搜档网
当前位置:搜档网 › 遗传算法学习心得

遗传算法学习心得

遗传算法学习心得
遗传算法学习心得

基本概念

遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

GA的组成:

(1)编码(产生初始种群)

(2)适应度函数

(3)遗传算子(选择、交叉、变异)

(4)运行参数

编码

基因在一定能够意义上包含了它所代表的问题的解。基因的编码方式有很多,这也取决于要解决的问题本身。常见的编码方式有:

(1)二进制编码,基因用0或1表示(常用于解决01背包问题)

如:基因A:00100011010 (代表一个个体的染色体)

(2)互换编码(用于解决排序问题,如旅行商问题和调度问题)

如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。

(3)树形编码(用于遗传规划中的演化编程或者表示)

如,问题:给定了很多组输入和输出。请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。

编码方法:基因就是树形结构中的一些函数。

(4)值编码(二进制编码不好用时,解决复杂的数值问题)

在值编码中,每个基因就是一串取值。这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。

适应度函数

遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。

遗传算子——选择

遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。

SGA(基本遗传算法)中采用轮盘赌选择方法。

轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为:

遗传算子——交叉

所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算在GA中起关键作用,是产生新个体的主要方法。

1. 单交叉点法(用于二进制编码)

选择一个交叉点,子代在交叉点前面的基因从一个父代基因那里得到,后面的部分从另外一个父代基因那里得到。

如:交叉前:

00000|01110000000010000

11100|00000111111000101

交叉后:

00000|00000111111000101

11100|01110000000010000

2. 双交叉点法(用于二进制编码)

选择两个交叉点,子代基因在两个交叉点间部分来自一个父代基因,其余部分来自于另外一个父代基因.

如:交叉前:

01 |0010| 11

11 |0111| 01

交叉后:

11 |0010| 01

01 |0111| 11

3. 基于“ 与/或”交叉法(用于二进制编码)

对父代按位"与”逻辑运算产生一子代A;按位”或”逻辑运算产生另一子代B。该交叉策略在解背包问题中效果较好 .

如:交叉前:

01001011

11011101

交叉后:

01001001

11011111

4. 单交叉点法(用于互换编码)

选择一个交叉点,子代的从初始位置出发的部分从一个基因复制,然后在另一个基因中扫描,如果某个位点在子代中没有,就把它添加进去。

如:交叉前:

87213 | 09546

98356 | 71420

交叉后:

87213 | 95640

98356 | 72104

5.部分匹配交叉(PMX)法(用于互换编码)

先随机产生两个交叉点,定义这两点间的区域为匹配区域,并用交换两个父代的匹配区域。

父代A:872 | 130 | 9546

父代B:983 | 567 | 1420 变为:

TEMP A: 872 | 567 | 9546

TEMP B: 983 | 130 | 1420

对于TEMP A、TEMP B中匹配区域以外出现的数码重复,要依据匹配区域内的位置逐一进行替换。匹配关系:1<——>53<——>67<——>0

子代A:802 | 567 | 9143

子代B:986 | 130 | 5427

6. 顺序交叉法(OX) (用于互换编码)

从父代A随机选一个编码子串,放到子代A的对应位置;子代A空余的位置从父代B中按B的顺序选取(与己有编码不重复)。同理可得子代B。

父代A: 872 | 139 | 0546

父代B: 983 | 567 | 1420

交叉后:

子代A: 856 | 139 | 7420

子代B: 821 | 567 | 3904

7. 循环交叉(CX)法(用于互换编码)

CX同OX交叉都是从一个亲代中取一些城市,而其它城市来自另外一个亲代,但是二者不同之处在于:OX中来自第一个亲代的编码子串是随机产生的,而CX却不是,它是根据两个双亲相应位置的编码而确定的。

父代A:1 2 3 4 5 6 7 8 9

| | | | |

父代A:5 4 6 9 2 3 7 8 1

可得循环基因:1->5->2->4->9->1

用循环的基因构成子代A,顺序与父代A一样

1 2 4 5 9

用父代B剩余的基因填满子代A:

1 2 6 4 5 3 7 8 9

子代B的编码同理。(循环基因5->1->9->4->2->5)

