搜档网
当前位置:搜档网 › 相关函数和径向分布函数的关系

相关函数和径向分布函数的关系

相关函数和径向分布函数的关系
相关函数和径向分布函数的关系

径向分布函数..

三、径向分布函数法 中心分子 第一层:第一配位圈 第二层:第二配位圈 . . . 短程有序,远程无序 1、 基本概念,基本定义 首先定义一个新的函数---n 重相关函数 为 当系统的位能E N = 0 ,则系统内分子是独立的,由分布函数公式 可得到: g(r) r

因此对于分子相互独立的系统,, 对于分子间有相互作用的系统,相当于对分子独立性的校正,亦即表示了分子的相关性,因而称之为相关函数。 相关函数中,最重要的是二重相关函数g(2),它可由X射线衍射实验和计算机分子模拟的机器实验结果获得,由式子 可知表示如下

上式即二重相关函数与位形积分的关系。 对于由球星对称分子构成的液体,仅取决于分子1和2的距离,即可写成g(r),所以就有 故上式中的分子相对函数g(r)就是分子的径向分布函数。 因,即第一个分子是任意分布的。由于液体分子间存在相互作用,第二个分子不可能任意分布,而构成相对于中心分子的局部密度,相应的二重分布函数为 将上式代入到中得到

所以径向分布函数g(r)的物理意义可解释为:在一个中心分子周围距离为r处,分子的局部密度相对于本体密度的比值。 从径向分布函数g(r)可以计算液体的配位数: 实际上N为中心分子周围分子的总数,而为距中心分子r处在r + dr壳层内的分子数目。若将上式积分到第一配位圈的距离L处,即可得到配位数N(L)为 N(L)实际上也是围绕中心分子,半径为r=L的球体内的分子数。

如图已知: r1,r2…rN 代表坐标系原点,指向分子1,2,… N 的向量,体系分子1,分子2分别出现在r1处的体系元 的几率为: 称双重标明分布函数; :泛指(任意分子分布在r1, r2处的概率) :双重分布函数 () ()()N kT r r u N kT q u K K N Tr i d d d e d d d e Q N N ττττττ???............121/...21/1????=-*===2τd ()()()K N kT r r r u d d d d e d d r r P N ?ττττττ2 13/,...,21212]......[,21??-= ()()()K N kT r r u d d e r r P N ?ττ?? -=......,3/...2121()()2 1212,τ τd d r r P ()() 212,r r ρ () ()()() ()() () 2122 212212,,1,r r P N r r P N N r r ≈-=ρ x y

Proe中的常用函数关系

Proe中的部分函数关系 一、函数关系 sin 正弦Cos 余弦tan 正切asin 反正弦acos 反余弦atan 反正切sinh 双曲线余弦cosh 双曲线正弦tanh 双曲线正切spar 平方根exp e的幂方根abs 绝对值log 以10为底的对数ln 自然对数 ceil 不小于其值的最小整数floor 不超过其值的最大整数 二、齿轮公式 alpha=20 m=2 z=30 c=0.25 ha=1 db=m*z*cos(alpha) r=(db/2)/cos(t*50) theta=(180/pi)*tan(t*50)-t*50 z=0 三、蜗杆的公式da=8为蜗杆外径m=0.8 为模数angle=20压力角 L=30长度q直径系数d分度圆直径f齿根圆直径n实数

其中之间的关系 q=da/m-2 d=q*m df=(q-2.4)*m n=ceil(2*l/(pi*m)) 在可变剖面扫描的时候运用公式sd4=trajpar*360*n 在扫描切口的时候绘制此图形,其中红色的高的计算公式是sd5=pi*m/2 五、方向盘的公式sd4=sd6*(1-(sin(trajpar*360*36)+1)/8) 其中sd4是sd6的(3/4或者7/8),sin(trajpar*360*36的意思是转过360度且有36个振幅似的 六、凸轮的公式sd5=evalgraph("cam2",trajpar*360) r=150 theta=t*360 z=9*sin(10*t*360) 在方向按sin(10*t*360)的函数关系,9为高的9倍10为10个振幅似的 七、锥齿轮公式 m=4模数z =50齿轮齿数z-am=40与之啮合的齿轮齿数angle=20压力角b=30齿厚long分度圆锥角 d分度圆直径da齿顶圆直径df齿根圆直径db基圆直径关系:long=atan(z/z-am) d=m*z da=d+2*m*cos(long)

