搜档网
当前位置:搜档网 › 船舶动力系统仿真模型综述

船舶动力系统仿真模型综述

船舶动力系统仿真模型综述
船舶动力系统仿真模型综述

Dynamical Systems and Control 动力系统与控制, 2017, 6(3), 91-97 Published Online July 2017 in Hans. https://www.sodocs.net/doc/c29509254.html,/journal/dsc https://https://www.sodocs.net/doc/c29509254.html,/10.12677/dsc.2017.63012

文章引用: 杨叔华, 梁前超, 焦宇飞. 船舶动力系统仿真模型综述[J]. 动力系统与控制, 2017, 6(3): 91-97.

A Summary of Simulation Model in Ship’s Power System

Shuhua Yang 1,2, Qianchao Liang 1, Yufei Jiao 2

1

Naval University of Engineering, Wuhan Hubei 2

The Equipment Department of Naval, Ningbo Zhejiang

Received: Apr. 2nd , 2017; accepted: May 15th , 2017; published: May 18th , 2017

Abstract In this paper, the simulation model of ship’s power system is studied. And the complexity of simu-lation design in ship’s power system is discussed. A simulation model of the ship’s power system

include the model of a turbocharged diesel engine, gas turbine, combined power system and the application in ship’s equipment. Keywords

Diesel Engine, Gas Turbine, Simulation Model

船舶动力系统仿真模型综述

杨叔华1,2,梁前超1,焦宇飞2

1

海军工程大学,湖北 武汉 2

浙江宁波某装备部,浙江 宁波

收稿日期:2017年4月2日;录用日期:2017年5月15日;发布日期:2017年5月18日

摘 要

本文研究了各种船舶动力系统仿真模型问题,讨论了船舶动力装置系统仿真设计的复杂性。船舶动力系统仿真模型包括涡轮增压柴油机仿真系统模型、燃气轮机仿真系统模型、联合动力系统模型及它们在船舶动力装置中的应用。

杨叔华 等

关键词

柴油机,燃气轮机,仿真模型

Copyright ? 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.sodocs.net/doc/c29509254.html,/licenses/by/4.0/

1. 引言

船舶动力装置系统设计的复杂性和难度很大,船舶动力系统仿真模型包括涡轮增压柴油机仿真系统模型、燃气轮机仿真系统模型、联合动力系统模型[1]。涡轮增压柴油机的系统模型从功能区分来看不仅包括气体流动和燃烧模型,还包含有喷雾、燃烧、排放等其他模型,从建模空间分可以分为一维模型和三维模型等等。需要注意的是,建模方法的选择与模型的应用场合有密切的关系。一般来说,在模型的复杂程度和精度间需要进行权衡,而且模型的精度也取决于能够获得的数据以及进行模型构建的条件。举例来讲,对于涡轮增压柴油机建模来说,用于发动机设计和性能预测的模型与用于发动机动态过程控制的模型之间存在一定的差别,后者通常是前者在不同程序上的简化。

2. 涡轮增压柴油机系统模型

船舶动力系统仿真中建模是工作的重要一环。一般来讲建模方法分为准稳态法、容积法和压力波动作用法,而应用计算机建模或模拟计算已有近三十年多年,额定工况下涡轮增压柴油机的稳态性计算、变工况稳态性能、动态性能计算等。研究表明计算机模拟不仅仅能够预测柴油机的性能、节省大量人力物力和财力、缩短计算仿真周期,还可以相对于实际的动力试验得到更多的信息。

(1) 简单可靠的方法之一是准稳态方法

准稳态法不涉及动力机械内部构件的详细过程,部件工作特征由输入和输出量表达,可以由根据实验获得或经验公式计算得来。一般部件在发动机中处于非稳态下时很难得到精确理论计算模型,但可以有多个稳态过程组成,所以部件模型往往由它们的稳态实验数据来表示。因此,实验通常在稳态工况下进行,各个部件模型由相同的质量流率和压力连接起来,由此来构成系统的模型,部件间不允许产生质量聚集即管道容积可以忽略。在瞬态性能模型中,转速变化由一阶常微分程表示,其它方程都是代数方程,所以称为准稳态模型。例如MTU16V396型涡轮增压柴油机准稳态模型由它的稳态实验数据表示、采用8缸共用一根排气管的脉冲增压系统建起换气模型和废气倒灌模型,柴油机准稳态模型的仿真模型库见图1所示。

国内外用于涡轮增压柴油机仿真的通用软件很多。例如:MATLAB 、CFD 等等[1] [2],专用仿真软件国内外报道也非常多[3] [4]。例如,文献4作者给出了公司MTU16V396型涡轮增压柴油机的专用仿真软件MTU2000,可以比较准确地模拟了MTU16V396 型柴油机的性能在特殊工况下的变化规律,模拟精度在5%以内(见文献4仿真精度误差表格),满足了工程上对模拟计算精度的要求。该专用仿真软件还适用于MTU16V396型柴油机在特殊工况下的性能预测[4]。

(2) 方法之二是容积法

容积法是用有限容积来表示柴油机本体和增压器之间的管道以及气缸容积。又称为充排方法。因为在管道中可以聚集质量,部件之间不再由相等的质量流率连接。系统的模型使用一组一阶微分方程组来 Open Access

