.纯铁加热到912℃时将发生α-Fe 向γ-Fe 的转变。 ( Y ) 9.面心立方晶格中最密的原子面是111},原子排列最密的方向也是<111>。 ( N ) 10.在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。 ( Y ) 11.纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 ( N ) 12.实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 ( Y ) 13.金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。N

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

第14章二极管和晶体管

第十四章二极管和晶体管 第十四章 二极管和晶体管 一、本章提要 介绍二极管和晶体管的基本结构、工作原理、特性和参数,PN结的构成是各种半导体器件的共同基础。此外本章还介绍了稳压管和几种光电器件。 二、本章课时安排 章节序号及名称主要内容学时分配本章总学时 14.1半导体的导电特性介绍本征半导体、杂质半导体、N型半导体和P 型半导体的基本概念。 1学时 14.2 PN结及其单向导电性1 PN结的构成; 2 PN结的单向导电性。 0.5学时 14.3 二极管二极管的结构、伏安特性和参数。 0.5学时14.4 稳压二极管 稳压管的工作原理、伏安特性和主要参数。 0.5学时14.5 晶体管晶体管的基本结构、电流分配和放大原理、伏安 特性和主要参数。 1学时 14.6 光电器件 光电器件:发光二极管、光电二极管和光电晶体 管。 0.5学时 4学时 14.1 半导体的导电特性 一、相关内容回顾 自1948年第一个晶体管问世以来,半导体技术有了飞跃的发展由于半导体器件具有重量轻、体积小、耗电少、寿命长、,工作可靠等突出优点,在现代工业、现代农业、现代国防和现代科学技术中获得了广泛的应用。 导体二极管和三极管是最常用的半导体器件,虽然在物理课中有所了解,但为了理论的系统化、我们还要从讨论半导体的导电特性和PN结的基本原理(特别是它的单向导电性)开始。因为PN结是构成各种半导体器件的共同基础,了解二极管和三极管的基本结构,工作原理、特性和参数,是学习电子技术和分析电子电路必不可少的基础。 二、重点及难点 1.教学重点: (1)本征半导体与杂质半导体的概念; (2)N型半导体和P型半导体的概念。 2.教学难点: (1)本征半导体和杂质半导体的特点和导电机理; (2)杂质半导体分为N型半导体和P型半导体两种,它们的特点和导电机理。 1

第一章 金属的晶体结构作业 答案

第一章金属的晶体结构 1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性. 答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。 (2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。 (3)导热性:自由电子的运动和正离子的振动可以传递热能。 (4) 延展性:金属键没有饱和性和方向性,经变形不断裂。 (5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。 2、填空: 1)金属常见的晶格类型是面心立方、体心立方、密排六方。 2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。 3)物质的原子间结合键主要包括金属键、离子键和共价键三种。 4)大部分陶瓷材料的结合键为共价键。 5)高分子材料的结合键是范德瓦尔键。 6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )). 7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。 8)铜是(面心)结构的金属,它的最密排面是(111 )。 9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。 3、判断 1)正的电阻温度系数就是指电阻随温度的升高而增大。(√) 2)金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。(×) 3) 晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。(× ) 4) 在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。(×) 5) 实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 (×) 6)体心立方晶格中最密原子面是{110},原子排列最密的方向也是<111> .(对) 7)面心立方晶格中最密的原子面是{111},原子排列最密的方向是<110>。 ( 对 ) 8)纯铁加热到912℃时将发生α-Fe向γ-Fe的转变,体积会发生膨胀。 ( 错 ) 9)晶胞是从晶格中任意截取的一个小单元。(错) 10)纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 (错) 4、选择题 1)金属原子的结合方式是( C )