遗传算子——变异

变异是指依据变异概率将个体编码串中的某些基因值用其它基因值来替换,从而形成一个新的个体。GA中的变异运算是产生新个体的辅助方法,它决定了GA 的局部搜索能力,同时保持种群的多样性。交叉运算和变异运算的相互配合,共同完成对搜索空间的全局搜索和局部搜索。

注:变异概率Pm不能太小,这样降低全局搜索能力;也不能太大,Pm > 0.5,这时GA退化为随机搜索。

基于遗传算法的一种新的约束处理方法

基于遗传算法的一种新的约束处理方法 苏勇彦1,王攀1,范衠2 (1武汉理工大学 自动化学院, 湖北 武汉 430070) (2丹麦理工大学 机械系 哥本哈根) 摘 要:本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 关键词:遗传算法、约束处理、可行解、不可行解、两种群混合交叉 1引言 科学研究和工程应用中许多问题都可以转化为求解一个带约束条件的函数优化问题[1]。遗传算法(Genetic Algorithm )与许多基于梯度的算法比较,具有不需要目标函数和约束条件可微,且能收敛到全局最优解的优点 [2],因此,它成为一种约束优化问题求解的有力工具。目前,基于GA 的约束处理方法有拒绝策略,修复策略,改进遗传算子策略以及惩罚函数策略等。但是这些方法都存在一些问题[3]:修复策略对问题本身的依赖性,对于每个问题必须设计专门的修复程序。改进遗传算子策略则需要设计针对问题的表达方式以及专门的遗传算子来维持解的可行性。惩罚策略解的质量严重依赖于惩罚因子的选取,当惩罚因子不适当时,算法可能收敛于不可行解。 本文针对目前的约束处理方法中存在的问题,提出一种新的约束处理方法。该方法通过可行解和不可行解混合交叉的方法对问题的解空间进行搜索,对可行种群和不可行种群分别进行选择操作。避免了惩罚策略中选取惩罚因子的困难,使得约束处理问题简单化。实例测试结果表明,该约束处理方法的有效性。 2约束处理方法描述 2.1单目标有约束优化问题一般形式 )(max x f ..t s ;0)(≤x g i 1,,2,1m i L L =;0)(=x h i )(,,1211m m m m i +=+=L X x ∈ 这里都是定义在m m m m h h h g g g f ,,,;,,;2121111L L ++n E 上的实值函数。X 是n E 上的 子集,x 是维实向量,其分量为。上述问题要求在变量满足约 束的同时极大化函数。函数通常为目标函数。约束n n x x x ,,,21L n x x x ,,,21L f f ;0)(≤x g i 称为不等式约束;约束称为等式约束。集合;0)(=x h i X 通常为变量的上下界限定的区域。向量且满足所有约束,则称之为问题的可行解。所有可行解构成可行域。否则,为问题的不可行解,所有不可行解构成不可行域。问题的目标是找到一个可行解X x ∈x 使得)()(x f x f ≤对于所有可行解x 成立。那么,x 为最优解[4]。 2.2算法描述 目前,最常采用的约束处理方法为惩罚函数法。但优化搜索的效率对惩罚因子的选择有

人工智能学习心得

人工智能学习心得 20147932唐雪琴 人工智能研究最新进展综述 一、研究领域 在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。 在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能

够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。

二、各领域国内外研究现状近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。 1、分布式人工智能与艾真体 分布式人工智能是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。 分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统两领域。其中,分布式问题求解

遗传算法求解实例

yj1.m :简单一元函数优化实例,利用遗传算法计算下面函数的最大值 0.2)*10sin()(+=x x x f π,∈x [-1, 2] 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9, 最大遗传代数为25 译码矩阵结构:?????????? ??????? ???? ?=ubin lbin scale code ub lb len FieldD 译码矩阵说明: len – 包含在Chrom 中的每个子串的长度,注意sum(len)=length(Chrom); lb 、ub – 行向量,分别指明每个变量使用的上界和下界; code – 二进制行向量,指明子串是怎样编码的,code(i)=1为标准二进制编码, code(i)=0则为格雷编码; scale – 二进制行向量,指明每个子串是否使用对数或算术刻度,scale(i)=0为算术 刻度,scale(i)=1则为对数刻度; lbin 、ubin – 二进制行向量,指明表示范围中是否包含每个边界,选择lbin=0或 ubin=0,表示从范围中去掉边界;lbin=1或ubin=1则表示范围中包含边界; 注:增加第22行:variable=bs2rv(Chrom, FieldD);否则提示第26行plot(variable(I), Y, 'bo'); 中variable(I)越界 yj2.m :目标函数是De Jong 函数,是一个连续、凸起的单峰函数,它的M 文件objfun1包含在GA 工具箱软件中,De Jong 函数的表达式为: ∑ == n i i x x f 1 2 )(, 512512≤≤-i x 这里n 是定义问题维数的一个值,本例中选取n=20,求解 )(min x f ,程序主要变量: NIND (个体的数量):=40; MAXGEN (最大遗传代数):=500; NV AR (变量维数):=20; PRECI (每个变量使用多少位来表示):=20; GGAP (代沟):=0.9 注:函数objfun1.m 中switch 改为switch1,否则提示出错,因为switch 为matlab 保留字,下同! yj3.m :多元多峰函数的优化实例,Shubert 函数表达式如下,求)(min x f 【shubert.m 】