径向分布函数、角度分布函数电子云图形的绘制

径向分布函数、角度分布函数电子云图形的绘制 1.目的要求 (1) 绘制波函数及其各种分布以及电子云的图像,观察各种函数的分布情况。 (2) 了解计算机绘图方法。 2.基本原理 (1) 程序原理:本程序可绘制类氢原子的径向分布函数,角度分布函数及原子轨道、杂化轨道和分子轨道等电子几率密度图,绘制过程中的各函数形式 列于下列各表中。式中 ,n 为主量子数, =0.0529nm ,为波尔半径, Z 是有效核电荷,由Slater 规则计算得到的周期表中前四个周期元素的有效核电荷列于表Ⅱ-24-1中,下面简要叙述对各类图形的处理方案。 ①径向分布函数图: 径向分布函数D(r)=r 2R 2(r) 反映了电子的几率随半径r 的分布情况, D(r)dr 代表半径r 到r+dr 两个球壳夹层内找到电子的几率。其中R(r)为类氢原子的径向函数,本程序所采用的径向函数R(r)分别列于表Ⅱ-24-2中。②角度分布函数图:波函数 的角度部分 以及角度分布函数 表示同一球面不同方向上 或 的相对大小, 本程序所采用的角度函数 分别列于表Ⅱ-24-3中。 3 22232 ,),(,,,,sp d sp yz xz z z z Y Y f f f p p 角度分布图是画的X-Z 平面的截面图,其余角 度分布图都是画的X-Y 平面的截面图。角度分布函数图中,凡轨道形状相同,而仅方向不同者,则仅绘出一个图形作为代表。 2na Zr = ρ0 a ),,(φθψr nlm ),(φθψlm ),(2φθψlm ),,(φθψr nlm ),,(2φθψr nlm ),(φθψlm

③等电子几率密度图:2),,(φθψr 称为电子几率密度函数,它描述在该轨道中的电子在三维空间的分布情况,为了在平面上表示出这种分布往往采用某一切面上的等值面图,程序按指定的轨道在该切面上逐点计算2ψ的值,及找出 2max ψ 的最大值,求出相对几率密度2max 2 /ψ ψ =P ,该值在X-Y 平面上是位 置坐标(x,y)的函数(对于2 3z d 轨道是在X-Z 平面),绘图时不是将取值相同的点连成曲线,而是打印一系列符号表示相对几率密度的分布区域。当P <0.01时为空白, 0.01≤P <0.02时用“:”,0.02≤P <0.1时用“/”,0.1≤P <0.25时用“O ”,0.25≤P <0.5时用“&”和P >0.5时用“#”符号表示。根据这些符号可以粗略看出几率密度的分布情况。 在X-Y 平面内,坐标变化范围为 -2.4≤x ≤2.4(步长=0.08) -1.42≤y ≤1.42(步长=0.133) 所有距离的长度单位都是10-10m 。 原子轨道使用的波函数如表Ⅱ-24-4所示。对2 32 2 4,4,4,3xz z z z f f d d 和轨道采用 X-Z 平面做截面,所有其它原子轨道都画在X-Y 平面上,程序使用原子轨道的四重轴对称性,首先计算第三象限内,即-2.4≤x ≤0,-1.42≤y ≤0的Ψ值,随后被2m ax 2 /ψ ψ =P 代替,在其它三个象限内的相应值由对称性得到,用 P(x,y)代表电子在坐标(x ,y)点的几率密度,则: P(-x,-y)=P(-x,y)=P(x,-y)=P(x,y)

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

径向分布函数

实验一 径向分布函数、角度分布函数电子云图形的绘制 一、实验目的 1.绘制波函数及其各种分布以及电子云的图像,观察各种函数的分布情况。 2.了解计算机绘图方法。 二、实验原理 1.程序原理:本程序可绘制类氢原子的径向分布函数,角度分布函数及原子轨道、杂化轨道和分子轨道等电子几率密度图,绘制过程中的各函数形式列于下列各表中。式中 ,n 为主量子数, =0.0529nm ,为波尔半径, Z 是有效核电荷,由Slater 规则计算得到的周期表中前四个周期元素的有效核电荷列于表1.1中,下面简要叙述对各类图形的处理方案。 ①径向分布函数图: 径向分布函数D(r)=r 2R 2(r) 反映了电子的几率随半径r 的分布情况, D(r)dr 代表半径r 到r+dr 两个球壳夹层内找到电子的几率。其中R(r)为类氢原子的径向函数,本程序所采用的径向函数R(r)分别列于表2-2中。 ②角度分布函数图: 的角度部分 以及角度分布函数 表示同一球面不同方向上 或 的相对大小,本程序所采用的角度函数 分别列于表3-3中。 0 2na Zr = ρ0 a ),,(φθψr nlm ),(φθψlm ),(2φ θψlm ),,(φθψr nlm ),,(2φθψr nlm ),(φθψlm

