搜档网
当前位置:搜档网 › A320系统知识普及帖之22-主起落架减震支柱

A320系统知识普及帖之22-主起落架减震支柱

A320系统知识普及帖之22-主起落架减震支柱
A320系统知识普及帖之22-主起落架减震支柱

A320的主起落架减震支柱采用的是两腔式油气减震器

如下图所示. 在主起落架减震支柱的上部和下部各有一个填充活门.

需要检查内筒的伸出长度H值来判断是否需要做起落架的勤务工作,充油和充气.

主起落架减震支柱包括一个滑动筒,减震支柱和主接头相连,把着陆,起飞,和滑行期间的载荷传递到机翼上.当减震支柱压缩时,载荷就加在液压油和氮气上.

如上图所示

减震支柱的上部顶端有隔膜UPPER DIAPHRAGM,由一个中空的销子PIN把隔膜和中间筒CENTER TUBE连接在外筒MAIN FITTING上.

通过上部的填充阀和LEVEL TUBE来给上腔充气和加液压油.

工作原理

油气减震器采用的油液是粘度相对较高,高温下化学稳定性较好的石油基液压油俗称红油,常见的是BMS3-32 TYPE2.采用的气体是干燥的氮气,避免液压油在高温,高压下氧化工作原理见下图

油气减震器主要利用气体的压缩变形吸收撞击动能,利用油液高速流过阻尼孔的摩擦消耗能量。

在压缩过程中,撞击动能的大部分由气体吸收,其余则由油液高速流过阻尼孔时的摩擦和密封装置等的摩擦,转变成热能消散掉。

在伸张过程中,气体放出能量,其中一部分转化成飞机的势能,另一部分则由油液高速流过小孔时的摩擦和密封装置等的摩擦,转变成热能消散掉。

A320的减震支柱采用的是两腔式油气减震器,包括四个腔

第一级气腔(FIRST STAGE)包括低压氮气和掖压油

防反弹腔(RECOIL CHAMBER)只有液压油

利用防反跳活门(RECOIL PLATE)为单向节流活门,

压力腔(COMPRESSION CHAMBER)

在起落架伸张行程中堵住一部分通油孔(RECOIL PLSTE VALVES),限制流速,达到防反跳的目的.

液压油从防反弹腔流到气腔,在从气腔流到压力腔.

带有限流孔的(ORIFICE)的调节油针(DAMPING TUBE)和限流孔组件ORIFICE BLOCK 用来调节油液流速

第二级气腔(SECOND STAGE)包含高压氮气,通过浮动活塞FLOATING PISTONG把下腔和上腔分隔开来.

备用封严作动阀SPARE SEAL ACTIVATING VALVE

为了便于维修,设计了两套封严. 主封圈和备用封圈.两套封圈不是同时起作用.油掖经过备用封圈而作用在主封圈上,主封圈伸开贴在滑动筒上起密封作用. 备用封圈两侧压力相同,不起作用.

当主封圈损坏后, 会造成在减震支柱外筒上出现渗漏,把备用封圈作动阀上的活门杆顺时针拧到底,阻断到主封圈上的油液,使备用封圈下方释压,备用封圈在上方的压力下伸展开,从而启用备用封圈,即可阻断渗漏,

检查无渗漏后即可放行,在检查时还要注意检查镜面有无损伤,损伤的镜面很可能会划伤主封圈和备用封圈.在备用封圈使用后最多可用1200FH/670FC/200Days,随后要更换.取代原密封装置.

因为在主封圈和备用封圈之间充满油液, 在备用封圈使用后油液会在一定的时间内渗出.

短时间内会有少量余油漏出,是正常的.

支柱上标有填充曲线,温度压力对照表用来检查在正确压力下,滑动内筒的伸出长度(H值).注意新飞机的曲线图和老飞机的不同,只有一个表了.老飞机有三个.这个只是为了检查方便,并不是说程序有所简化.

检查后发现气体压力镜面高度,温度曲线达不到标准.参考

AMM12-12-32 充油

AMM12-14-32 充气.