杨叔华等

Figure 1. The simulation models of diesel engine

图1.柴油机性能仿真模型库

描述管道、气缸的状态以及在瞬态工况下发动机和增压器的转速。容积法模型比准稳态模型更真实、经验资料也需要得少;但求解计算的时间往往会比准稳态方法大一个数量等级。

(3) 方法之三是特征线法

特征线法是用可压缩气体流动方程来表示在进排气管中存在的压力波动作用。装置的特征线法由于需要求解描述扰动穿过可压缩介质的非线性双曲线偏微分方程,以计算出管道系统中的压力谐波,计算工作量相当大。这些方程通常限于一维流动,还不能真正描述接头和扩压器中的流动分离等两维或三维效果。求解偏微分通常采用的特征线方法,所以对于特定的发动机具有重要意义,例如两冲程小汽油机,长管道的多缸发动机,气缸间互相影响的多缸发动机等等。

从建模对样本数据要求来看,涡轮增压柴油机仿真建模的方法又可以分为黑箱法和神经网络法。增压柴油机使用“黑箱”法进行建模获得黑箱模型,可以先确定模型结构然后通过系统辩识方法获得模型参数。黑箱模型也可以完全不考虑系统结构,直接根据输入输出数据建立模型。Rachid等人结合使用NARMAX模型和GMDII方法对涡轮增压柴油机进行非线性系统辨识,得到了简化模型。近年来兴起的神经网络,也应用到柴油机建模中,一个主要的应用方向是发动机的故障诊断和排放控制。

杨叔华等

近几年来各种建模方法层出不穷。再比如键合图建模技术,它是一种用于表示存在着各种能量形式的子系统之间相互关系的统一标准图形符号,最初出现在60年代;人工神经网络仿真技术,它是一个由神经单元构成并采用神经网络技术的并行分布式信息处理结构,其研究也是始于60年代;模块化建模技术,1977年M. H. Ghaemi给出了舰船推进装置主要部分的模型,包括发动机、螺旋桨、传动轴、调速器、减速齿轮箱和螺距控制器(在调距桨情况下),用户可以根据需要任意组合;面向对象仿真建模,NASA研究中心自1991年起在NPSS(Numerical Propulsion System Simulator)及其各子计划中系统地进行了面向对象方法的研究和实践,如今面向对象建模方法的研究极为活跃,这是一个有战略意义的发展方向。

3. 燃气轮机系统模型

燃气轮机的物理模型有很多型式,当前在船舶上应用得最多的是单转子分轴式(构成燃气发生器的是一根轴,带动螺旋桨的是与燃气发生器分开的另一根轴)和双转子分轴式(构成燃气发生器的有两根轴:低压轴和高压轴,带动螺旋桨的是与燃气发生器分开的另一根轴即动力涡轮轴)。但是无论是何种型式,均是由压气机、燃烧室、涡轮和轴等基本模块所组成,因此只要将这些基本部件模块化以后就可以组合成想要的任何型式的燃机[2]。

国内外燃气轮机的数学模型近些年发展非常迅速,根据研究对象中存在的物理现象,建立数学模型,并转换为计算机可以理解的形式,采用面向对象的模块化建模方法,建立通用的燃气轮机仿真模型,将燃气轮机整体划分为压气机、燃烧室、涡轮、转子和容积环节等模块。燃气轮机数学模型一般来讲它是一个多输入多输出、非线性、连续、复杂的系统。国外早在20世纪70年代早期,美国海军就启动了燃气轮机舰船推进控制系统研究和开发计划,并选择PD公司来承担计划的实施,美国GE公司针对舰艇燃气轮机的多输入多输出、非线性、连续、复杂的系统,提出LM2500燃气轮机的数学模型采用片断线性化的方法。具体方法是根据该发动机的精细模型,将表达动态特性的函数按线数据展开后,忽略高阶偏导数,保留稳态特性和一阶偏导数。在提供的模型中,压气机的出口压力、燃气发生器涡轮出口压力、动力涡轮输出扭矩、燃气发生器的不平衡扭矩的稳态特性和偏导数都表示为燃油流量、燃气发生器转速、动力涡轮转速的表格函数。由于忽略了高阶偏导数,模型对于发动机变量在小范围内偏离特性是有效的,一般称为小偏差方法。

国内针对燃气轮机舰船推进及控制系统研究有清华大学、上海交通大学、哈尔滨工程大学、海军工程大学等单位。例如燃气轮机GT25000为双转子分轴式燃气轮机,即三轴燃气轮机,它的工作特点和燃气轮机的数学模型也非常复杂。三轴燃气轮机动力装置由高压、低压两个转子构成的双转子燃气发生器、动力涡轮及轴系等组成,GT25000燃气轮机通常是由高压涡轮带动高压压气机,低压涡轮带动低压压气机,而动力涡轮则带动发电机或其它负荷。对于该系统仿真而言,它也是一个多输入多输出的复杂非线性连续系统[5]。燃气轮机压气机的出口压力、燃气发生器涡轮出口压力、动力涡轮输出扭矩、燃气发生器的不平衡扭矩的稳态特性和偏导数都表示为燃油流量、燃气发生器转速、动力涡轮转速的表格函数建模,然后进行数学仿真。

燃气轮机的控制模型一般是根据系统的控制特性和控制要求进行建模和仿真。燃气轮机的控制能够根据单一手柄的指令信号运行,在稳态和各种机动过程的不同阶段自动选用最合适的控制策略以实现良好的稳、动态匹配。舰船燃气轮机采用了比较复杂的控制策略,包括对轴转速的闭环控制和对螺距的闭环控制甚至对扭矩进行闭环控制,典型燃气轮机控制系统单一手柄仿真模型库见图2所示。

