搜档网
当前位置:搜档网 › 过孔的寄生电感和电容以及如何使用过孔

过孔的寄生电感和电容以及如何使用过孔

过孔的寄生电感和电容以及如何使用过孔
过孔的寄生电感和电容以及如何使用过孔

一、过孔的寄生电容和电感

过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为

D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:

C=1.41εTD1/(D2-D1)

过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:

C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

这部分电容引起的上升时间变化量大致为:

T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps

从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。

过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感:

L=5.08h[ln(4h/d)+1]

其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:

L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH

如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。

二、如何使用过孔

通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到:

1.从成本和信号质量两方面考虑,选择合理尺寸的过孔大小。必要时可以考虑使用不同尺寸的过孔,比如对于电源或地线的过孔,可以考虑使用较大尺寸,以减小阻抗,而对于信号走线,则可以使用较小的过孔。当然随着过孔尺寸减小,相应的成本也会增加。

2.上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄生参数。

3.PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。

4.电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好。可以考虑并联打多个过孔,以减少等效电感。

5.在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以在PCB板上放置一些多余的接地过孔。

6.对于密度较高的高速PCB板,可以考虑使用微型过孔。

HC500L全自动电容电感测试仪

感谢您选用本公司的产品! 您现在参考的是全自动电容电感测试仪说明书。在使用本产品之前,请您详细阅读本说明书,并特别注意以下注意事项: 1、测量时必须将钳形表置于OFF档。 2、测量时必须将测试电压输出开关置于“通”位置。 3、为获得正确的容量值,必须在测量前设置与电容器铭牌相同的电压值。 4、如果怀疑仪器精度有问题,请用仪器随机配置的参考电容器进行检查。 5、在测量小电容小电感时,钳形表的位置对测量值有影响,请将钳形表置 于最佳位置,并保持钳口完整闭合。

目录 一、概述 0 二、技术参数 0 三、工作原理 (1) 四、仪器面板 (2) 五、接线方法 (3) 1、并联电容器测量 (3) 2、电抗器电感测量 (4) 3、电感测量注意事项 (4) 六、操作步骤 (5) 1、参数设置 (5) 2、测量开始 (6) 3、保存数据 (8) 4、打印操作 (9) 5、查询数据 (10) 七、配套清单 (11) 八、贮存及运输 (11)

HC-500L 全自动电容电感测试仪 一、概述 全自动电容电感测试仪针对变电站现场测量并联电容器组中的单个电容器电容值时存在的问题而专门研制的,它着重解决了以下问题: (1)现场测量单个电容器需拆除连接线,不仅工作量大而且易损坏电容器。 (2)电容表输出电压低而导致故障检出率低。 (3)测量电抗器的电感。 该仪器具有测量工作量小、快捷简便、性能稳定、测量准确、故障检出率高等特点。此外,它的电流测量单元还可兼作CVT、避雷器等电器设备的测量之用,具有一机多能的功效。 本型号测试仪特点 (1)量程自动转换; (2)储存7168个测试数据; (3)大屏幕液晶(320×240 LCD)显示, 汉字菜单操作提示; (4)实现波形和测量处理数据同屏显示,使测试过程更直观; (5)具有设置、校正和调试功能。 二、技术参数 1、电容量量程:0.2μF~2,000μF; 容量范围:5~20,000 kvar; 测量精度:0.2μF~2μF ±1%读数±0.02μF; 2μF~2,000μF ±1%读数±2个字; 2、电感量程:1mH~9.99H;测量精度:±1.5%读数±2个字 3、输出测量电压:AC 26V/500VA;50Hz; 4、显示方式:大屏幕液晶示屏全汉字输出,TPμp-40面板式热敏打印机

PCB布线设计经验谈-寄生电容

PCB布线设计经验谈-寄生电容 技术分类: EDA工具与服务 | 2009-04-10 布线需要考虑的问题很多,但是最基本的的还是要做到周密,谨慎。 寄生元件危害最大的情况 印刷电路板布线产生的主要寄生元件包括:寄生电阻、寄生电容和寄生电感。例如:PCB 的寄生电阻由元件之间的走线形成;电路板上的走线、焊盘和平行走线会产生寄生电容;寄生电感的产生途径包括环路电感、互感和过孔。当将电路原理图转化为实际的PCB时,所有这些寄生元件都可能对电路的有效性产生干扰。本文将对最棘手的电路板寄生元件类型 — 寄生电容进行量化,并提供一个可清楚看到寄生电容对电路性能影响的示例。 图1 在PCB上布两条靠近的走线,很容易产生寄生电容。由于这种寄生电容的存在,在一条走线 上的快速电压变化会在另一条走线上产生电流信号。 无损测试-Proceq瑞士 https://www.sodocs.net/doc/c718018340.html, 专业生产及研发混凝土回弹仪,钢筋 扫描仪,锈蚀分析仪,拉拔测试仪等.Ads by Google