matlab学习心得

1. @function 可以表示一个函数,由于可以用M文件function F=fun(x);来定义一个函数,这样就可以用@function来调用你所定义的函数,它所定义的是运算函数,而不是符号函数 2. round(x);是将矩阵x中的元素圆整,以四舍五入的方法进行然后返回一个整数矩阵。floor,向下取整。ceil向上取整。fix,0方向取整。 3. meshgrid(x,y);画三维图形所必需的指令将向量X和向量y转化为二维的点阵。(x1,x2,x3,x4,x5)和(y1,y2,y3,y4)是无法做图的,只有转化为三维的点阵才有可能画图。画图原理,x为一行,y为列,然后分别以对方的步进值为步进,产生一个X矩阵(所有行是相同的),Y矩阵(所有列是相同的) 4. shading interp 是可以将画图命令中图中视角有重叠的部分用不同的颜色加以区分,一样的高度的线用一样的颜色 5. solve(f);可以用来解f=0的问题,f必须是定义的符号函数。 6. proper=input('字符串').该函数的作用是将字符串提示出来,然后将输入的内容存入到proper中,如果在后边加一个input('string','s')是将键入内容以字符串方式存储。 7. 循环控制语体,continue 结束该次循环剩余的内容继续循环下次的内容;break就直接结束循环,跳出循环体。return命令结束调用体,回到调用他的函数体中,并返回一个值。 8. 生成逻辑数组时,直接就可以运算命令来实现 b是逻辑数组,c是数据数组,则c(b)是将c中对应的b中位置为1的数值提取出来返回一个新的数组。 9. 显示内容,disp(字符串),fprintf等。 10. char(A)和double(A);作用是可以使矩阵在字符串之间变换,对应的是ASCII码值。可以操作这些码。 11. w=find(),可以找出某矩阵中满足某种条件的数值矩阵下标,并按照顺序返回到w中。()中可以是关系式。 12. 进行符号计算时,应该先用syms来定义符号参数。否则程序报错 13. 定义简单子函数的方法,例如 f=inline('sqrt(log(1./x))','x'); 定义二元函数的方法,例如 qqq=@(x,y) y*sin(x)+x*sin(y);两种方法都可以来简单定义函数,对于多元函数都是通用的,只是多了声明函数项而已,其中第二个中的(x)不能去掉。 14. legend(‘’,‘’)按照绘图顺序给出注标; 15. psearchtool可以调出优化算法的控制窗口。可以进行线性(一次)