在对燃气轮机的混合实时仿真中,可将燃气轮机动态系统分解为与时间相关和无关的两个系统,对时间无关子系统进行离线预处理,使在线运算量大大降低,达到实时仿真要求。对于较复杂的三轴燃气

杨叔华等

Figure 2. The simulation model of gas turbine engine in the remote control system

图2. 燃气轮机遥控系统仿真模型

轮机,提出了一个分析动态过程的参考曲面——准动态运行面的概念,并建立了准非线性混合实时燃气轮机动态系统仿真模型。

舰船燃气轮机动力装置的仿真应用国内起步更晚但进展甚快,在较短的时间内便完成了理论研究向实用化的过渡。经过十多年的研究,上海交通大学、海军论证中心、海军工程大学、海军舰艇学院、船总七院、系统工程部等单位都相继从不同侧面和角度开展了研究,使燃气轮机动力装置各部分模型均已建立且实用。先后在舰船燃气轮机本体、控制系统设计、作战效能评估等方面的仿真应用研究取得了较大的成果,都已接近或达到国外九十年代同期的先进水平、军事经济效益日趋显著[6]。同时,国内在神经网络技术、虚拟现实技术VR、面向对象技术等在舰船燃气轮机动力装置仿真中的应用也取得了一定的成就。然而这些仿真模型尚未完善,仿真精确度和仿真运算速度有待于进一步的提高,否则难以适应当代燃气轮机动力装置在应用广度和深度上的迅猛发展。

4. 船舶动力装置系统仿真应用

4.1. 船舶动力装置系统

动力装置中的推进系统可能采用不同的推进方法和传动方式,基本组成有很大的差别,但都可以概括为三大件:发动机、传动装置、推进器。传动装置一般包括齿轮箱装置、离合器装置和联轴节等。弹

杨叔华等

性联轴节可以改变轴系的振动特性,隔离柴油机输出的脉动扭矩对传动齿轮的作用,并在一定范围内用以补偿轴系的对中误差。现代舰船中常用的离合器有磨擦离合器、液力偶合器和SSS同步离合器,其主要功能包括:用以实现主动轴与从动轴的接合或分离,便于发动机空载启动或空车运转;与齿轮箱一起组成倒顺车或双(多)速离合器,改变从动轴的转向转速;与齿轮箱组成并车装置,构成多发动机的功率合并或交替使用;也可以用以实现发动机的一机多用。动力装置中的推进系统仿真模型可以处理成为数学模式的二阶或三阶系统模型;也可以通过某些简化处理变为一阶系统。主要取决于舰船系统计算分析中要求的系统精度和计算机的速度等等。

4.2. 船舶联合动力装置

在船舶联合动力装置中,加速机和巡航机之间切换或并车时,要求拟投入运行的轴运速十分接近正在运行轴的转速时,才能将两根轴连接起来。自动同步离合器是达到这一要求的传动装置部件,目前应用较多的是带有棘齿同步机的自动同步离合器。在已进行的联合动力装置仿真中,通常是忽略自动同步离合器的动态啮合和脱离过程,用逻辑表达式处理啮合前后轴转速的变化。国内苏文斗对自动同步离合器的动力学问进行了详细的分析。国内苏文斗对自动同步离合器的动力学问题进行了详细的分析,并给出了棘爪和棘轮、螺旋齿花键、轴承等元件的啮合时的动负荷计算公式。哈尔滨工业大学建立了专门的柴燃交替动力装置并车装置试验台,以评价冲击扭矩、相对冲击、同步时间、切换过程总时间、过调转速、最大相对角速度等特征参数对动力装置的安全性和舰船机动性的影响。由于重点在切换过程的实验研究,对于发动机的模型作了较大程度简化,模型计算方法也有待完善。上海交通大学也在进行柴—柴并车试验台的建设,采用液力传动吸收扭振并改善柴油机的负荷特性,现在主要在柴油机动力装置中使用。倪军曾经根据国外的资料对舰用燃气轮机倒顺车液力传动进行了方案论证,进行结构和模型试验。

仿真模型可以处理成为数学模式的二阶或三阶系统模型。

4.3. 船舶动力装置元件

目前在船舶上使用的推进器以螺旋桨为主[5]。螺旋桨的性能曲线可以通过理论计算获得,也可以用试验方法获得,后者是工程实践中大量采用的一种方法。位于船后的螺旋桨与水流的相对速度不完全等于船速,而且在螺旋桨的各处也是不均匀的;同时,螺旋桨在船后工作,引起附近的流场变化,导致舰体阻力发生变化。船体对螺旋桨的影响用伴流系数来表达,伴流系数是伴流速度与船速的比值,一般来说不是定值,随船速变化而变,而且与船型有关,所以需要通过船模试验得到相应数据。螺旋桨在船尾工作时,由于抽吸作用,使船体阻力增加,等效于推力损失,用推力减额系数表示,它与船型、螺旋桨尺寸、螺旋桨与船体的相对位置等有关,可由船模自航试验或实船试验来确定。仿真模型可以处理成为数学模式的二阶或三阶系统模型;也可以通过某些简化处理变为一阶系统。主要取决于计算分析中要求的系统精度和计算机的速度等等。