图2 用三个8位数字电位器和三个放大器提供65536个差分输出电压,组成一个16位D/A转换器。 如果系统中的VDD为5V,那么此D/A转换器的分辨率或LSB大小为76.3mV。 图3 这是对图2所示电路的第一次布线尝试。此配置在模拟线路上产生不规律的噪声,这是因为在特定数字走线上的数据输入码随着数字电位器的编程需求而改变。 寄生电容的危害 大多数寄生电容都是靠近放置两条平行走线引起的。可以采用图1所示的公式来计算这种电容值。 在混合信号电路中,如果敏感的高阻抗模拟走线与数字走线距离较近,这种电容会产生问题。例如,图2中的电路就很可能存在这种问题。 为讲解图2所示电路的工作原理,采用三个8位数字电位器和三个CMOS运算放大器组成一个16位 D/A转换器。在此图的左侧,在VDD和地之间跨接了两个数字电位器(U3a和U3b),其抽头输出连接到两

电容的充放电过程及其应用

电容的充放电过程及其应用 一、实验目的 1.观察RC 电路的矩形脉冲响应。 2.了解RC 微分电路、积分电路及耦合电路的作用及特点。 3.学习双踪示波器的使用方法。 二、实验原理 1. RC 串联电路的充放电过程 在由电阻R 及电容C 组成的直流串联电路中,暂态过程即是电容器的充放电过程(图1),当开关K 打向位置1时,电源对电容器C 充电,直到其两端电压等于电源E 。这个暂态变化的具体数学描述为q =CUc ,而I = dq / dt ,故 dt dUc C dt dq i == (1) E iR Uc =+ (2) 将式(1)代人式(2),得 E RC Uc RC dt dUc 11=+ 考虑到初始条件t=0时,u C =0,得到方程的解: []()() ?? ?? ?? ?-=-=-==RC t E U E U RC t R E i RC t E U C R /exp /exp )/-(exp -1C 上式表示电容器两端的充电电压是按指数增长的一条曲线,稳态时电容两端的电压等于电 源电压E ,如图2(a) 所示。式中RC=具有时间量纲,称为电路的时间常数,是表征暂态过程进 行得快慢的一个重要的物理量,由电压u 上升到,1/e ≈,所对应的时间即为。 当把开关k 1打向位置2时,电容C 通过电阻R 放电,放电过程的数学描述为 图2 RC 电路的充放电曲线 (a )电容器充电过程 (b )电容器放电过程 U R Uc K 1 2 V E R C 图1 RC 串联电路

将dt dUc C i =,代人上式得01 =+Uc RC dt dUc 由初始条件t =0时,Uc =E ,解方程得 ? ??? ?--=--=-=) /exp()/exp() /exp(RC t E U RC t R E i RC t E Uc R 表示电容器两端的放电电压按指数律衰减到零,也可由此曲线衰减到所对应的时间 来确定。充放电曲线如图2所示。 2. 半衰期T 1/2 与时间常数τ有关的另一个在实验中较容易测定的特征值,称为半衰期T 1/2,即当U C (t )下降到初值(或上升至终值)一半时所需要的时间,它同样反映了暂态过程的快慢程度,与t 的关系为:T 1/2 =τln2 = τ(或τ= 2) 3. RC 电路的矩形脉冲响应。 若将矩形脉冲序列信号加在电压初值为零的RC 串联电路上,电路的瞬变过程就周期性地发生了。显然,RC 电路的脉冲响应就是连续的电容充放电过程。如图3所示。 图3 RC 电路及各元件上电压的变化规律 若矩形脉冲的幅度为U ,脉宽为t p 。电容上的电压可表示为: ?? ??? ≤≤?≤≤-=- -211 0)1()(t t t e U t t e U t u t t c τ τ ) (t u i )(t u R ) (t C R C ) (t u i (t u R (t u C u u u -t t t 1t 2 t 2t p t 1t 1 t 3 t 2t 3 t 3 t