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

飞机起落架支柱固定螺栓环境氢脆断裂研究

装备环境工程 E Q U I P M E N T E N V I R O N M E N T A L E N G I N E E R I N G 第4卷 第6期  2007年12月 技术专论 飞机起落架支柱固定螺栓环境氢脆断裂研究 傅国如,陈卫东,吕凤军,王洪伟 (北京航空工程技术研究中心,北京100076) 摘要:某飞机起落架缓冲支柱固定螺栓长期使用后断裂。为了确定该螺栓断裂的原因,对断裂螺栓进行了外观检查,断口宏观、微观分析,能谱仪成分分析,金相组织检查、硬度检测以及氢含量测定,结果表明:断裂螺栓的断口具有氢脆断裂特征,其断裂失效性质为环境氢脆断裂;飞机服役期间,螺栓保护不良,致使环境对螺栓造成了腐蚀,腐蚀产生的氢进入螺栓是导致螺栓产生环境氢脆裂纹的根本原因。对螺栓进行保护可有效地避免该类故障的重复发生。 关键词:飞机;螺栓;氢脆断裂;环境;失效分析中图分类号:T G 113.23 文献标识码:A 文章编号:1672-9242(2007)06-0050-04 收稿日期:2007-10-11 作者简介:傅国如(1968-),男,湖南益阳人,博士研究生,高级工程师,主要从事失效分析、腐蚀与防护和飞机日历寿命等方面的研究,曾 获部级以上科技进步奖10项。 S t u d y o f E n v i r o n m e n t a l H y d r o g e nE mb r i t t l e m e n t F r a c t u r e o f U n d e r c a r r i a g eS u p p o r t F i x a t i o nB o l t F U G u o -r u ,C H E NW e i -d o n g ,L UF e n g -j u n ,W A N GH o n g -w e i (B e i j i n g A e r o n a u t i c a l T e c h n o l o g y R e s e a r c h e r C e n t e r ,B e i j i n g 100076,C h i n a ) A b s t r a c t :O n e f i x a t i o nb o l t o f u n d e r c a r r i a g e s u p p o r t i n a i r c r a f t f r a c t u r e d a f t e r s e r v i c i n g a l o n g t i m e .T h e a p p e a r a n c e i n s p e c t i o n ,m a c r o a n d m i c r o a n a l y s i s o f f r a c t u r e ,c o m p o s i t i o na n a l y s i s b y E D S ,m i c r o s t r u c t u r e e x a m i n a t i o n ,r i g i d i t y m e a s u r e ,a n dh y d r o g e nc o n -t e n t d e t e r m i n a t i o n w e r e i n v e s t i g a t e d i n o r d e r t o f i n d o u t t h e c a u s e o f f r a c t u r e .I t w a s c o n c l u d e d t h a t t h e f r a c t u r e o f b o l t h a s t h e h y d r o g e n b r i t t l e n e s s a p p e a r a n c e ;i t s f a i l u r e c h a r a c t e r i s e n v i r o n m e n t a l h y d r o g e n b r i t t l e n e s s .I n t h e e n l i s t m e n t o f a i r c r a f t ,t h a t t h e b o l t a b s o r b s t h e h y d r o g e np r o d u c e d b y c o r r o s i o n e n v i r o n m e n t i s t h e m a i n c a u s e o f t h e h y d r o g e n b r i t t l e n e s s f r a c t u r e o f t h eb o l t . K e yw o r d s :a i r c r a f t ;b o l t ;h y d r o g e nb r i t t l e n e s s ;e n v i r o n m e n t ;f a i l u r e a n a l y s i s 1 基本情况 某飞机在服役检查中发现起落架缓冲支柱8个 固定螺栓中有1个断裂。随后,对同型所有飞机的起落架缓冲支柱固定螺栓进行普查,其它飞机情况良好。 至故障发生时,该飞机已服役了16年,其中D 检后日历时间5年。 断裂螺栓在D 检时为非必换件。D 检时,对该螺栓进行了探伤检查,未见异常,继续装机使用。在机械日、飞行后以及整顿、定检等工作时,维护人员对起落架缓冲支柱固定螺栓等进行外部检查,发现问题及时更换。 · 50·

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

针对IO的缓冲器版图设计

《集成电路版图设计》实验(二): 针对IO的缓冲器版图设计 一.实验内容 参考课程教学中互连部分的有关讲解,根据下图所示,假设输出负载为5PF,单位宽长比的PMOS等效电阻为31KΩ,单位宽长比的NMOS等效电阻为13KΩ;假设栅极和漏极单位面积(um2)电容值均为1fF,假设输入信号IN、EN是理想阶跃信号。与非门、或非门可直接调用LEDIT标准单元库,在此基础上,设计完成输出缓冲部分,要求从输入IN到OUT的传播延迟时间尽量短,可满足30MHz时钟频率对信号传输速度的要求(T=2T p)。 二.实验要求 要求:实验报告要涵盖分析计算过程 图1.常用于IO的三态缓冲器