一种基于遗传算法的Kmeans聚类算法

一种基于遗传算法的K-means聚类算法 一种基于遗传算法的K-means聚类算法 摘要:传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means 算法的局部性和对初始聚类中心的敏感性。关键词:遗传算法;K-means;聚类 聚类分析是一个无监督的学习过程,是指按照事物的某些属性将其聚集成类,使得簇间相似性尽量小,簇内相似性尽量大,实现对数据的分类[1]。聚类分析是数据挖掘 技术的重要组成部分,它既可以作为独立的数据挖掘工具来获取数据库中数据的分布情况,也可以作为其他数据挖掘算法的预处理步骤。聚类分析已成为数据挖掘主要的研究领域,目前已被广泛应用于模式识别、图像处理、数据分析和客户关系管理等领域中。K-means算法是聚类分析中一种基本的划分方法,因其算法简单、理论可靠、收敛速 度快、能有效处理较大数据而被广泛应用,但传统的K-means算法对初始聚类中心敏 感,容易受初始选定的聚类中心的影响而过早地收敛于局部最优解,因此亟需一种能克服上述缺点的全局优化算法。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。在进化过程中进行的遗传操作包括编码、选择、交叉、变异和适者生存选择。它以适应度函数为依据,通过对种群个体不断进行遗传操作实现种群个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文针 对应用最为广泛的K-means方法的缺点,提出了一种基于遗传算法的K-means聚类算法GKA(Genetic K-means Algorithm),以克服传统K-means算法的局部性和对初始聚类中心的敏感性。用遗传算法求解聚类问题,首先要解决三个问题:(1)如何将聚类问题的解编码到个体中;(2)如何构造适应度函数来度量每个个体对聚 类问题的适应程度,即如果某个个体的编码代表良好的聚类结果,则其适应度就高;反之,其适应度就低。适应度函数类似于有机体进化过程中环境的作用,适应度高的个体 在一代又一代的繁殖过程中产生出较多的后代,而适应度低的个体则逐渐消亡;(3) 如何选择各个遗传操作以及如何确定各控制参数的取值。解决了这些问题就可以利

数学建模心得体会3篇_心得体会

数学建模心得体会3篇_心得体会 数学建模学习心得(2): 数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。 为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。 教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。 2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 3.由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。 4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导小学数学教学显得愈发重要。 数学建模心得体会 一年一度的全国数学建模大赛在今年的9 月21 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的

遗传算法实例

遗传算法实例.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py

学习matlab心得体会

1.前言 2.matlab的一些特点 3.学习matlab心得体会 4.matlab的一些资源 1.前言 我接触Matlab的时间比较长了,最开始是在大学里面的数学实验课上了解了一些,学了些基础的命令,后来参加过一次数学建模,又自学了点。而后由于所学的专业是生命科学和环境相关的东西,用到matlab的机会不多,主要是一些功能用matlab实现起来不是很方便,而且手边有现成的软件可以做到,例如图像分析,还有DNA序列分析都有现成软件等。本以为不会与其有太多交集。我下决心学习matlab是在经历几件事情之后。当时,在做硕士论文时需要对电泳图片做微生物种群的多样性分析和相似性分析,当时手头的软件只能将电泳图转化为各个泳道的灰度和位置方面的数据,而不能对数据进行分析,而能进行这样分析的软件(Bionumerics)比较贵,只为了这个用几次而买显然很不划算。无奈之下,我查了些文献,了解计算的原理后便用比较熟悉的matlab编程解决这个问题,其实这个程序比较简单--DGGE中条带Shannon多样性指数的计算,在现在看来,根本不值一提,但是在当时自我感觉还是不错的,相当有成就感了。后来在课程(数值分析,微分方程数值解)中matlab经常用到,另外在帮师姐做管理方面的数学模型时用的比较多,便自学了相关方面的知识,主要是看书,自己编程还有上网交流,这时在百度上回答了很多matlab相关的问题,并成为百度matlab技术论坛的副团长,在emuch中蒙前计算模拟区区长cenwanglai 看重,聘为计算模拟版的版主。Matlab涉及的方面非常广,下面我就自己的理解谈下matlab 一些特点和我学习matlab的一点体会,希望能对大家有点帮助,有什么不对的地方,敬请指正! 2.matlab的一些特点 A.Matlab是一个基于矩阵运算的软件,这恐怕是众所周知的事情了,但是,真正在运用的时候(就是在编程的时候),许多人(特别是初学者)往往没有注意到这个问题,因此,for 循环(包括while循环)嵌套了十几层,这不仅是暴殄天物(没有发挥matlab所长),还浪费了你宝贵的时间,就只见左下角一直busy。 B.友好的界面,易于操作,虽然matlab一打开总看到命令行窗口,其实matlab有很多

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

遗传算法心得

最近在看遗传算法,查了很多资料,所以做了如下一些总结,也希望对后面研究的人有些帮助.因为初学GA,文中自己的见解,不一定全对,感兴趣的可以一起探讨. I简介 基本概念 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。 它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 GA的组成: (1)编码(产生初始种群) (2)适应度函数 (3)遗传算子(选择、交叉、变异) (4)运行参数 编码 基因在一定能够意义上包含了它所代表的问题的解。基因的编码方式有很多,这也取决于要解决的问题本身。常见的编码方式有: (1)二进制编码,基因用0或1表示(常用于解决01背包问题) 如:基因A:00100011010 (代表一个个体的染色体) (2)互换编码(用于解决排序问题,如旅行商问题和调度问题) 如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。 (3)树形编码(用于遗传规划中的演化编程或者表示)