2020年高考化学二轮精品复习讲义:选修3第三讲晶体结构与性质

第三讲晶体结构与性质 1.理解离子键的形成,能根据离子化合 物的结构特征解释其物理性质。 2 .了解晶体的类型,了解不同类型晶体 中结构微粒、微粒间作用力的区别。 3.了解晶格能的概念,了解晶格能对离子晶体性质的影响。 4.了解分子晶体结构与性质的关系。5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。 6.理解金属键的含义,能用金属键理论解释金属的一些物理性质。了解金属晶体常见的堆积方式。 7.了解晶胞的概念,能根据晶胞确定晶体的组成并进行相关的计算。2016,卷甲37T(3)(4);2016,卷乙37T(6);2016,卷丙37T(4)(5);2015,卷Ⅰ 37T(4)(5);2015,卷Ⅱ 37T(2)(5);2014,卷Ⅰ 37T(1)(3)(4);2014,卷Ⅱ 37T(4)(5) 晶体晶体的结构与性质 [知识梳理] 一、晶体 1.晶体与非晶体 晶体非晶体结构特征结构微粒周期性有序排列结构微粒无序排列性质自范性有无

特征熔点固定不固定异同表现各向异性各向同性 二者区别方法间接方法看是否有固定的熔点 科学方法对固体进行X-射线衍射实验 2.得到晶体的途径 (1)熔融态物质凝固。 (2)气态物质冷却不经液态直接凝固(凝华)。 (3)溶质从溶液中析出。 3.晶胞 (1)概念:描述晶体结构的基本单元。 (2)晶体中晶胞的排列——无隙并置 ①无隙:相邻晶胞之间没有任何间隙。 ②并置:所有晶胞都是平行排列、取向相同。 4.晶格能 (1)定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:kJ·mol-1。 (2)影响因素 ①离子所带电荷数:离子所带电荷数越多,晶格能越大。 ②离子的半径:离子的半径越小,晶格能越大。 二、四种晶体类型的比较 类型 比较 分子晶体原子晶体金属晶体离子晶体 构成粒子分子原子金属阳离子、自 由电子 阴、阳离子 粒子间的相互 作用范德华力(某些 含氢键) 共价键金属键离子键 硬度较小很大有的很大, 有的很小 较大

3年高考2年模拟(2019)第3讲 晶体结构与性质

第3讲晶体结构与性质 一、单项选择题 1.二茂铁[(C5H5)2Fe]的发现是有机金属化合物研究中具有里程碑意义的事件,它开辟了有机金属化合物研究的新领域。已知二茂铁熔点是173 ℃(在100 ℃时开始升华),沸点是249 ℃,不溶于水,易溶于苯、乙醚等非极性溶剂。下列说法不正确的是() A.二茂铁属于分子晶体 B.在二茂铁结构中,C5-之间形成的化学键类型是离子键 C.已知:环戊二烯的结构式为,则其中仅有1个碳原子采取sp3杂化 D.C5-中一定含π键 2.下列有关晶体的叙述中,不正确 ...的是() A.氯化钠和氯化铯晶体中,阳离子的配位数均为6 B.金刚石为空间网状结构 C.金属钠晶体采用体心立方堆积,每个晶胞含2个原子,配位数为8 D.干冰晶体中,每个CO2分子周围紧邻12个CO2分子 二、非选择题 3.(1)BN、MgBr2、SiCl4的熔点由高到低的顺序为。(2)NaF的熔点(填“>”“=”或“<”)B-的熔点,其原因是 。 4.硼和镁的化合物在超导方面有重要应用,如图所示是化合物的晶体结构单元。镁原子间形成正六棱柱,且棱柱的上下底的中心各有一个镁原子;六个硼原子位于棱柱内。则该化合物的晶体结构单元中硼和镁原子的最简单整数比为。 5.(1)①Zn晶体属于六方堆积,其晶胞结构见图1,则P点原子被个晶胞所共用。