普通螺旋桨的桨叶与轴毂是固定连接的,因而其螺距是固定不变的。而可调螺旋桨的桨叶可以绕某一垂直螺旋桨轴线转动而改变螺距,其作用相当于一组不同螺距比的普通螺旋桨,为舰船的推进、机动等带来一系列的好处。调距桨的变距机构可以采用人工、电动或液压控制,现在大型调距桨多采用液压控制。在瞬态工况下,变距系统的动态性能影响整个动力装置的动态性能。如果考虑变距机构的质量惯性,变距系统的仿真模型可以成为二阶系统模型;否则可以处理为一阶系统。

4.4. 先进的COGAG动力装置控制系统

现代船舶动力装置的控制系统能够根据单一手柄指令PLA实现良好的稳、动态匹配,包括对轴转速

杨叔华等

的闭环控制和对螺距的闭环控制,甚至对扭矩进行闭环控制[6]。由于各个回路之间存在交叉耦合会出现各种问题。例如高速回转舰艇的轴转速闭环控制会产生传动装置的超扭;低工况运行时螺距闭环控制使螺矩达到最大而引起轴转速过小等。为了避免这些问题,随后的控制系统采用开环控制和速度限制的控制策略。解决了安全性问题但牺牲了机动性能。Kidd等人开发了COGAG动力装置的多变量闭环控制器,设计出的控制器与非线性仿真模型连接,调整PID控制器的参数,并观察非线性系统响应的变化,得到最终的控制器设计。仿真模型可以处理成为数学模式的二阶或三阶非线性系统模型取决于舰船系统要求的精度和速度等等。

5. 结论

本文讨论了涡轮增压柴油机气体流动建模方法可以分为准稳态法、容积法和波动作用法。用于发动机动态过程控制的气体流动模型主要是准稳态模型和容积法模型,特征线法用于动态过程计算的情况很少见。最后讨论了舰船动力装置系统仿真模型包括涡轮增压柴油机仿真系统模型、燃气轮机仿真系统模型、系统元器件复杂仿真模型以及它们在船舶动力装置中的应用。

参考文献(References)

[1]康凤举. 舰船仿真技术发展综述[J]. 舰船电子工程, 2004, 24(1): 9-11.

[2]刘永文. 基于通用平台的系统建模和半物理仿真及其在舰船动力装置中的应用[D]: [博士学位论文]. 上海: 上海

交通大学, 2003.

[3]陈华清, 敖晨阳. 舰船推进系统仿真中的柴油机数学模型[J]. 船舶工程, 2000(5): 33-37.

[4]向军, 许光, 杨叔华, 梁前超. 涡轮增压柴油机修后试验及性能仿真[J]. 内燃机与配件, 2016(10): 92-94.

[5]Ding, J.M., Wang, Y.S., Ao, C.Y., et al. (2014) Mathematical Modeling and Simulation of Maneuvering for Waterjet-

Propelled Catamarans. International Conference of Waterjet Propulsion4, London, The Royal Institution of Naval Architects, 1-7.

[6]廖瑛, 梁加红, 姚新宇, 等. 实时仿真理论与支撑技术[M]. 长沙: 国防科技大学出版社, 2002.

期刊投稿者将享受如下服务:

1. 投稿前咨询服务(QQ、微信、邮箱皆可)

2. 为您匹配最合适的期刊

3. 24小时以内解答您的所有疑问

4. 友好的在线投稿界面

5. 专业的同行评审

6. 知网检索

7. 全网络覆盖式推广您的研究

投稿请点击:https://www.sodocs.net/doc/c29509254.html,/Submission.aspx

期刊邮箱:dsc@https://www.sodocs.net/doc/c29509254.html,

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

弹簧阻尼系统动力学模型ams仿真

弹簧阻尼系统动力学模 型a m s仿真 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

震源车系统动力学模型分析报告一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(WorkingGrid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1设置工作网格对话框 2)在ADAMS/View零件库中选择矩形图标,参数选择为“onGround”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“NewPart”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4创建弹簧阻尼器

4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。 图2-5添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度系数为4,阻尼均为0,进行仿真,点击图标,设置EndTime为5.0,StepSize为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。 图3-1位移与时间图像以及FFT变换图像 图3-2速度与时间图像以及FFT变换图像 图3-3加速度与时间图像以及FFT变换图像 通过傅里叶变换,从图中可以看出系统为三阶系统,表现出三阶的固有频率,通过测量得到w1=2.72,w2=4.29,w3=6.15.。 2)为了更进一步验证系统的各阶固有频率,我们给系统施加一定频率的正弦激振力,使系统做受迫振动,观察系统的振动情况, (a)F1=50*sin(2*3.14*w1*time)时,物块振动的速度与时间的图像如3-4所示。 图3-4 F1作用下速度与时间图像以及FFT变换图像

网络仿真技术文献综述

成绩:

网络仿真文献综述 摘要:网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。 关键词:网络仿真;统计模型;仿真技术