如,问题:给定了很多组输入和输出。请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。 编码方法:基因就是树形结构中的一些函数。 (4)值编码(二进制编码不好用时,解决复杂的数值问题) 在值编码中,每个基因就是一串取值。这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。 适应度函数 遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。 如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。 遗传算子——选择 遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。选择操作的任务就是按某种方法从父代群体中选取一些个体,遗传到下一代群体。 SGA(基本遗传算法)中采用轮盘赌选择方法。 轮盘赌选择又称比例选择算子,基本思想:各个个体被选中的概率与其适应度函数值大小成正比。设群体大小为n ,个体i 的适应度为Fi,则个体i 被选中遗传到下一代群体的概率为: 遗传算子——交叉 所谓交叉运算,是指对两个相互配对的染色体依据交叉概率按某种方式相互交换其部分基因,从而形成两个新的个体。交叉运算在GA中起关键作用,是产生新个体的主要方法。

研究生听讲座心得体会范文

研究生听讲座心得体会范文 研究生时期听讲座获益良多,想知道别人是如何听讲座学习的吗?下文是学习啦小编精心为大家整理的研究生听讲座心得体会范文,希望对大家有帮助。 研究生听讲座心得体会范文篇一利用小学期时间,学校和学院给我们安排了一系列讲座,在我看来,旨在丰富小学期生活,积累专业知识,拓宽视野。这些讲座与我们专业知识紧密相关,但是却不单一,涉及不同课题观摩聆听名师讲座, 名师神采飞扬, 听者亦有心得。一千个读者的心中有一千个哈姆雷特。而面对着鲜活的教学对象,智慧的教师必然没有相同的课堂。 第一次讲座专由我校信管业的王璇老师主持,内容是信息与科技。谈到了信息技术发展的必然,从古至今,信息的发展经历了结绳记事、账簿、计算机,最后到因特网。所谓的信息技术,是能够延长或扩展人的信息能力的各种技术的总称,是对声音、图像、文字等信息进行收集、加工、存储、传递和利用的技术。战略资源的定义则是,任何一种社会的经济活动都是以若干种资源为依托的,在这些资源中,最基本最重要的资源就被称为战略资源。仅仅这些定义就可以引起我们的思考,当今社会什么最重要,精准快速的信息以及先进高等的科技。 第二次讲座的老师——沈凤武,据他自己说是第一次做

讲座,所讲内容是管理缺失下的垃圾危机问题研究,涉及垃圾的危害,主要包括生活垃圾对人类的影响以及垃圾堆土地资源的耗费,同时提出了对生活垃圾的处理方法,即焚烧发电、填埋处理以及堆肥。基于国土资源的垃圾危机治理,我们每个公民有义务为此做贡献。 第三次和第四次讲座的主题不离经济贸易,有谈到讲师的研究方向,也有宏观分析当前形势。当今社会,对外贸易在国家或者地区的经济发展中扮演着越来越重要的角色。一国要获得经济快速的经济发展,必须学会利用国际国内两个市场。通过对外贸易,进行物产的互通有无,从而实现资源的优化配置。对贸易行为的分析通常分为总量分析和结构分析,总量分析是从量的角度分析问题,而结构分析更注重从质的角度考察贸易行为。而对外贸易结构是一国或地区经济技术发展水平、产业结构状况、商品国际竞争能力、在国际分工和国际贸易中的地位等的综合反映,而商品结构和区域结构是对外贸易结构的重要组成部分。中国从20xx年加入WTO以来,对外贸易快速增长,以成为即美、日两国以后的世界第三大贸易国,但是随着我国对外贸易的快速发展,在结构上的问题越来越多的显现出来,例如商品结构的不合理,出口产品仍然是低附加值产品。而且,我国的对外贸易中商品贸易额远远大于服务贸易额,因此研究我国的对外贸易结构主要是研究我国的商品进出口贸易,达到商品结构的