电容电感测试原理以及操作方法

工作原理 图1 工作原理图 在被测电容支路有对被测电容的电压、电流取样的取样电路,取样电路的输出端分别接放大电路,从电压放大电路输出的电压信号和从电流放大电路输出的电流信号通过鉴相器输出相位差信号,与电压信号和电流信号通过A/D转换器后,输入CPU计算而得到被测电容值。因为采用了移动的电流取样单元,而使得无需拆除连接线就可以直接测量电容值。 加之测量过程档位是自动进行选择,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。 仪器面板 图2 仪器面板图 1:液晶屏幕 2:打印机:打印测量数据和波形

3:电流测试钳插座 4: 输出电压接线柱 5:接地端 6:电压输出开关 7:测量转换开关(电容测量/电感测量) 8:电源开关 9:电源(AC 220V)插座 10:屏幕亮度 11:按键功能区 【→】和【←】键可用于平移光标, 还可用于改变数值大小。 【↓】和【↑】键可用于改变光标的上下位置, 有时可用于增减数字。 【退出】键表示否定光标的提示,【确认】键表示肯定光标的提示。 【打印】键按此键后可得屏幕所显示的测量数据打印出来。 【复位】键按此键后直接跳回主菜单。 接线方法 A、并联电容器测量 进行测试前,应按使用要求正确连接电源线及信号电缆。 图3 接线方式示意图

图4 仪器现场测量实例 1、将测试电压电缆一端接到仪器测试电压输出端子④、⑦上; 2、将测试电流信号电缆插在仪器测试信号输入插头③上; 3、接好测试仪器220V电源线; 4、将测试电压电缆分别夹在被试电容器组两极的连接母线上,钳形电流取样表卡在所需测量的单台电容器的套管处; 5、闭合仪器电源开关⑧; 6、将面班上的“功能开关”置于“电容测量”,最后将“电压输出开关”置于“通”的位置即进行电容测量,液晶屏幕上显示的数据即是测量结果 7、将钳形电流表取下,卡于另一台需测量的电容器上,直至该相测量完毕。 8、测试结束后,切断电源,并将面板上所有开关恢复到测试前的状态,拆除所有接线。 B、电抗器电感测量 1、接线方法同测量电容时一样,只是被测试品为电感; 2、开机按【确认】后屏幕显示主菜单画面,将光标移至【设置】处,进入第3屏设置参数,将【等效阻抗】设为【串联电感】模式。按【确认】键并存入设置值,回到主菜单。 3、将光标移至【测量】处,按确认进入测量状态。 4、将【电压输出开关】置于【通】的位置即进行电感测量。 C、电感测量注意事项 1、被测电感的Q值越高,测量准确度越高。 2、因仪器测试电压较高,测量小电感量电感时(10mH以下),测试时间不宜过长,在测试结果稳定后尽快关断电压输出开关,以免大电流损坏仪器电源和

PCB过孔的寄生电容和电感

PCB过孔的寄生电容和电感的计算和使用 一、PCB过孔的寄生电容和电感的计算 PCB过孔本身存在着寄生电容,假如PCB过孔在铺地层上的阻焊区直径为D2,PCB 过孔焊盘的直径为D1,PCB板的厚度为T,基板材介电常数为ε,则PCB过孔的寄生电容数值近似于: C=1.41εTD1/(D2-D1) PCB过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度尤其在高频电路中影响更为严重。举例,对于一块厚度为50Mil的PCB,如果使用的PCB过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出PCB过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个PCB过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用PCB过孔进行层间的切换,就会用到多个PCB过孔,设计时就要慎重考虑。实际设计中可以通过增大PCB过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 PCB过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,PCB 过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个PCB过孔近似的寄生电感: L=5.08h[ln(4h/d)+1] 其中L指PCB过孔的电感,h是PCB过孔的长度,d是中心钻孔的直径。从式中可以看出,PCB过孔的直径对电感的影响较小,而对电感影响最大的是PCB过孔的长度。仍然采用上面的例子,可以计算出PCB过孔的电感为: L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH 如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个PCB过孔,这样PCB过孔的寄生电感就会成倍增加。 二、如何使用PCB过孔--PCB过孔的寄生电容和电感的使用 通过上面对PCB过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的PCB过孔往往也会给电路的设计带来很大的负面效应。为了减小PCB过孔的寄生效应带来的不利影响,在设计中可以尽量做到:

电容的充电和放电精编版

电容的充电和放电 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电容的充电和放电1应该是电池负极放出电子到一块极板,电池正极将另一块极板上的电子吸了过去。 2此时电路是通路电容的电过程,你这么理解是对的。3这个问题,要看你这个电路对电容充放电的时间周期。如果高于交流电的周期,那么电容电还没放完,电流方向就改变,开始反向充电,这样电容电压始终不能回零。如果小于交流电周期,电流还没有回落到零,电容已放电完毕。总之,只有两周期相同时,电容电压才和电路电压变化一致。将电容器的两端接上电源。(注意电容及电池连接的极性,电解电容器的负极应与电池的负极相接)电容器就会充电,有电荷的积累。两端电压不断升高,当电容器两端电压Uc同电池电压E相等时,充电完毕。此时Uc(电容器两端电压)=Q(电容器充电的电量)/C(电容器的电容量),当电容器两端去掉电源改加电阻等负载时,电容器进行放电。放电电流I=Uc/R(注意Q 是逐渐减少的,Uc也是逐渐减少的,所以I也是逐渐减少的)。 电容的充电和放电 电容是一种以电场形式储存能量的无源器件。在有需要的时候,电容能够把储存的能量释出至电路。电容由两块导电的平行板构成,在板之间填充上绝缘物质或介电物质。图1和图2分别是电容的基本结构和符号。 图1:电容的基本结构

图2:电容的电路符号 当电容连接到一电源是直流电()的电路时,在特定的情况下,有两个过 程会发生,分别是电容的“充电”和“放电”。 若电容与直流电源相接,见图3,电路中有电流流通。两块板会分别获得 数量相等的相反电荷,此时电容正在充电,其两端的电位差v c 逐渐增 大。一旦电容两端电压v c 增大至与电源电压V相等时,v c =V,电容充电完 毕,电路中再没有电流流动,而电容的充电过程完成。 图3:电容正在充电 由于电容充电过程完成后,就没有电流流过,所以在直流电路中,电容 可等效为开路或R=∞,电容上的电压v c 不能突变。 当切断电容和电源的连接后,电容通过电阻R D 进行放电,两块板之间的 电压将会逐渐下降为零,v c =0,见图4。 图4:电容正在放电 在图3和图4中,R C 和R D 的电阻值分别影响电容的充电和放电速度。 电阻值R和电容值C的乘积被称为时间常数τ,这个常数描述电容的充电和放电速度,见图5。 图5:在充电及放电过程中的电压v c 和电流iC

电容电感测试原理以及操作方法

精心整理 工作原理 图1工作原理图 在被测电容支路有对被测电容的电压、电流取样的取样电路,取样电路的输出端分别接放大电路,从电压放大电路输出的电压信号和从电流放大电路输出的电流信号通过鉴相器输出相位差信号,与电压信号和电流信号通过A/D转换器后,输入CPU计算而得到被测电容值。因为采用了移动的电流取样单元,而使得无需拆除连接线就可以直接测量电容值。 加之测量过程档位是自动进行选择,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。 仪器面板 图2仪器面板图 1:液晶屏幕 2:打印机:打印测量数据和波形 3:电流测试钳插座 4:输出电压接线柱 5:接地端 6:电压输出开关 7:测量转换开关(电容测量/电感测量) 8:电源开关 9:电源(AC220V)插座 10:屏幕亮度 11:按键功能区 【→】和【←】键可用于平移光标,还可用于改变数值大小。 【↓】和【↑】键可用于改变光标的上下位置,有时可用于增减数字。 【退出】键表示否定光标的提示,【确认】键表示肯定光标的提示。 【打印】键按此键后可得屏幕所显示的测量数据打印出来。 【复位】键按此键后直接跳回主菜单。 接线方法