1.前言 目前,数据网络的规划和设计一般采用的是经验、试验及计算等传统的网络设计方法。不过,当网络规模越来越大、网元类型不断增多、网络拓扑日趋复杂、网络流量纷繁交织时,以经验为主的网络设计方法的弊端就越来越显现出来了。网络规划设计者相对来说缺乏大型网络的设计经验,因此在设计过程中主观的成分更加突出。 数学计算和估算方法对于大型复杂网络的应用往往是非常困难的,得到的结果的可信性也是比较低的,特别是对于包交换、统计复用的数据网络,情况更是如此。因此,随着网络的不断扩充,越来越需要一种新的网络规划和设计手段来提高网络设计的客观性和设计结果的可靠性,降低网络建设的投资风险。网络仿真技术正是在这种需求拉动下应运而生的。网络仿真技术以其独有的方法能够为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 网络仿真技术是一种通过建立网络设备和网络链路的统计模型, 并模拟网络流量的传输, 从而获取网络设计或优化所需要的网络性能数据的仿真技术。由于仿真不是基于数学计算, 而是基于统计模型,因此,统计复用的随机性被精确地再现。它以其独有的方法为网络的规划设计提供客观、可靠的定量依据,缩短网络建设周期,提高网络建设中决策的科学性,降低网络建设的投资风险。 2.网络仿真软件比较分析 网络仿真软件通过在计算机上建立一个虚拟的网络平台,来实现真实网络环境的模拟,网络技术开发人员在这个平台上不仅能对网络通信、网络设备、协议、以及网络应用进行设计研究,还能对网络的性能进行分析和评价。另外,仿真软件所提供的仿真运行和结果分析功能使开发人员能快速、直观的得到网络性能参数,为优化设计或做出决策提供更便捷、有效的手段。因此运用网络仿真软件对网络协议、算法等进行仿真已经成为计算机网络通信研究中必不可少的一部分。 2.1 OPNET仿真软件介绍

多领域建模理论与方法

XXX理工大学 CHANGSHA UNIVERSITY OF TECHNOLOGY&TECHNOLGY 题目:多领域建模理论与方法 学院: XXX 学生: XXX 学号: XXX 指导教师: XXX 2015年7月2日

多领域建模理论和方法 The theories and methods of Multi-domain Modeling Student:XXX Teacher:XXX 摘要 建模理论和方法是推动仿真技术进步和发展的重要因素,也是系统仿真可持续发展的基础[1]文中综述了多领域建模主要采用的四种方法,并重点对基于云制造的多领域建模和仿真进行了叙述,并对其发展进行了展望。 关键词:多领域建模仿真;云制造;展望 Abstract:The theory and method of system model building is not only the key factor to stimulate the development and improvement of simulation technique but also the base of system simulation. This paper analysis four prevails way in Multi-domain Modeling, especially to the Multi-domain Modeling and Simulation in cloud manufacturing environment. We give a detail on its development and future. Keywords: Multi-domain Modeling and simulation; Cloud manufacturing; Future development 一引言 随着科学技术的发展进步和产品的升级需求,对产品提出了更高的要求,使得建模对象的组成更加复杂,涉及到各个学科、进程的复杂性以及设计方法的多元化。这些需求都是以前单领域建模方案无法满足的,因此,必须建立一个建模方式在设计过程中完成对繁杂目标的多领域建模、结构仿真、多元化分析等。 多领域建模是将机械、控制、电子等不同学科领域的模型“组装”成一个更大的模型进行仿真。根据需要的不同,实际建模过程中,可以将模型层层分解。将不同领域的仿真模型“零件”组装成“部件”,“子系统”则是由不同学科下的部件装配而成,与此同时装配完成的不同学科的分子系统还能再装配成为一个全面仿真模型,称之为“系统”,由此可见多领域建模技术在繁杂产品设计过程中具有出众的优势。 本文对多领域建模常用的四种方法:基于各领域商用仿真软件接口的建模方法;基于高层体系结构的建模方法;基于统一建模语言的多领域建模方法和基于云制造环境下多领域建模的方法进行了分析并对基于云制造环境下多领域建模方法进行了展望。

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

系统动力学模型

第10 章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1 节系统动力学概述 1.1 概念系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室” ; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算 机仿真语言DYNAMIC勺支持,如:PD PLUS VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计

算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTERI出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980 年,后来,陆续做了大量的工作,主要表现如下: 1 )人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要采用“走出去,请进来”的办法。请进来就是请国外系统动力学专家来华讲学,走出去就是派留学生,如:首批派出去的复旦大学管理学院的王其藩教授等,另外,还多次举办了全国性的讲习班。 2 )编译编写专著

《船舶动力装置》课程

《船舶动力装置》教学大纲 一、课程性质与任务 本课程是船舶专业的一门主干专业课。本课程的教学任务是重点讲授船舶动力装置的原理与设计,使学生掌握:船舶动力装置的基本组成;船舶推进装置、船舶传动设备等的构造及工作原理;船舶管路系统的原理、组成及布置设计原则;船舶推进装置的特性与配合的基本知识。学生通过本课程的学习,对船舶推进系统、轴系、管系、船、机、桨工况配合,机舱布置与规划等有较为系统的认识,为以后从事的工作打下良好的基础。 二、课程教学目标 使学生具有一定的从事船舶动力装置设计的基本知识,具有如下基本技能:掌握轴系及推进装置各主要设备、船舶后传动设备的构造及初步设计能力;能根据使用要求,正确选用船舶有关机电设备;了解各种管路的布置设计原则。 本课程的基本要求是: 1. 熟练掌握动力装置的基本概念、性能及相关的技术指标。 2. 熟练掌握船舶推进装置的组成、布置、型式及主要设备的工作原理和设计要求。 3. 了解各种后传动设备的结构、工作原理与选型。 4. 能进行简单的机桨工况配合分析。 5. 能看懂并分析机舱布置图,懂得基本的机舱布置方法。 三、教学内容结构 第一部分船舶动力装置总论 第二部分推进装置设计 第三部分船舶传动设备 第四部分船舶推进装置的特性和匹配 第五部分船舶推进节能和特种推进器 第六部分船舶动力装置设计 四、教学内容与要求 第一部分船舶动力装置总论 教学要点: 1、正确叙述和理解船舶动力装置的含义、任务及组成 2、正确理解船舶动力装置的类型、特征、性能及结构概况 主要内容: 第一节船舶动力装置的含义及组成 什么是船舶动力装置 船舶动力装置的组成都有什么 第二节船舶动力装置的类型及特点