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

遗传算法求解y=x2 - 副本

初始遗传算法及一个简单的例子 遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。 下面我以一个实例来详细表述遗传算法的过程 例:求下述二元函数的最大值: 2 =] y x x∈ ,0[ 31 1、编码: 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L为一固定的数,如本例的编码为 s1 = 1 0 0 1 0 (17) s2 = 1 1 1 1 0 (30) s3 = 1 0 1 0 1 (21) s4 = 0 0 1 0 0 (4) 表示四个个体,该个体的染色体长度L=5。 2、个体适应度函数 在遗传算法中,根据个体适应度的大小来确定该个体在选择操作中被选定的概率。个体的适应度越大,该个体被遗传到下一代的概率也越大;反之,个体的适应度越小,该个体被遗传到下一代的概率也越小。基本遗传算法使用比例选择操作方法来确定群体中各个个体是否有可能遗传到下一代群体中。为了正确计算不同情况下各个个体的选择概率,要求所有个体的适应度必须为正数或为零,不能是负数。这样,根据不同种类的问题,必须预先确定好由目标函数值到个体适应度之间的转换规则,特别是要预先确定好目标函数值为负数时的处理方法。

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

基于遗传算法的TSP问题解决

基于遗传算法的TSP问题解决 —余小欢B07330230 概述:TSP问题是一个经典的运筹学的组合优化问题,针对此问题,研究人员提出了个中各样的算法,主要有贪婪算法,遗传算法,混沌搜索算法等。在本文中分别用贪婪算法和遗传算法去解决30个城市的最短路径问题,并把两者得到了最优解进行比较,发现用遗传算法解决TSP问题非常具有优越性,同时在文章的最后提出了对此遗传算法进行改进的方向。 1.贪婪算法 x=[18 87 74 71 25 58 4 13 18 24 71 64 68 83 58 54 51 37 41 2 7 22 25 62 87 91 83 41 45 44]; y=[54 76 78 71 38 35 50 40 40 40 42 44 60 58 69 69 62 67 84 94 99 64 60 62 32 7 38 46 26 21 35]; a=zeros(30,30); for i=1:30 for j=1:30 a(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); %求取距离矩阵的值end a(i,i)=1000; %主对角线上的元素置为1000作为惩罚 end b=0; c=zeros(30); for j=1:30 [m,n]=min(a(:,j)); b=b+m; %得到的b值即为贪婪最佳路径的总距离 a(n,:)=1000; %已经选择的最小值对应的行的所有值置为1000作为惩罚 c(j)=n; end x1=zeros(30); y1=zeros(30); for t=1:30

x1(t)=x(c(t)); y1(t)=y(c(t)); end plot(x1,y1,'-or'); xlabel('X axis'), ylabel('Y axis'), title('ì°à·?·??'); axis([0,1,0,1]); axis([0,100,0,100]); axis on 用贪婪算法得出的最佳路径走遍30个城市所走的路程为449.3845km 其具体的路径图如下: 2.遗传算法 1主函数部分 clc; clear all;