A、并联电容器测量 进行测试前,应按使用要求正确连接电源线及信号电缆。 图3接线方式示意图 图4仪器现场测量实例 1、将测试电压电缆一端接到仪器测试电压输出端子④、⑦上; 2、将测试电流信号电缆插在仪器测试信号输入插头③上; 3、接好测试仪器220V电源线; 4、将测试电压电缆分别夹在被试电容器组两极的连接母线上,钳形电流取样表卡在所需测量的单台电容器的套管处; 5、闭合仪器电源开关⑧; 6、将面班上的“功能开关”置于“电容测量”,最后将“电压输出开关”置于“通”的位置即进行电容测量,液晶屏幕上显示的数据即是测量结果 7、将钳形电流表取下,卡于另一台需测量的电容器上,直至该相测量完毕。 8、测试结束后,切断电源,并将面板上所有开关恢复到测试前的状态,拆除所有接线。 B、电抗器电感测量 1、接线方法同测量电容时一样,只是被测试品为电感; 2、开机按【确认】后屏幕显示主菜单画面,将光标移至【设置】处,进入第3屏设置参数,将【等效阻抗】设为【串联电感】模式。按【确认】键并存入设置值,回到主菜单。 3、将光标移至【测量】处,按确认进入测量状态。 4、将【电压输出开关】置于【通】的位置即进行电感测量。 C、电感测量注意事项 1、被测电感的Q值越高,测量准确度越高。 2、因仪器测试电压较高,测量小电感量电感时(10mH以下),测试时间不宜过长,在测试结果稳定后尽快关断电压输出开关,以免大电流损坏仪器电源和被测试品电感。 操作步骤 开机后屏幕显示主菜单画面(第1屏开机显示)。 第1屏主菜单 2)设置 如欲设置参数,将光标移至设置处,进入第2屏设置参数。 第2屏设置参数第3屏存入设置值 在第2屏画面中,有以下内容可以调整

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

PCB过孔对信号传输的影响

PCB过孔对信号传输的影响 -----Maxconn整理 https://www.sodocs.net/doc/c718018340.html,/blog/maxconn/3796/message.aspx 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于: C="1".41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C="1".41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

测量电感及电容上电流和电压的相位差

测量电感及电容上电流和电压的相位差&测量电容上电流和电压 的相位差 上海中学高二(9)王晓欣、徐烨婷 指导教师杨新毅 实验目的:运用TI-83对电容电路进行实验,测量电容电路中电压与电流之间的相位差,了 解电容电感的性质。 实验原理 对于电阻R1,电流与电压成正比。电压v=Vsinωt,则i= Vsinωt /R。由于电阻R1mR1m1与电容串联,因此两者的电流相等。i= i= Vsinωt /R,电容的电流波形图与电阻的电压L1R1m1波形图的周期、初相位都相同,只在幅值上有所不同。因为只需观察电容的电流电压波形图 周期与初相位的关系,因此可以将电阻的电流波形图与电容的电压波形图进行对比,得出电 容的电压与电流的关系。 实验过程 1. 开机方法: ?用专用接线连接TI—83Plus和CBL。 ?按ON键打开TI—83Plus电源。

?按应用功能键APPS,进入Applications界面(见图1)。 图1 按数字键4选择Physics功能(见图2)。 图2 按ENTER回车键,进入主菜单(见图3)。 图3 2. 探头设定: ?将两个电压探头分别插入CH1,CH2两个插口中,打开CBL电源。 ?在Main Menu下按1选择SET UP PROBES,进入探头设定 菜单(见图4)。在NUMBER OF PROBES菜单中按2选择 图4 TWO。 在SELECT PROBE中按7选择MORE(见图5),再按3(见图6)将第一个探头选择为VOLTAGE。按ENTER 重复以上操作,将第二个探头也设为VOLTAGE。回到主菜 图5 单(见图7)。

图6 图7 3. 参数设定 在Main Menu下按2选择2:COLLECT DATA。在DATA COLLECTION中按2选择2:TIME GRAPH(见图8)。 图8 在ENTER TIME BETWEEN SAMPLES IN SECONDS:后输入时间间隔0.0005。在ENTER NUMBER OF SAMPLES:后输入取样个数100(见图9)。 图9 按ENTER对实验设置进行确认(见图10)。 图10 在CONTINUE中按1选择USE TIME SETUP,用以上设置图11 进行实验(见图11)。 4. 连接电路

电感电容计算

纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最大纹波电流300mA。 图2:降压型开关电源的电路图。 最大输入电压值为13.2V,对应的占空比为: D=Vo/Vi=5/13.2=0.379 (3) 其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为: V=Vi-Vo=8.2V (4) 当开关管关断时,电感器上的电压为: V=-Vo-Vd=-5.3V (5) dt=D/F (6) 把公式2/3/6代入公式2得出:

升压型开关电源的电感选择 对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为: D=1-Vi/Vo=1-5.5/12=0.542 (7) 图3:升压型开关电源的电路图。 当开关管导通时,电感器上的电压为: V=Vi=5.5V (8) 当开关管关断时,电感器上的电压为: V=Vo+Vd-Vi=6.8V (9) 把公式6/7/8代入公式2得出: 请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

PCB过孔技术全介绍

一、PCB过孔的基础知识 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。从过孔作用上可以分成各层间的电气连接和用作器件的固定或定位两类。从工艺制程上来过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。从设计的角度来看,一个过孔主要由中间的钻孔(drill hole)和钻孔周围的焊盘区构成,这两部分的尺寸大小决定了过孔的大小。过孔越小,其自身的寄生电容也越小,适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,又受到钻孔(drill)和电镀(plating)等工艺技术的限制。

二、关于过孔的寄生电容 过孔的寄生电容过孔本身存在着对寄生地的杂散电容,过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换, 设计者还是要慎重考虑的。 三、关于过孔的寄生电感 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。过孔产生的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。

电容器的充电和放电

电容器的充电和放电 Revised by Liu Jing on January 12, 2021

电容器的充电和放电 江苏省丰县中学特级教师戴儒京 实验目的:用传感器观察电容器的充电和放电。 实验器材:计算机、数据采集器,电压传感器,电流传感器,电源(8V),电容器(470),电阻(1000,3.3k,500),开关(单刀双掷),导线等。 实验1 用传感器观察电容器的充电和放电 1.电路图: 2.电学模块实物连接图 3.实验步骤 如图连接实验装置; 进入“TriE信息系统”,对电压传感器和电流传感器校零; 新建实验,新建活页夹,设置左图为I-t图象,右图为U-t图象; 选择“采集时间”为1min,“采集间隔”为100ms; 将开关板到左边,然后把开关板到右边,观察电容的充电和放电过程中电流和电压的变化; 点击“结束”。

4.图象 用传感器观察电容的充电和放电图象 左图:电流图象,充电时和放电时各产生脉冲电流,方向相反; 右图:电压图象,充电时电压升高,放电时电压降低。 难点是左图,要放大才能看到,最大电流只有0.007A. 实验2 电容器通过不同电阻放电: 1.电路图: 2.实验步骤 如图连接实验装置; 进入“TriE信息系统”,对电压传感器校零; 新建实验,用“公式编辑”新建物理量电流,编辑公式; 新建活页夹,设置图下象为I-t图象; 选择“采集时间”为10s,“采集间隔”为1.25ms,点击“开始”按钮; 将开关板到左边,充电后把开关板到右边,观察电容放电过程中电流的变化; 等放电结束,点击“添加标记”按钮,输入使用的电阻值R=1000Ω;

过孔对信号传输的影响

过孔对信号传输的影响 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感: L=5.08h[ln(4h/d)+1]

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电容电感测量

电子测量方法与测量仪器7——电容电感测量 (三) 电容、电感测量 电容器的参数很多,通常有:电容量、耐压、漏电、等效电感、损耗、频率特性、温度稳定性、等效串联电阻(超大容量电容器)等;电感器的参数有:电感量、漏感、等效电阻、损耗、频率特性、饱和电流、最大功率等。在故障诊断以及电器维修中更换元器件时,需要对这些参数予以全面考虑。但是一般条件下,元器件上只会标明电容量或电感量、电容器的耐压值等,普通仪器也只能测量到这些基本参数,其他的参数只能靠选用规定类型、规格的电容器或电感器来保证。 电容器的种类很多,依其中使用的绝缘介质材料不同可分为:纸介电容、金属化纸介电容、云母电容、瓷介电容、涤纶薄膜电容、聚本乙烯薄膜电容、钽电解电容、铝电解电容、双电层电容等。大多数电容器没有正负极之分,容量一般都在1uf 以下,一般适合在较高频率的场合使用;电解电容器的容量可以做到104uf ,超大容量的双电层电容器(EDLC )其容量可以做到法拉级,但都有极性,适合低频场合使用,容量测量方法与无极性电容器不同。电感器一般有空心、磁心、铁心之分,但电感量的测量方法一般没有区别。 (1) 无极性电容器、电感器的测量 电容量、电感量的测量可归结为复阻抗虚部的测量。由于实际的电容器或电感器都不是理想的纯参数元件,不可避免地存在损耗电阻、(电感器)分布电容、(电容器)等效电感等,应看成是一个阻抗元件。在专用的数字化电容、电感测量仪器中,一般使用正弦交流电压t Vm t v ωsin )(=作为测量电源,在被测阻抗两端产生交流压降,并通过对波形的同步检波,实现相位分离,得到对应的实 部电压Vr 和虚部电压Vx 。 通过Vr 和Vx 就可以换算出被测阻抗的L 或C 数值,以及损耗情况,并通过LCD 以数字方式直接显示,因此是一种综合的测试仪器,可以对被测阻抗元件进行全面的性能测试和分析。 一些数字式万用表也具有电容、电感值测量功能,但在测量电容或电感时,一般都把被测元件当作是纯参数元件,采用较简单的“电容——电压变换”或“电感——电压变换”的方法测量电容器容量和电感器电感量。图(3-20)所示是