3 22 2 3 2 ,),(,,,,sp d sp yz xz z z z Y Y f f f p p 角度分布图是画的X-Z 平面的截面图, 其余角度分布图都是画的X-Y 平面的截面图。角度分布函数图中,凡轨道形状相同,而仅方向不同者,则仅绘出一个图形作为代表。 ③等电子几率密度图:2),,(φθψr 称为电子几率密度函数,它描述在该轨道中的电子在三维空间的分布情况,为了在平面上表示出这种分布往往采用某一切面上的等值面图,程序按指定的轨道在该切面上逐点计算 2 ψ 的值,及找出 2max ψ 的最大值,求出相对几率密度 2max 2 /ψ ψ =P ,该值在X-Y 平面上是位置坐标(x,y)的函数(对于2 3z d 轨 道是在X-Z 平面),绘图时不是将取值相同的点连成曲线,而是打印一系列符号表示相对几率密度的分布区域。当P <0.01时为空白, 0.01≤P <0.02时用“:”,0.02≤P <0.1时用“/”,0.1≤P <0.25时用“O ”,0.25≤P <0.5时用“&”和P >0.5时用“#”符号表示。根据这些符号可以粗略看出几率密度的分布情况。 在X-Y 平面内,坐标变化范围为 -2.4≤x ≤2.4(步长=0.08) -1.42≤y ≤1.42(步长=0.133) 所有距离的长度单位都是10-10m 。 原子轨道使用的波函数如表1-4所示。对2 3 2 2 4,4,4,3xz z z z f f d d 和轨道采 用X-Z 平面做截面,所有其它原子轨道都画在X-Y 平面上,程序使用原子轨道的四重轴对称性,首先计算第三象限内,即-2.4≤x ≤0,-1.42≤y ≤0的Ψ值,随后被2max 2 /ψ ψ =P 代替,在其它三个象限内的相应 值由对称性得到,用P(x,y)代表电子在坐标(x ,y)点的几率密度,则:

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

径向分布函数

2.2.3 径向部分和角度部分的对画图 1. 径向部分的对画图 结尾部分增加如下内容: 需要指出,常有人将4πr 2ψ2作为径向分布函数的定义, “理由”是:ψ2代表概率密度,4πr 2代表球面积,二者相乘即为半径为r 的球面上的概率。但这种说法至少是片面的,甚至是错误的。事实上,以上说法只对s 电子云才成立,因为它们是与方向无关的球对称形,Y 00=(4π)-1/2,|Y 00|2=(4π)-1,R 2( r )=ψ2/|Y 00|2=4πψ2,从而D ( r )= r 2R 2( r )才可以进一步写成D ( r )= 4πr 2ψ2。可见,D ( r )= r 2R 2( r )对于任何原子轨道的电子云都是适用的,而 D ( r )= 4πr 2ψ2只适用于s 电子云,用于其它电子云都是错误的。 电子云在空间的分布并没有一个明确的边界,所以,衡量轨道的大小取决于如何定义轨道的半径。文献中常见到两种定义: (1) 轨道最可几半径,即径向分布函数D (r )最大值对应的半径r max 。在这个半径上,单位厚度球壳内电子出现的几率最大。以单电子原子的1s 轨道为例: 000000032100322221030 33222223300 03230020()24()d ()4d 422d d 421010Zr a Zr a Zr Zr Zr a a a Zr a Zr a Z R r e a Z D r r R r e a D r Z Z Z r e re r e r a r a a Z Zr re a a Zr re a ?????????=???? ==????==???????????=?=???????=????

