搜档网
当前位置:搜档网 › 导电性能带理论

导电性能带理论

导电性能带理论
导电性能带理论

半导体-金属导体平面结构导电性能的维度效应

半导体-金属导体平面界面结构导电性能的维度效应 宋太伟邹杏田璆璐 2017年3月 上海日岳新能源有限公司上海陆亿新能源有限公司上海建冶研发中心 内容摘要: 半导体-金属材料结构界面或其它由2种不同材料组成的复合材料结构界面,一般存在明显的微观扩散结势垒构造,这种扩散结对复合材料的导电性等物理性能产生明显影响。我们发现这种半导体-金属组合结构材料的导电性与半导体和金属导体的几何结构存在明显的关联效应,尤其是在体型半导体平面表面镀上金属薄膜的材料结构,表现出清晰的导电性等物理性能与材料几何结构维度的关联关系,这种材料的导电性呈现明显的二极管效应。我们用时空结构几何理论对此现象分别作了理论阐明。这种普遍存在的由半导体和金属材料的维度差异引起的复合材料的二极管效应,其理论价值与在光电工程领域的应用价值极大。 1引言 两种不同材料的接触面,一般会产生接触势垒。由具有一定导电性能的两种材料依次排列组成的复合材料结构,由于不同材料导电电子的平均约束势能不同,在两种材料的接触界面附近,微观上呈非均衡的载流子扩散形态及电位梯度。界面附近导电电子低约束势能的材料呈现一定的正电性,相应的另一种导电电子高约束势能的材料界面附近呈现一定的负电性,复合材料内部这种不同材料界面附近的微观构造形态,是一种接触电位势垒,可称为电位势结,平面薄膜结构形态的也称为“量子泵”[3]。就导电性能来讲,这种内部界面构造,都有一定程度的二极管效应。半导体PN结是典型的界面电位势结构造形态。 我们在开发研制高效多结层硅基太阳能电池的过程中,发现不同材料界面附近的微观电位势结构造形态,对复合材料的导电性能的影响,存在明显的维度关联关系或者说尺度关联关系,也就是说,复合材料内部界面电位势结产生的二极管效应大小,与两种材料的几何维度构造明显关联,两种不同材料典型的几何维度形态结构组合是3维-2维、3维-1维、3维-0维、2维-1维、2维-0维等,见示意图1。我们重点对半导体硅晶体为3维、金属或非金属为2维薄膜的3-2维界面构造材料(示意图1中的a结构),就其光电性能变化进行了详细的实验与分析研究,使用的实验仪器设备主要包括真空镀膜系统、氙灯、单色仪、i-v曲线源表、椭圆偏振仪、显微镜等。我们运用简单的时空结构几何[1][2]模型,对3维-2维界面

金属导电性

§2.3 金属的导电性 ?依据量子力学,认为电子在点阵中并不直线移动,而是像光线那样,按波动力学的规律运动。各个波在原子上被散射,然后互相干涉并连续地形成波前。 ?按照量子力学的概念将电导率加以修改,可得 ?表明:对一定的金属来说,其电导率随着散射的几率p而变化。 ?散射量和特征温度成正比。可以设想具有理想点阵(无畸变)的金属在0K下电子波是被散射的,和电导率应为无限大,所以电阻等于零。而当加热时,随着热振动的增加,减小,电阻增大。 2 影响金属导电性的因素 (1)温度的影响 温度升高导致离子振动加剧,使电阻增大。 电阻和温度的关系常用下述公式来表示。 式中称为平均电阻温度系数。 (2)应力的影响 ?在弹性范围内单向拉伸或者扭转应力能提高金属的电阻率。 ?应力使电阻增加是由于在拉伸时应力使原子的间距增大而造成的,但在单向压应力作用下,对于大多数金属来说使电阻率降低。 (4)热处理的影响 ?冷加工后进行退火,可以使电阻率降低,特别是经过较大的压缩以后,在100℃退火可看到明显的恢复。 ?金属在冷加工后,电阻随着退火温度的升高而下降,但当退火温度高于再结晶温度时,由于再结晶后新晶粒的晶界阻碍电子运动,电阻反而又增加。 ?淬火能够固定金属在高温时空位的浓度,从而产生残留电阻。空位浓度愈高,残留电阻愈大。且随着淬火加热温度的增高,空位的浓度愈大。 3 合金的导电性 ?合金的导电性与合金的成分,组织有关。 ?(1)固溶体的电阻 当一个合金形成固溶体时,一般的规律是电导率降低,而电阻率提高。 ?冷加工对固溶体如同对纯金属的影响一样使电阻增大,而退火时则使电阻减小,当对固溶体进行冷加工和退火时,即使是浓度较低的固溶体,其电阻的改变也较相同条件下纯金属电阻的改变大得多。 (2)金属化合物的电阻 ?由于组成了金属化合物,原子间的金属键部分的改换成了共价键或离子键,使有效电子数减少