基于遗传算法的智能组卷策略的研究综述Word版

《基于遗传算法的智能组卷策略的研究》综述 姓名刘春晓 学号 2015216104 专业计算机技术 班级 3班 天津大学计算机科学与技术学院 2016年 6 月

基于遗传算法的智能组卷策略的研究综述 摘要随着计算机技术的日益发展和成熟,手工组卷已经不能满足现代的教学要求,组卷智能化在提高教学质量方面发挥着很重要的作用。文章对组卷策略进行了梳理,对比和总结,主要介绍了遗传算法的优点,从遗传算法的基本流程、编码方式、适应度函数和遗传算子方面进行了归纳。接着分析了目前智能组卷策略研究的不足和挑战,最后总结了未来的研究设想。 关键词智能组卷;遗传算法;适应度函数;遗传算子 1引言 在计算机技术发展飞速的今天,计算机应用已经慢慢的渗透到人类生活的方方面面,计算机的辅助教学功能也逐渐得到大家的重视。传统的手工组卷受到人为因素的干扰,导致考试的效率低下,组卷智能化已经成为不可或缺的一项研究。 近几年,智能优化算法倍受人们关注,如人工神经网络、遗传算法,为解决复杂问题提供了新的方法,并在诸多领域取得了成功。组卷问题是一个在一定约束条件下的多目标参数优化问题,针对传统的组卷算法具有组卷速度慢、成功率较低、试卷质量不高等缺点。 智能组卷算法在计算机辅导教学过程中之所以受到重视,是因为它把人工智能技术运用到了组卷中,能够智能的设计试卷的结构和内容,包括试卷的难易度,知识点,题型和题量等,使生成的试卷质量比较高。 遗传算法(Genetic Algorithm ,GA)基于达尔文的进化论和孟德尔的自然遗传学说,是通过模拟遗传选择和自然淘汰的生活进化的随机搜索和全局优化算法(张建国 2009:1)。由于该算法有智能的搜索技术和收敛性质,可以较好的满足智能组卷的要求。所以本系统选用遗传算法作为组卷算法,以试题章节、试题数量、试题知识点、试题题型、试题难度分布、试题曝光度、覆盖度、试题分数分配等约束为组卷条件,使试卷有更好的区分度。 基于遗传算法的智能组卷系统实现了组卷智能化,优化了其他组卷算法的不足,使教学更加自动化和公平化,提高了组卷效率。 2研究现状分析 在系统开发之前,应该首先选择适合本系统的组卷算法,组卷算法的选取对试卷的质量影响颇大。只有相对好的算法才能提高组卷的效率和成功率。组卷实质上就是在复杂的约束条件下的多目标求最优解的问题,保证试卷能够满足教学要求。随着计算机技术和人工智能理论的飞速发展,各种组卷策略层出不穷,选择适合的算法对系统运行有极其重要的作用。分析各种组卷算法的优缺点,找到最优的组卷算法是该系统开发的任务之一。这里我们就现阶段组卷算法进行分析和总结。 现阶段比较成熟的组卷算法有随机选取法、回溯试探法和遗传算法。随机选取法生成的试题重复率较高,难以达到预期效果。回溯试探法是一种有条件的深度优化法,对于状态类型和题量较小的题库系统而言,组卷成功率高,但占用内

遗传算法学习心得体会

遗传算法 概念 遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它既能在搜索中自动获取和积累有关空间知识,并自适应地控制搜索过程以求得最优解遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近视最优方案。在遗传算法的每一代中,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近视解。这个过程导致种群中个体的进化,得到的新个体比原个体更适应环境,就像自然界中的改造一样。 应用 遗传算法在人工智能的众多领域具有广泛应用。例如,机器学习、聚类、控制(如煤气管道控制)、规划(如生产任务规划)、设计(如通信网络设计、布局设计)、调度(如作业车间调度、机器调度、运输问题)、配置(机器配置、分配问题)、组合优化(如tsp、背包问题)、函数的最大值以及图像处理和信号处理等等。遗传算法多用应与复杂函数的优化问题中。 原理 遗传算法模拟了自然选择和遗传中发生的复制、交叉、和变异等现象,从任一初始种群出发,通过随机选择、交叉、变异操作,产生一群更适合环境的个体,使群体进行到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适合环境的个体求得问题的最优解。 算法流程 1. 编码:解空间中的解数据x,作为作为遗传算法的表现型形式。从表现型到基本型的映射称为编码。遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基本型串结构数据,这些串结构数据的不同的组合就构成了不同的点。 2. 初始种群的形成:随机产生n个初始串数据,每个串数据称为一个个体, n个串数据构成了一个群体。遗传算法以这n个串结构作为初始点开始迭代。设置进化代数计数器t 0;设置最大进行代数t;随机生成m个个体作为初始群体p(0)。 3. 适应度检测:适应度就是借鉴生物个体对环境的适应程度,适应度函数 就是对问题中的个体对象所设计的表征其优劣的一种测度。根据具体问题计算p(t)的适应度。 4. 选择:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到 下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 5. 交叉:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结 构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。 6. 变异:将变异算子作用于群体。即是对群体中的个体串的某些基因座上 的基因值作变动。 群体p(t)经过选择、交叉、变异运算之后得到下一代群体p(t+1)。 7. 终止条件判断:若t<=t,则t=t+1,转到第3步,否则以进化过程中所得 到的具有最大适应度个体作为最优解输出,终止计算。 遗传算法流程图如下图所示: 遗传算法 下几种:适应度比例方法、随机遍历抽样法、局部选择法。 其中轮盘赌选择法是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为遗传算法

相关主题