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

Excel常用函数详解

计算机二级考试MS_Office应用Excel函数 =公式名称(参数1,参数2,。。。。。) =sum(计算范围) =average(计算范围) =sumifs(求和范围,条件范围1,符合条件1,条件范围2,符合条件2,。。。。。。) =vlookup(翻译对象,到哪里翻译,显示哪一种,精确匹配) =rank(对谁排名,在哪个范围里排名) =max(范围) =min(范围) =index(列范围,数字) =match(查询对象,范围,0) =mid(要截取的对象,从第几个开始,截取几个) =int(数字) =weekda y(日期,2) =if(谁符合什么条件,符合条件显示的内容,不符合条件显示的内容) =if(谁符合什么条件,符合条件显示的内容,if(谁符合什么条件,符合条件显示的内容,不符合条件显示的内容)) SUM函数 简单求和。 函数用法 SUM(number1,[number2],…) =SUM(A1:A5)是将单元格 A1 至 A5 中的所有数值相加; =SUM(A1,A3,A5)是将单元格 A1,A3,A5 中的数字相加。 SUMIFS函数 根据多个指定条件对若干单元格求和。 函数用法 SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) 1) sum_range 是需要求和的实际单元格。包括数字或包含数字的名称、区域或单元格引用。忽略空白值和文本值。 2) criteria_range1为计算关联条件的第一个区域。 3) criteria1为条件1,条件的形式为数字、表达式、单元格引用或者文本,可用来定义将对criteria_range1参数中的哪些单元格求和。例如,条件可以表示为32、“>32”、B4、"苹果"、或"32"。 4)criteria_range2为用于条件2判断的单元格区域。 5) criteria2为条件2,条件的形式为数字、表达式、单元格引用或者文本,可用来定义将对criteria_range2参数中的哪些单元格求和。 4)和5)最多允许127个区域/条件对,即参数总数不超255个。 VLOOKUP函数 是Excel中的一个纵向查找函数,按列查找,最终返回该列所需查询列序所对应的值。

由X射线衍射获得的液体径向分布函数

由X 射线衍射获得的液体径向分布函数 房春晖,房艳,杨波,雷亚川 (中国科学院青海盐湖研究所,陕西西安710043) 摘要:主要介绍单原子液体、同核分子液体、杂核分子液体和水溶液电子径向分布函数、原子径向分布函数和分子径向分布函数的定义,简明阐述了气体、液体和晶体,尤其是二维晶体的径向分布函数的物理意义和几何意义。 关键词:径向分布函数;液体结构;水溶液 中国分类号:O722 文献标识码:A 文章编号:1008-858X (2002)02-0061-08 0 前言 液体结构一直是理论基础研究的重要领域。其结构的复杂性和多样性不仅包含丰富的理论内涵,而且具有广泛的应用前景。液体及其相变在技术上和工业上的巨大应用潜力和液体结构丰富新颖的物理图象,已引起人们日益广泛的重视[1,2]。例如过饱和溶液介乎于平衡溶液和水合晶体熔盐之间,过饱和度是结晶过程的推动力,母液结构是晶体生长的关键环节,液体的结构直接关系到目前一些前沿难题的攻关,人们期望从分子和离子相互作用的根本上揭示环境科学、盐湖化学、生命和信息科学领域的本质问题。例如NO 2、S O 2酸雨形成过程中,小水滴的成核机理;大气圈平衡、水圈平衡、生物圈新陈代谢平衡和矿物圈平衡中温室气体二氧化碳及其相关的碳酸盐与水分子的相互作用;普遍存在于生物体中的水和电解质的作用机制,如厌氯作物中硫酸盐与水的相互作用;盐湖开发利用中所涉及的化学相变机制和控制规律等。随着地球上最重要液体———水战略资源问题日益严峻,液体结构研究将是新世纪化学 发展的重要方向之一。 液体径向分布函数描述被研究液体的电子密度、原子密度或分子密度的空间校正关系。与晶体物质相比较,液体的结构特征更难于直接准确测量和表征。近年来,随着衍射实验技术和理论计算方法所取得的巨大进步,不仅能够精确有效地测量溶液中各种距离和方向上的原子间相互作用信息,而且能够通过建立几何模型来处理这些具有统计特征的信息,最终实现对溶液中溶剂化离子、溶剂分隔离子对、溶剂共享离子对、接触离子对、以及衍射实验能够测量到的离子簇的原子核间距、配位数和配位几何构型作出离子、分子水平的定量描述。 X 射线衍射法是直接获得液体短程有序结 构信息的重要实验方法。与ND 、EX AFS 、ARPEFS 、X AFS 、X ANES 等实验方法比较,实验 成本低廉,一般不依赖于大型同步辐射装置。与MD 、MC 、M M 、MD +M M 、ab Initio 等计算方法比较,是实验事实的直接测量,而没有任何虚拟 性。研究液体结构,一般采用θ/θ型液体X 射线衍射仪。然而国内外普通实验室一般配备θ/2θ型衍射仪,而不配备θ/θ型衍射仪。在没有θ/θ型衍射仪的情况下,我们另辟溪径,打 收稿日期:2002-01-25 作者简介:房春晖(1957-),男,研究员,主要从事溶液结构研究。 第10卷 第2期2002年 6月 盐湖研究JOURNA L OF S A LT LAKE RESE ARCH V ol.10 N o.2 Jun. 2002