哈工程版船舶动力装置概论样本

第一章,总论 1,船舶的主要性能指标有哪些? 答: 排水量△: 船舶总重量, 由空载重量LW和载重量DW组成; 容积▽: 水面航行船舶的水下部分的体积,也称作容积排水量; 航速: 1海里=1.852km 续航力S: 舰船在用尽全部燃料及其它消费品储量前, 以恒速所航行过的距离称为续航力, 以海里计; 自给力T: 舰船在海上航行, 中途不补给任何储备品所能持续活动的时间称为自给力, 以昼夜计; 生命力: 舰船能抵御战斗破坏或失事破损并保持其运载、战斗能力的性能称为生命力; 机动性: 舰船起锚开航、改变航速和航向的性能; 隐蔽性: 舰船在海上航行并完成战斗运输任务而不被敌方发现的性能; 耐波性: 舰船能在大风浪不良天气下完成任务的性能; 2,船舶动力装置是由哪些装置系统组成的? 答: 推进系统: 主机、传动设备、推进器 辅助设备: 发电副机组、辅助锅炉装置、压缩空气系统 机舱自动化系统 船舶系统 3,船舶对动力装置有哪些要求? 答: 技术性能和经济性能, 对于军用舰船来说着重于战术技术性能;

而民用船舶则倾向于经济性能。 4,船舶动力装置的主要性能指标是什么? 答: 技术指标: 功率指示, 重量指标, 尺寸指标 经济指标: 动力装置燃料消耗率, 主机燃料消耗率, 动力装置每海里航程燃料消耗量, 动力装置有效热效率, 动力装置的建造、运转及维修的经济性 运行性能指标: 机动性, 可靠性, 隐蔽性, 遥控和机舱自动化, 生命力 5,高、中、低速柴油机的转速范围如何? 答: 低速机: 300r/min, 中速机: 300-1000r/min,高速机: >1000r/min 6,柴油机的消耗率一般是多少? 答: 低速机: 160-180g/(kw.h), 中速机: 150-220 g/(kw.h), 高速机: 200-250 g/(kw.h) 7,柴油机的优缺点为何? 答: 优点: 有较高的经济性、重量轻、具有良好的机动性缺点: 单机功率低、柴油机工作中振动、噪声大, 大修期限较短、柴油机在低速区工作时稳定性差, 滑油消耗率高 8,蒸汽轮机的优缺点为何, 为什么主要应用在大型船舶上? 答: 单机功率很大; 汽轮机叶轮转速稳定, 没有周期性作用力, 因此汽轮机组振动噪声小 汽轮机工作时只是转子轴承处有摩擦阻力, 故磨损部件少, 工