各种电抗器的计算公式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l

过孔的寄生电容和电感--B

過孔的寄生電容和電感 admin @ 2014-03-26 , reply:0 Tags: 一、過孔的寄生電容和電感 過孔本身存在著寄生的雜散電容,如果已知過孔在鋪地層上的阻焊區直徑為D2,過孔焊盤的直徑為 D1,PCB板的厚度為T,板基材介電常數為ε則過孔的寄生電容大小近似於: C=1.41ε 過孔的寄生電容會給電路造成的主要影響是延長了信號的上升時間,降低了電路的速度。舉例來說,對於一塊厚度為50Mil的PCB板,如果使用的過孔焊盤直徑為20Mil(鑽孔直徑為10Mils),阻焊區直徑為40Mil,則我們可以通過上面的公式近似算出過孔的寄生電容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 這部分電容引起的上升時間變化量大致為: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 從這些數值可以看出,儘管單個過孔的寄生電容引起的上升延變緩的效用不是很明顯,但是如果走線中多次使用過孔進行層間的切換,就會用到多個過孔,設計時就要慎重考慮。實際設計中可以通過增大過孔和鋪銅區的距離(Anti-pad)或者減小焊盤的直徑來減小寄生電容。 過孔存在寄生電容的同時也存在著寄生電感,在高速數字電路的設計中,過孔的寄生電感帶來的危 用。我們可以用下面的經驗公式來簡單地計算一個過孔近似的寄生電感: L=5.08h[ln(4h/d)+1] 其中L指過孔的電感,h是過孔的長度,d是中心鑽孔的直徑。從式中可以看出,過孔的直徑對電感 L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH 如果信號的上升時間是1ns,那麼其等效阻抗大小為:XL=πL/T10-90=3.19Ω 電流的通過已經不能夠被忽略,特別要注意,旁路電容在連接電源層和地層的時候需要通過兩個過孔,這樣過孔的寄生電感就會成倍增加。 二、如何使用過孔 通過上面對過孔寄生特性的分析,我們可以看到,在高速PCB設計中,看似簡單的過孔往往也會給電路的設計帶來很大的負面效應。為了減小過孔的寄生效應帶來的不利影響,在設計中可以盡量做到:1.從成本和信號質量兩方面考慮,選擇合理尺寸的過孔大小。必要時可以考慮使用不同尺寸的過孔,比如對於電源或地線的過孔,可以考慮使用較大尺寸,以減小阻抗,而對於信號走線,則可以使用較小的過孔。當然隨著過孔尺寸減小,相應的成本也會增加。 2.上面討論的兩個公式可以得出,使用較薄的PCB板有利於減小過孔的兩種寄生參數。 3.PCB板上的信號走線盡量不換層,也就是說盡量不要使用不必要的過孔。 4.電源和地的管腳要就近打過孔,過孔和管腳之間的引線越短越好。可以考慮並聯打多個過孔,以減少等效電感。 5.在信號換層的過孔附近放置一些接地的過孔,以便為信號提供最近的迴路。甚至可以在PCB板上放置一些多餘的接地過孔。 6.對於密度較高的高速PCB板,可以考慮使用微型過孔。

相关主题