Creo常用函数

Creo(PROE)中关系式的理解 一)关系式中可以用下列数学函数式表达: 1)、正弦 sin( ) 2)、余弦 cos( ) 3)、正切 tan( ) 4)、反正弦 asin( ) 5)、反余弦 acos( ) 6)、反正切 atan( ) 7)、双曲线正弦 sinh( ) 8)、双曲线余弦 cosh( ) 9)、双曲线正切 tanh( ) 以上九种三角函数式所使用的单位均为“度”。 10)、平方根 sqrt( ) 11)、以10为底的对数 log( ) 12)、自然对数 ln( ) 13)、e的幂 exp( ) 14)、绝对值 abs( ) 15)、不小于其值的最小整数(上限值) ceil( ) 16)、不超过其值的最大整数(下限值) floor( ) 可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数位数。 带有圆整参数的这些函数的语法是: ceil(parameter_name或number, number_of_dec_places) floor (parameter_name 或 number, number_of_dec_places) 其中的parameter_name或number意为参数名称或者一个带小数位的精确数值 后面跟随着的number_of_dec_places意为十进位的小数位数,是可选值: A)可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。 B)它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。C)如果不指定它,则功能同前期版本一样。 使用不指定小数部分位数的ceil和floor函数,其举例如下: ceil (10.2) 值为11 floor (10.2) 值为 10

径向分布函数..

径向分布函数..

三、径向分布函数法 中心分子 第一层:第一配位圈 第二层:第二配位圈 . . . 短程有序,远程无序 1、 基本概念,基本定义 首先定义一个新的函数---n 重相关函数 为 当系统的位能E N = 0 ,则系统内分子是独立的,由分布函数公式 可得到: g(r) r

因此对于分子相互独立的系统,, 对于分子间有相互作用的系统,相当于对分子独立性的校正,亦即表示了分子的相关性,因而称之为相关函数。 相关函数中,最重要的是二重相关函数g(2),它可由X射线衍射实验和计算机分子模拟的机器实验结果获得,由式子 可知表示如下

上式即二重相关函数与位形积分的关系。 对于由球星对称分子构成的液体,仅取决于分子1和2的距离,即可写成g(r),所以就有 故上式中的分子相对函数g(r)就是分子的径向分布函数。 因,即第一个分子是任意分布的。由于液体分子间存在相互作用,第二个分子不可能任意分布,而构成相对于中心分子的局部密度,相应的二重分布函数为 将上式代入到中得到

所以径向分布函数g(r)的物理意义可解释为:在一个中心分子周围距离为r处,分子的局部密度相对于本体密度的比值。 从径向分布函数g(r)可以计算液体的配位数: 实际上N为中心分子周围分子的总数,而为距中心分子r处在r + dr壳层内的分子数目。若将上式积分到第一配位圈的距离L处,即可得到配位数N(L)为 N(L)实际上也是围绕中心分子,半径为r=L的球体内的分子数。

如图已知: r1,r2…rN 代表坐标系原点,指向分子1,2,… N 的向量,体系分子1,分子2分别出现在r1处的体系元 的几率为: 称双重标明分布函数; :泛指(任意分子分布在r1, r2处的概率) :双重分布函数 () ()()N kT r r u N kT q u K K N Tr i d d d e d d d e Q N N ττττττ???............121/...21/1????=-*===2τd ()()()K N kT r r r u d d d d e d d r r P N ?ττττττ2 13/,...,21212]......[,21??-= ()()()K N kT r r u d d e r r P N ?ττ?? -=......,3/...2121()()2 1212,τ τd d r r P ()() 212,r r ρ () ()()() ()() () 2122 212212,,1,r r P N r r P N N r r ≈-=ρz r 1 r 2 d τ1 d τ2 y