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

金属的导电性与导热性.

金 属 的 导 电 性 与 导 热 性姓名:马丽萍 物理教育 Z1101班

金属的导电性与导热性 物理系Z1101班马丽萍 一、导电性 物体传导电流的能力叫做导电性。各种金属的导电性各不相同,通常银的导电性最好,其次是铜和金。固体的导电是指固体中的电子或离子在电场作用下的远程迁移,通常以一种类型的电荷载体为主,如:电子导电,以电子载流子为主体的导电;离子导电,以离子载流子为主体的导电;混合型导体,其载流子电子和离子兼而有之。除此以外,有些电现象并不是由于载流子迁移所引起的,而是电场作用下诱发固体极化所引起的,例如介电现象和介电材料等。 1.1 导电的概述 导电即是让电流通过 1.2导电性的解释 物体导电的能力。一般来说金属、半导体、电解质和一些非金属都可以导电。非电解质物体导电的能力是由其原子外层自由电子数以及其晶体结构决定的,如金属含有大量的自由电子,就容易导电,而大多数非金属由于自由电子数很少,故不容易导电。石墨导电,金刚石不导电,这就是晶体结构原因。电解质导电是因为离子化合物溶解或熔融时产生

阴阳离子从而具有了导电性。 1.3理论由来 最早的金属导电理论是建立在经典理论基础上的特鲁德一洛伦兹理论。假定在金属中存在有自由电子,它们和理想气体分子一样,服从经典的玻耳兹曼统计,在平衡条件下,虽然它们在不停地运动,但平均速度为零。有外电场存在时,电子沿电场力方向得到加速度a,电子产生定向运动,同时电子通过碰撞与组成晶格的离子交换能量,而失去定向运动,从而在一定电场强度下,有一平均漂移速度。根据经典理论,金属中自由电子对热容量的贡献应与晶格振动的热容量可以相比拟,但是在实验上并没有观察到,这个矛盾在认识到金属中的电子应遵从量子的费米统计规律以后得到了解决。根据费米统计,只有在费米面附近的很少一部分电子对比热容有贡献。另一个困难是根据实验上得到的金属电导率数值估算出的电子平均自由程约等于几百个原子间距,而按照经典理论,不能解释电子为什么会有如此长的自由程。正是为了解决这个矛盾,结合量子力学的发展,开始系统研究电子在晶体周期场中的运动,从而逐步建立了能带理论。按照能带理论,在严格周期性势场中运动的电子,保持在一个本征态中,电子运动不受到“阻力”,只是当原子振动、杂质缺陷等原因使晶体势场偏离周期场,使电子运动发生碰撞散射,从而对晶体中电子的自由程给出了正确的解释。一般金属的电