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

NPT型IGBT电热仿真模型参数提取方法综述_徐铭伟

电力自动化设备 Electric Power Automation Equipment Vol.33No.1Jan.2013 第33卷第1期2013年1月 0引言 近年来,绝缘栅双极型晶体管IGBT (Insulated Gate Bipolar Transistor )因其不断改善的电压、电流承受能力和工作频率、功率损耗等性能指标而被广泛应用到机车牵引、开关电源、新能源发电等电能变换和处理领域中[1],因此IGBT 的可靠性受到国内外科研工作者的广泛关注。研究表明,与IGBT 器件结温(T j )相关的热循环过程和器件封装材料热膨胀系数不一致是致其故障的主要诱因[2-3],IGBT 的电热仿真模型可以估计结温的变化情况,从而可用于IGBT 可靠性的评估。国内外对IGBT 的电热仿真模型开展了大量研究工作[4-6],其中基于半导体物理并考虑自热效应(Self -heating )的IGBT A.R.Hefner 器件模型[6] 和反映其封装传热过程的Cauer 网络[7-9]联合组成的IGBT 电热模型准确度较高,并已在Saber 、Pspice 等电路仿真软件中得到应用[10-11],但是,仿真软件有限的器件模型库无法满足仿真需要,同时出于技术保密的缘故,半导体制造商并不会提供建立电热模型需要的模型参数,因此如何建立一种有效并准确的参数提取方法就显得十分必要。 IGBT 电热仿真模型参数同半导体物理、器件以 及封装结构直接相关,无法直接测量,只能通过一定 的技术方法和手段获取。一个有效的参数提取过程是获得有效的电热模型的前提条件;此外,实现模型参数的准确提取对于分析IGBT 的性能、优化驱动电路的设计、指导其应用以及选型都具有重要意义。在参数提取之后,有效性验证也至关重要,可以让使用者合理选择器件的工作范围。由于非穿通(NPT )型 IGBT 目前在工业领域中已获得了广泛而成熟的应 用[12],本文将以其作为参数提取的研究对象。本文从NPT 型IGBT 电热仿真模型的工作原理出发,首先将模型参数分为电参数和热参数两大类。然后对近年来模型参数提取方法的研究情况进行讨论,依据提取手段的不同将文献中出现的IGBT 电参数提取方法归纳为4类:仿真提取[13];经验估计,如利用经验公式[12,14-18]、数据手册[15-16]或者参数典型范围[12];参数隔离[19-27];参数优化,包括直接搜索技术[14]、模拟退火算法[28-29]、变量轮换法[30-32]等。同时归纳Cauer 网络的参数提取可以从IGBT 的封装结构[8-9,33-34]和封装瞬态热阻曲线[7,35-36]2个方向出发,并列表给出了提取电参数和热参数的不同方法之间的优缺点。最后对各种提取方法进行了总结,并讨论了一个模型电参数提取步骤,以增强参数提取工作的有序性和可靠性,这对于提高IGBT 电热仿真模型的应用水平,扩大其使用范围起到了积极的作用。 1IGBT 电热仿真模型及其参数 IGBT 的电热仿真模型是建立在考虑了半导体 自热效应的Hefner 物理模型基础之上,耦合了受结温影响的器件模型及与散热路径相关的动态热模型。在分析器件损耗特性、辅助电力电子设计以及研究因器件老化衰退引起的变换器端口特性等方面, NPT型IGBT电热仿真模型参数提取方法综述 徐铭伟,周雒维,杜 雄,沈 刚,杨 旭 (重庆 大学输配电装备及系统安全与新技术国家重点实验室,重庆400044) 摘要:对NPT 型IGBT 电热仿真模型的工作原理进行了概述,并将模型参数分为电参数(即基于半导体物理的Hefner 器件模型参数)和热参数(即反映器件封装传热的Cauer 网络参数)两大类,然后对近年来模型参数提取方法的研究情况进行讨论。依据提取技术手段的不同将IGBT 电参数提取方法归纳为仿真提取、经验估计、参数隔离和参数优化4类,并从时效性、准确性、复杂性等方面对各种方法进行了比较和评价;从IGBT 的封装结构和封装瞬态热阻曲线2个方向出发讨论了Cauer 网络参数的提取。最后讨论了一个模型电参数的提取步骤。 关键词:绝缘栅双极型晶体管;电热;仿真;模型;参数提取;热网络;电参数;热参数中图分类号:TM 322 文献标识码:A DOI :10.3969/j.issn.1006-6047.2013.01.026 收稿日期:2011-08-09;修回日期:2012-10-19 基金项目:科技部国际合作项目(2010DFA72250);国家自然科学基金资助项目(51077137);输配电装备及系统安全与新技术国家重点实验室重点资助项目(2007DA10512711101);中央高校基本科研业务费资助项目(CDJXS11150022) Project supported by the International Cooperation Project of the Minister of Science and Technology of China (2010DFA -72250),the National Natural Science Foundation of China (51077137),the Key Program in State Key Laboratory of Power Transmission Equipment &System Security and New Tech -nology (2007DA10512711101)and the Fundamental Research Funds for the Central Universities of China (CDJXS11150022)

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

船舶动力装置概论

00第一章 1.船舶动力装置的定义及其组成:指将燃料化学能转化成热能,机械能使船舶产生推进力保证船舶航行和提供能量消费的全部机械,设备和系统的总合体。1推进装置;主机,传动设备,推进器2辅助装置;发电副机组,辅助锅炉装置,压缩空气系统3机舱自动化系统4传播系统。 4.动力装置运行性能指标主要包括那几个方面?1机动性2可靠性3隐蔽性4遥控和机舱自动化5生命力 5.船舶动力装置的优缺点:汽轮机,燃气轮机,联合动力循环,核动力装置。汽轮机:优点,汽轮机的转子在高温高压高速度流动的撑起作用下连续工作,转速较高,而且可采用高压、低压几级汽轮机,因此单机功率很大。汽轮机叶轮转速稳定,没有周期性作用力,因此汽轮机组振动噪声小。汽轮机工作时只是转子轴承处有摩擦阻力。可使用劣质燃油,滑油耗率也低。缺点:汽轮机动力装置由于装备锅炉、冷凝器以及辅机和设备,故动力装置比较复杂、装置重量尺寸大。燃料消耗量大,装置效率低。机动性差。 燃气轮机:优点:单位功率重量尺寸小,机组效率较大。良好的机动性能。缺点:主机本身不能自行反转,可反转的机组其结构也较复杂,一般需设置专用的倒车设备。由于燃气的高温,叶片使用的合金钢材料价格昂贵,工作可靠性差,寿命短。燃气轮机耗油率比柴油机高,现已接近高速柴油机水平。由于燃气轮机工作时空气流量大,所以排气管道尺寸较大,给机舱布置带来困难,甲板上较大的管道通过切口,影响船体强度。 联合动力装置:优点:在保证足够大功率的情况下,洞里装置尺寸重量小。操纵方便,备车迅速,紧急情况下可用燃气轮机立即开车。自巡航到全速工况加速迅速。两机组共用一个减速齿轮箱,具有多机组并车的可靠性。缺点:舰上和基地需准备两种机型的备件。 核动力装置:优点:极高的能量密度。不消耗空气而获得热能,这可使潜艇长期在水下航行,隐蔽性能大大提高。缺点:核动力装置的重量尺寸较大。操纵管理监测系统比较复杂。核动力装置造价昂贵。 第三章 1.燃气轮机装置的定义:一种将燃料的化学能转换成热能,继而再转变成机械功的回转式热机装置。 2.船舶主推进燃气轮机动力装置的定义,他有哪几部分组成?驱动螺旋桨的燃气轮机装置称为船舶主推进燃气轮机装置。由燃气轮机装置,减速器,轴系,和螺旋桨等组成。 5.改善燃气轮机热循环的措施主要有哪两种途径?每种途径又包括哪些循环?1提高循环热效率:回合循环,利用排气余热的燃气--蒸汽联合循环。2提高循环比功:中间冷却循环,再热循环。 7.压气机产生喘振的机理是什么?防喘措施有哪些?当空气流量减少到一定限度以下,压气机运行工况点就移到喘振边界,整台压气机就不能稳定地工作,产生世俗和喘振。1中间级放气法2可转导叶法3双转子压气机法4合理选择运行工况线。 8.燃气轮机的燃烧室主要由哪几部分组成?并简单描述燃烧室的工作原理。由燃烧室外壳1,火焰管2,涡流器3,喷油嘴4和混合器5组成。原理:从压气机出口的高压空气,经导管引入燃烧室后分成两股:一股经涡流器,进入火焰管,这股是燃料完全燃烧锁必须的参与燃烧空气,称为一次空气,约占空气总流量的25%;另一股空气进入火焰管与燃烧室外壳之间的唤醒空间,这部分空气哦是冷却用空气,称为二次空气。二次空气的一部分经火焰管上的许多小孔或缝隙进入燃烧室进入燃烧区,以冷却火焰管内壁,而大部分二次空气沿着火焰管与外壳之间的唤醒空间流动,以冷却火焰管外壁与燃烧室外壳,然后经混合器进入混合空间,把高温燃烧产物的温度降低,以达到给定的燃烧室出口的燃气温度--燃气初温。燃料经油泵输送至雾化喷嘴,喷入火焰管内,形成雾状,与一次空气混合,经点火器点火后,即连续地