关系中常用函数详解

在ProE中,我们的关系可以直接很多系统已经预定义好的函数,通过这些函数我们可以来进行一些特定的运算得到所期望的值,下面我们就对一些常用函数进行一个概括和总结,方便大家在使用的时候查阅。 1.数学函数 在proe中,我们可以使用丰富的数学函数,常用的函数列表如下: sin()、cos()、tan()函数 这三个都是数学上的三角函数,分别使用角度的度数值来求得角度对应的正弦、余弦和正切值,比如: A=sin(30) A=0.5? B=0.866?B=cos(30) ?C=tan(30) C=0.577 asin()、acos()、atan()函数 这三个是上面三个三角函数的反函数,通过给定的实数值求得对应的角度值,如:A=asin(0.5) A=30? B=60?B=acos(0.5) C=26.6?C=atan(0.5)

sinh()、cosh()、tanh()函数 在数学中,双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦“sinh”,双曲余弦“cosh”,从它们导出双曲正切“tanh”等。 sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2 cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2 tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)] 函数使用实数作为输入值 log()函数 求得10为底的对数值,如: A=log(1) A=0;? A=1;?A=log(10) ?A=log(5) A=0.6989...; ln()函数 求得以自然数e为底的对数值,e是自然数,值是2.718...;如: A=ln(1) A=0;? ?A=ln(5) A=1.609...;

统计学常用分布及其分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

初中常用函数及其性质

一.正比例函数的性质 1.定义域:R(实数集) 2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减) 5.周期性:不是周期函数。 6.对称轴:直线,无对称轴。、 二.一次函数图像和性质 一般地,形如y=kx+b(k、b是常数,且k≠0?)的函数,?叫做一次函数(?linear function).一次函数的定义域是一切实数. 当b=0时,y=kx+b即y=kx(k是常数,且k≠0?).所以说正比例函数是一种特殊的一次函数. 当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定. 一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式. 一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距. 一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b. 一次函数的图像: k>0 b>0 函数经过一、三、二象限 k>0 b<0 函数经过一、二、三象限 k<0 b>0 函数经过一、二、四象限

k<0 b<0 函数经过二 、三、四象限 上面性质反之也成立 1.b 的作用 在坐标平面上画直线y=kx+b (k≠0),截距b 相同的直线经过同一点(0,b). 2.k 的作用 k 值不同,则直线相对于x 轴正方向的倾斜程度不同. (1)k>0时,K 值越大,倾斜角越大 (2)k<0时,K 值越大,倾斜角越大 说明 (1) 倾斜角是指直线与x 轴正方向的夹角; (2)常数k 称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论. 3.直线平移 一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx 的图像平移得到.当b>0时,向上平移b 个单位;当b<0时,向下平移|b|个单位. 4.直线平行 如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行. 如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 . 1.一次函数与一元一次方程的关系 一次函数 y=kx+b 的图像与x 轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数 y=kx+b 的图像与x 轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想. 2.一次函数与一元一次不等式的关系 由一次函数 y=kx+b 的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式kx+b>0(或kx+b<0).在一次函数 y=kx+b 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解. 三.二次函数图像及其性质 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0

径向分布函数.doc

径向分布函数

实验一径向分布函数、角度分布函数电子云图形的绘制 一、实验目的 1.绘制波函数及其各种分布以及电子云的图像,观察各种函数的分布情况。 2.了解计算机绘图方法。 二、实验原理 1.程序原理:本程序可绘制类氢原子的径向分布函数,角度分布函 数及原子轨道、杂化轨道和分子轨道等电子几率密度图,绘制过程中 的各函数形式列于下列各表中。式中2 Zr ,n a为0主量子数,na 0 =0.0529nm,为波尔半径, Z 是有效核电荷,由Slater规则计算得到 的周期表中前四个周期元素的有效核电荷列于表 1.1 中,下面简要叙 述对各类图形的处理方案。 ①径向分布函数图: 径向分布函数 D(r)=r 2R2(r) 反映了电子的几率随半径r 的分布情况, D(r)dr 代表半径 r 到 r+dr 两个球壳夹层内找到电子的几率。其中R(r)为类氢原子的径向函数, 本程序所采用的径向函数R(r)分别列于表 2-2 中。 ②角度分布函数图: nlm (r , , )的角度部分lm ( , )以及角度分布函数 2 lm( , )表示同 一球面不同方向上所采用的角度函数nlm (r , , ) 或nlm ( r , , ) 的相对大小,本程序 2 lm ( , ) 分别列于表3-3 中。