材料的导电性

导体与绝缘体 教学目标 科学概念: 1、有的物质易导电,这样的物质叫做导体;有的物质不易导电,这样的物质叫做绝缘体 2、导电性是材料的基本属性之一。 过程与方法: 1、根据任务要求制定一个小组的研究计划,并完成设想的计划。 2、实施有关检测的必要步骤,并整理实验记录。 情感态度价值观: 1、学会与人合作。 2、培养尊重事实的实证精神。 3、小学生四年级科学导体与绝缘体教案:认识到井然有序的实验操作习惯和形成安全用电的意识是很重要的。 教学重点 教学难点 教学准备 为每组学生准备:木片、塑料片、陶瓷、纸板、橡皮、布、丝绸、皮毛、钢管、玻璃、铅笔、铜丝、铅丝、铝丝(易拉罐)、铁丝、卷笔刀、硬币、导线、插座、20种待检测的物体,一个电路检测器。一份科学检测记录表。 教学过程

一、观察导入: 1、观察简单的电路连接,说说电流在电路中是怎么流的。 2、讨论将电路中的导线剪断,会出现什么情况,为什么? 3、想办法重新接亮小灯泡,在此过程中引导学生发现电路检测器的两个金属头接在一起,小灯泡会亮,而把外面的塑料皮接触在一起或把金属头和塑料皮接触在一起,小灯泡就不会亮。 4、讨论:为什么电路检测器的两个金属头接在一起,小灯泡会亮,而把外面的塑料皮接触在一起或把金属头和塑料皮接触在一起,小灯泡就不会亮。 5、讲授:像铜丝那样容易让电流通过的物质叫做导体;像塑料那样不容易让电流通过的物质,叫做绝缘体。(板书:导体、绝缘体) 二、检测橡皮是导体还是绝缘体 1、提问:怎样检测一块橡皮是导体还是绝缘体呢? 2、预测橡皮能否通过电流使小灯泡发光,并做好记录。 3、使“电路检测器”的两个检测头相互接触,检验小灯泡是否发光。 4、用两个检测头接触橡皮的两端,观察小灯泡是否发光。 5、重复检测一次,并将检测时小灯泡“亮”或“不亮”的情况记录下来。 6、得出结论:橡皮是绝缘体。 三、检测20种物体的导电性:

金属的导电性与导热性

金属的导电性与导热性

金属的导电性与导热性 一、导电性 物体传导电流的能力叫做导电性。各种金属的导电性各不相同,通常银的导电性最好,其次是铜和金。固体的导电是指固体中的电子或离子在电场作用下的远程迁移,通常以一种类型的电荷载体为主,如:电子导电,以电子载流子为主体的导电;离子导电,以离子载流子为主体的导电;混合型导体,其载流子电子和离子兼而有之。除此以外,有些电现象并不是由于载流子迁移所引起的,而是电场作用下诱发固体极化所引起的,例如介电现象和介电材料等。 1.1 导电的概述 导电即是让电流通过 1.2导电性的解释 物体导电的能力。一般来说金属、半导体、电解质和一些非金属都可以导电。非电解质物体导电的能力是由其原子外层自由电子数以及其晶体结构决定的,如金属含有大量的自由电子,就容易导电,而大多数非金属由于自由电子数很少,故不容易导电。石墨导电,金刚石不导电,这就是晶体结构原因。电解质导电是因为离子化合物溶解或熔融时产生阴阳离子从而具有了导电性。 1.3理论由来

最早的金属导电理论是建立在经典理论基础上的特鲁德一洛伦兹理论。假定在金属中存在有自由电子,它们和理想气体分子一样,服从经典的玻耳兹曼统计,在平衡条件下,虽然它们在不停地运动,但平均速度为零。有外电场存在时,电子沿电场力方向得到加速度a,电子产生定向运动,同时电子通过碰撞与组成晶格的离子交换能量,而失去定向运动,从而在一定电场强度下,有一平均漂移速度。根据经典理论,金属中自由电子对热容量的贡献应与晶格振动的热容量可以相比拟,但是在实验上并没有观察到,这个矛盾在认识到金属中的电子应遵从量子的费米统计规律以后得到了解决。根据费米统计,只有在费米面附近的很少一部分电子对比热容有贡献。另一个困难是根据实验上得到的金属电导率数值估算出的电子平均自由程约等于几百个原子间距,而按照经典理论,不能解释电子为什么会有如此长的自由程。正是为了解决这个矛盾,结合量子力学的发展,开始系统研究电子在晶体周期场中的运动,从而逐步建立了能带理论。按照能带理论,在严格周期性势场中运动的电子,保持在一个本征态中,电子运动不受到“阻力”,只是当原子振动、杂质缺陷等原因使晶体势场偏离周期场,使电子运动发生碰撞散射,从而对晶体中电子的自由程给出了正确的解释。一般金属的电阻是由于晶格原子振动对电子的散射引起的。散射概率与原子位移的平方成正比,在足够高的温度下与原子位移成正比;