计算机仿真技术概述及其在交通仿真领域的应用

计算机仿真技术简介 计算机仿真技术是一门综合性信息技术,它通过专用软件,整合图像、声音、动画等,将三维的现实环境、物体模拟成多维表现形式的计算机仿真,再由数字媒介作为载体传播给人们。当人们通过该媒体浏览观赏时就如身临其境一般。并且可以选择任意角度,观看任意范围内的场景或选择观看物体的任意角度。正是由于对身临其境的真实感和对超越现实的虚拟性,以及建立个人能够沉浸其中、超越其上、进出自如、具有交互作用的多维信息系统的追求,推动了计算机仿真技术在各个领域中的应用与发展。并且,因其有效性、经济性、安全性、直观性等特点而受到广泛的应用。它是在计算机图形学基础上发展起来的一种仿真应用技术。 计算机仿真已成为系统仿真的一个重要分支,系统仿真很大程度上指的就是计算机仿真。计算机仿真技术的发展与控制工程、系统工程及计算机工程的发展有着密切的联系。一方面,控制工程、系统工程的发展,促进了仿真技术的广泛应用;另一方面,计算机的出现以及计算机技术的发展,又为仿真技术的发展提供了强大的支撑。工业方面,计算机仿真一直作为一种必不可少的工具,在减少损失、节约经费开支、缩短开发周期、提高产品质量等方面发挥着重要的作用。 综上所述,计算机仿真技术是以数学理论、相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。它集成了计算机技术、网络技术、图形图象技术、面向对象技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 计算机仿真技术原理 对于需要研究的对象,计算机一般是不能直接认知和处理的,这就要求为之建立一个既能反映所研究对象的实质,又易于被计算机处理的数学模型。关于研究对象、数学模型和计算机之间的关系,可以用图1来表示。

第一章 船舶动力装置概述

第一节船舶动力装置的组成、类型和发展 一、船舶动力装置的组成 现在的船舶动力装置主要由推进装置、辅助装置、管路系统、甲板机械、防污染设备和自动化设备等六部分组成。 1.推进装置 推进装置是指发出一定功率、经传动设备和轴系带动螺旋桨,推动船舶并保证一定航速航行的设备。它是船舶动力装置中最重要的组成部分,包括:(1)主机。主机是指提供推动船舶航行动力的机械。如柴油机、汽轮机、燃气轮机等。 (2)传动设备。传动设备的功用是隔开或接通主机传递给传动轴和推进器的功率;同时还可使后者达到减速、反向或减振的目的。其设备包括离合器、减速齿轮箱和联轴器等。 (3)轴系。轴系是用来将主机的功率传递给推进器。它包括传动轴、轴承和密封件等。 (4)推进器。推进器是能量转换设备,它是将主机发出的能量转换成船舶推力的设备。它包括螺旋桨、喷水推进器、电磁推进器等。 2.辅助装置 辅助装置是指提供除推进船舶运动所需能量以外,用以保证船舶航行和生活需要的其他各种能量的设备。主要包括: (1)船舶电站。 (2)辅锅炉装置。 (3)压缩空气系统。 3.管路系统 管路系统是用来连接各种机械设备,并输送相关流体的管系。由各种阀件、管路、泵、滤器、热交换器等组成,它包括: (1)动力系统。为推进装置和辅助装置服务的管路系统。主要包括燃油系统、滑油系统、海淡水冷却系统、蒸汽系统和压缩空气系统等。 (2)辅助系统。为船舶平衡、稳性、人员生活和安全服务的管路系统。主要包括压载系统、舱底水系统、消防系统、日用海/淡水系统、通风系统、空调系统和冷藏系统等。 4.甲板机械 为保证船舶航向、停泊、装卸货物所设置的机械设备。它主要包括:舵机、锚机、绞缆机、起货机、开/管舱盖机械、吊艇机及舷梯升降机等。 5.防污染设备 用来处理船上的含油污水、生活污水、油泥及各种垃圾的设备。它包括油水分离装置(附设有排油监控设备)、生活污水处理装置及焚烧炉等。 6.自动化设备

相关主题