p z , p z2 , f z3 , f xz2 , ( f yz2 ),Y sp ,Y d2sp3角度分布图是画的X-Z 平面的截面图,其余角度分布图都是画的 X-Y 平面的截面图。角度分布函数图中,凡 轨道形状相同,而仅方向不同者,则仅绘出一个图形作为代表。 ③等电子几率密度图: (r , , ) 2称为电子几率密度函数,它描述在该轨 道中的电子在三维空间的分布情况,为了在平面上表示出这种分布往 往采用某一切面上的等值面图,程序按指定的轨道在该切面上逐点 计算 2 的值,及找出max 2 的最大值,求出相对几率密度 P 2 / max 2,该值在 X-Y 平面上是位置坐标 (x,y)的函数 (对于3d z 2轨 道是在 X-Z 平面 ),绘图时不是将取值相同的点连成曲线,而是打印 一系列符号表示相对几率密度的分布区域。当P<0.01 时为空白, 0.01≤P<0.02时用“:”,0.02≤P<0.1 时用“/”,0.1≤P<0.25 时用 “O”,0.25≤P<0.5 时用“ & ”和 P>0.5 时用“ # ”符号表示。根据这些符号可以粗略看出几率密度的分布情况。 在X-Y 平面内,坐标变化范围为 -2.4≤x≤2.4(步长 =0.08) -1.42≤y≤1.42(步长 =0.133) 所有距离的长度单位都是10-10m 。 原子轨道使用的波函数如表1-4 所示。对3d z2,4d z2,4 f z3,和4 f xz2轨道采用X-Z 平面做截面,所有其它原子轨道都画在 X-Y 平面上,程序使用原子轨道的四重轴对称性,首先计算第三象限内,即-2.4≤x≤0,-1.42 ≤y≤0 的Ψ值,随后被P 2 /max2代替,在其它三个象限内的相应 值由对称性得到,用P(x,y)代表电子在坐标 (x,y)点的几率密度,则:

高考中常用函数模型归纳及应用

高考中常用函数模型.... 归纳及应用 一. 常数函数y=a 判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。关于方程解的个数问题时常用。 例1.已知x ∈(0, π],关于方程2sin(x+ 3 π )=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[ 3,2] C.( 3,2] D.( 3,2) 解析;令y=2sin(x+3π ), y=a 画出函数y=2sin(x+3 π ),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点, 由图象知( 3,2),选D 二. 一次函数y=kx+b (k ≠0) 函数图象是一条直线,易画易分析性质变化。常用于数形结合解决问题,及利用“变元”或“换元”化归 为一次函数问题。有定义域限制时,要考虑区间的端点值。 例2.不等式2x 2 +1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( ) A .-2≤x ≤2 B. 4 31- ≤x ≤0 C.0≤x ≤ 4 71+ D. 4 71-≤x ≤ 4 1 3- 解析:不等式可化为m(x-1)- 2x 2+1≥0 设f(m)= m(x-1)- 2x 2 +1 若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需? ? ?≥-≥0)2(0 )2(f f ,解之可得答案D 三. 二次函数y=ax 2 +bx+c (a ≠0) 二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。很多问题都可以化归和转化成二次函数问题。比如有关三次函数的最值问题,因其导数是二次函数,最后的落脚点仍是二次函数问题。 例3.(1).若关于x 的方程x 2 +ax+a 2 -1=0有一个正根和一个负根,则a 的取值范围是( ) 解析:令f(x)= x 2 +ax+a 2 -1由题意得f(0)= a 2 -1 <0,即-1<a <1即可。 一元二次方程的根分布问题可借助二次函数图象解决,通常考虑二次函数的开口方向,判别式对称轴与根的位置关系,端点函数值四个方面。也可借助韦达定理。

相关主题