②ZnO的熔点比ZnS的熔点高,其原因是。 (2)金属钾、铜晶体的晶胞结构如下图2、3(请先判断对应的图)所示,钾、铜两种晶体晶胞中金属原子的配位数之比为。 (3)氮化铝(其晶胞如图4所示)可由氯化铝与氨经气相反应制得。氮化铝的化学式 为。 6.(1)以四氯化钛、碳化钙、叠氮酸盐作原料,可以生成碳氮化钛化合物。其结构是用碳原子取代氮化钛晶胞(结构如图Ⅰ)顶点的氮原子,这种碳氮化钛化合物的化学式 为。 (2)图Ⅱ是由Q、Cu、O三种元素组成的一种高温超导体的晶胞结构,其中Cu为+2价,O为-2价,则Q的化合价为价。 (3)一种新型阳极材料LaCrO3的晶胞如图Ⅲ所示,已知距离每个Cr原子最近的原子有6个,则图Ⅲ中原子代表的是Cr原子。 7.(2017南京、盐城、连云港二模)下列反应可用于合成CH3OH: CO+2H2CH3OH (1)基态Mn2+核外电子排布式为。 (2)与N-互为等电子体的分子为(写化学式)。 (3)C-的空间构型是(用文字描述)。 (4)1 mol CH3OH中含有σ键的数目为mol。CH3OH与H2O可以任意比互溶,除因为它们都是极性分子外,还因为。 (5)锰元素的一种硫化物晶体的晶胞结构如图所示,该硫化物的化学式为。

第一章晶体结构

第一章 晶体结构 本章首先从晶体结构的周期性出发,来阐述完整晶体中离子、原子或分子的排列规律。然后,简略的阐述一下晶体的对称性与晶面指数的特征,介绍一下倒格子的概念。 §1.1晶体的周期性 一、晶体结构的周期性 1.周期性的定义 从X 射线研究的结果,我们知道晶体是由离子、原子或分子(统称为粒子)有规律地排列而成的。晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。 周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结 构的周期性。 晶体结构的周期性可由X-Ray 衍射直接证实,这种性质是晶体最基本或最本质的特征。(非晶态固体不具备结构的周期性。非晶态的定义等略),在其后的学习中可发现,这种基本性质对固体物理的学习具有重要的意义或是后续学习的重要基础。 2.晶格 格点和点阵 晶格:晶体中微粒重心,做周期性的排列所组成的骨架, 微粒重心所处的位置称为晶格的格点(或结点)。 格点的总体称为点阵。 整个晶体的结构,可看成是由格点沿空间三个不同方向, 各自按一定距离周期性平移而构成。每个平移的距离称为周期。 在某一特定方向上有一定周期,在不同方向上周期不一定相同。 晶体通常被认为具有周期性和对称性,其中周期性最为本质。对称性其实质是来源于周期性。故周期性是最为基本的对称性,即“平移对称性”(当然,有更为复杂或多样的对称性,但周期性或平移对称性是共同的)。 3.平移矢量和晶胞 据上所述,基本晶体的周期性,我们可以在晶体中选取一定的单元,只要将其不断地

重复平移,其每次的位移为a 1,a 2,a 3,就可以得到整个晶格。则→1a ,→2a ,→ 3a 就代表重复单元的三个棱边之长及其取向的矢量,称为平移矢量,这种重复单元称为晶胞,其基本特性为:⑴晶胞平行堆积在一起,可以充满整个晶体 ⑵任何两个晶胞的对应点上,晶体的物理性质相同,即: ()?? ? ??+++=→ →→332211a n a n a n r Q r Q 其中→ r 为晶胞中任一点的位置矢量。Q 代表晶体中某一种物理性质,n 1、n 2、n 3为整数。 二、晶胞的选取 可采用不同的选取方法选取晶胞和平移矢量,其结果都可以得到完全一样的晶格。不同选取方法着眼点有所不同。 固体物理学:①.选取体积最小的晶胞,称为元胞 ②.格点只在顶角上,内部和面上都不包含其他格点,整个元胞只包含一个 格点。 因为顶角上的格点为八个元胞所共有,所以他对每一个元胞的贡献只有八分之一,而每个元包含有八个顶角,故每个元胞平均只含有一个格点。 ③.元胞三边的三个平移矢量→ 1a ,→ 2a ,→ 3a 称为基本平移矢量,或称基矢。 ★ 固体物理学突出反映了晶体结构的周期性。 结晶学:①.通常选取体积较大的晶胞(相对而言,是重复单元的n 倍) ②.格点不仅在顶角上,同时可以在体心或面心上。 ③.晶胞的棱也称为晶轴,其边长称为晶格常数、点阵常数或晶胞常数。

相关主题