金属导电性

金属导电性 一、导电性 二、常见导线性能分析(导电材料选择) 日常生活中,考虑导电性,最先想到的就是导线中的导电材料,通常我们根据以下特性选择适合自己的导电材料。 用作电线电缆的导电材料,通常有铜和铝两种(地壳中储量丰富,价格较低,导电性能好,金属性好)。铜材的导电率高,50℃时的电阻系数:铜为0.0206Ω·mm2/m,铝为0.035Ω·mm2/m;载流量相同时,铝线芯截面约为铜的 1.5倍。采用铜线芯损耗比较低,铜材的机械性能优于铝材,延展性好,便于加工和安装。抗疲劳强度约为铝材的1.7倍。但铝材比重小,在电阻值相同时,铝线芯的质量仅为铜的一半,铝线、缆明显较轻。 三、常温(20℃)下金属导电性排序 材料电阻率(单位:ρ/ nΩ·m) 银 15.86 铜 16.78 金 24 铝 26.548

钙 39.1 铍 40 镁 44.5 锌 51.96 钼 52 铱 53 钨 56.5 钴 66.4 镉 68.3 镍 68.4 铟 83.7 铁 97.1 铂 106 锡 110 铷 125 铬 129 镓 174 铊 180 铯 200 铅 206.84 锑 390 钛 420 汞 984 锰 1850 四、超导现象 金属在常温下的导电过程中由于电阻的存在,会将电能转换为热能,当需要传导超大电流时,这些电阻产生的热量足以熔断导线,影响系统的可靠性。

超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。 汞冷却到-268.98℃(4.2K)时,汞的电阻突然消失,达到超导态; 如今科学家已经发现大量新型合金能在更高的温度,达到超导态。 五、总结 在上个世纪中期,我们眼中的金属导电性只是指金属在常温下的一种物理特性;而在科技高度发达的今天,我们不能再单纯地以传统的角度来看待金属导电性问题了,低温超导,新型合金材料,各种各样的新事物不断出现,我们应该以更高的视角去看待每一个传统问题。

金属导电性

导电系数就是电阻率。,"导体"依导电系数可分为银→铜→金→铝→钨→镍→铁。 常用的金属导电材料可分为:金属元素、合金(铜合金、铝合金等)、复合金属以及不以导电为主要功能的其他特殊用途的导电材料4类: ①金属元素(按电导率大小排列)有:银(Ag)、铜(Cu)、金(Au)、铝(Al)、纳(Na)、钼 (Mo)、钨(W)、锌(Zn)、镍(Ni)、铁(Fe)、铂(Pt)、锡(Sn)、铅(Pb)等。 ②合金,铜合金有:银铜、镉铜、铬铜、铍铜、锆铜等;铝合金有:铝镁硅、铝镁、铝镁铁、铝锆等。 ③复合金属,可由3种加工方法获得:利用塑性加工进行复合;利用热扩散进行复合;利用镀层进行复合。高机械强度的复合金属有:铝包钢、钢铝电车线、铜包钢等;高电导率复合金属有:铜包铝、银复铝等;高弹性复合金属有:铜复铍、弹簧铜复铜等;耐高温复合金属有:铝复铁、铝黄铜复铜、镍包铜、镍包银等;耐腐蚀复合金属有:不锈钢复铜、银包铜、镀锡铜、镀银铜包钢等。 ④特殊功能导电材料是指不以导电为主要功能,而在电热、电磁、电光、电化学效应方 面具有良好性能的导体材料。它们广泛应用在电工仪表、热工仪表、电器、电子及自动化装置的技术领域。如高电阻合金、电触头材料、电热材料、测温控温热电材料。 重要的有银、镉、钨、铂、钯等元素的合金,铁铬铝合金、碳化硅、石墨等材料。 在一般温度范围,电阻率随温度变化呈线性关系,可表示为 ρ=ρ0[1+α(t-t0)] 式中ρ为温度t时的电阻率,ρ0为温度t0时的电阻率,t0通常取0℃或20℃,α为电阻率的温度系数。如纯金属α为10-3~10-4℃-1,合金导体α为10-4~10-5℃-1。合金和杂质的影响表现为杂质与合金元素导致金属晶格发生畸变,造成电子被散射的概率增加,因而电阻率增加。所以高电阻导电材料均由合金组成。冷变形影响常以电阻率的应力系数来表示,在弹性压缩或拉伸时,金属电阻率一般按下式规律变化 ρ=ρ0(1+Kσ) 式中σ为应力,K 为应力系数。压缩时K 为负值,ρ降低,拉伸时K 为正值,ρ增加,故导体经拉伸后电阻率增加。热处理所产生的影响是导电金属经冷拉变形后,强度和硬度增加,导电性和塑性下降。退火后晶粒发生回复、再结晶,晶粒缺陷减少,晶格畸变减少,内应力消除,电阻率降低。 高电导率的金属也是高热导率的金属,纯金属的热导率比合金的热导率高。

金属导电性

金属导电性 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

导电系数就是电阻率。,"导体"依导电系数可分为银→铜→金→铝→钨→镍→铁。 常用的金属导电材料可分为:金属元素、合金(铜合金、铝合金等)、复合金属以及不以导电为主要功能的其他特殊用途的导电材料4类: ①金属元素(按电导率大小排列)有:银(Ag)、铜(Cu)、金(Au)、铝(Al)、纳(Na)、 钼(Mo)、钨(W)、锌(Zn)、镍(Ni)、铁(Fe)、铂(Pt)、锡(Sn)、铅(Pb)等。 ②合金,铜合金有:银铜、镉铜、铬铜、铍铜、锆铜等;铝合金有:铝镁硅、铝镁、铝镁铁、铝锆等。 ③复合金属,可由3种加工方法获得:利用塑性加工进行复合;利用热扩散进行复合;利用镀层进行复合。高机械强度的复合金属有:铝包钢、钢铝电车线、铜包钢等;高电导率复合金属有:铜包铝、银复铝等;高弹性复合金属有:铜复铍、弹簧铜复铜等;耐高温复合金属有:铝复铁、铝黄铜复铜、镍包铜、镍包银等;耐腐蚀复合金属有:不锈钢复铜、银包铜、镀锡铜、镀银铜包钢等。 ④特殊功能导电材料是指不以导电为主要功能,而在电热、电磁、电光、电化学效应方 面具有良好性能的导体材料。它们广泛应用在电工仪表、热工仪表、电器、电子及自动化装置的技术领域。如高电阻合金、电触头材料、电热材料、测温控温热电材料。 重要的有银、镉、钨、铂、钯等元素的合金,铁铬铝合金、碳化硅、石墨等材料。 在一般温度范围,电阻率随温度变化呈线性关系,可表示为 ρ=ρ0[1+α(t-t0)] 式中ρ为温度t时的电阻率,ρ0为温度t0时的电阻率,t0通常取0℃或20℃,α为电阻率的温度系数。如纯金属α为10-3~10-4℃-1,合金导体α为10-4~10-5℃-1。合金和杂质的影响表现为杂质与合金元素导致金属晶格发生畸变,造成电子被散射的概率增

相关主题