三、实验分析 为了满足时钟频率对信号传输速度的要求,通过计算与非门和或非门的最坏延时,再用全局的时钟周期减去最坏的延时,就得到了反相器的应该满足的延时要求,可以得到反相器N管和P管宽度应该满足什么要求。标准与非门和或非门的电容、电阻可以通过已知条件算出。由于与非门、或非门可直接调用LEDIT标准单元库,所以本设计的关键在于后级反相器的设计上(通过调整反相器版图的宽长比等),以满足题目对电路延时的要求。由于输入信号IN和是理想的阶跃信号,所以输入的延时影响不用考虑。所以计算的重点在与非门和或非门的延时,以及输出级的延时。对于与非门,或非门的延时,由于调用的是标准单元,所以它的延时通过提取标准单元的尺寸进行估算,输出级的尺寸则根据延时的要求进行设计。 四、分析计算 计算过程: (1)全局延时要求为: 30MHz的信号的周期为T=1/f=33ns; 全局延时对Tp的取值要求,Tp<1/2*T=16.7ns; (2)标准单元延时的计算:

飞机起落架撑杆强度的有限元分析

飞机起落架撑杆强度的有限元分析 【摘要】本文对飞机起落架缓冲机理进行建模和受力分析,通过达朗贝尔原理将动态系统的应力问题转换成静应力,对起落架撑杆进行受力计算分析,并利用计算机虚拟仿真技术和有限元分析技术对某型飞机主起落架的撑杆进行了强度分析,为飞机起落架的损伤预测和维修提供了有效依据。 【关键词】仿真;ANSYS;起落架;应力 0 引言 飞机起落架斜撑杆的作用是控制缓冲支柱的部分受力及约束支柱外筒相对机身的转动,提供扭矩作用,其性能的好坏直接影响着飞机的起飞着陆,对于起落架强度分析问题,陈玉振[1]等研究了飞机起落架车轴的静强度仿真分析,何雪浤[3]等对飞机起落架的四框架进行了有限元强度分析,王小峰[1-3]等对飞机起落架撑杆进行了静态的结构优化,但是关于飞机起落架的动态应力分析的还很少,本文提出对起落架进行动力学性能仿真,在仿真结论基础上利用动静法对起落架斜撑杆进行结构强度分析。 1 斜撑杆受力分析 主起落架受到作用于轮胎触地点的集中力作用。力的传递过程为:地面载荷是通过轮胎触地点及机轮中心两个作用点将力传递给活塞杆,活塞杆通过与外筒之间密封的高压油气混合体的油液压力平衡地面载荷在筒轴线方向上的分力,地面载荷在垂直于筒轴线方向上的分力则通过活塞杆与外筒的接触面直接传递到外筒上,扭矩通过扭力臂传递给外筒。最终外筒通过斜撑杆和上接头与机身的连接处将载荷和转矩传递给机身。 飞机着陆是一个动态撞击过程,随着飞机轮胎接地起落架所受的力是不断变化,要想考虑起落架撑杆什么时候产生最大变形,产大变形的部位在哪里,我们只能采取流体动力学中的动静法,取起落架受撞击力最大时刻作为分析的基础。 图1 支柱式起落架部分简图 图2 斜撑杆结构模型 斜撑杆和支柱的相对位置如图1所示,斜撑杆到支柱顶端转轴处的垂直距离为d,撑杆与支柱间的夹角为θ,撑杆对支柱的支撑力为F,轮轴中心到支柱中心的距离为a,轮轴中心垂直受力为Pv:即轮胎垂直反力Fu。 由对支柱顶端转轴处的力矩平衡方程得到撑杆受力为: F=■

车钩缓冲装置的种类及其运用

车钩缓冲装置的种类、 主要机构及其运用 车钩缓冲装置是用于使车辆与车辆,机车或动车相互连挂,传递牵引力,制动力并缓和纵向冲击力的车辆部件。它由车钩,缓冲器、钩尾框,从板等组成一个整体,安装于车底架构端的牵引梁内。车钩缓冲器装车后,其车钩钩舌的水平中心线距钢轨面在空车状态下的高度,客车为880mm(允许+10mm,-5mm误差),货车为880mm (±10mm)。两相邻车辆的车钩水平中心线最大高度差不得大于75mm。 1:车钩的种类、机构及其运用 车钩在两车之间实现相互连挂并传递纵向力(牵引力或压缩力)的部件。车钩由钩头,钩身、钩尾三个部分组成、车钩前端粗大的部分称为钩头,在钩头内装有钩舌、钩舌销,锁提销,钩舌推铁和钩锁铁。车钩按其结构类型分为螺旋车钩、密接式自动车钩、自动车钩及旋转车钩等。车钩后部称为钩尾,在钩尾上开有垂直扁锁孔,以便与钩尾框联结。为了实现挂钩或摘钩,使车辆连接或分离,车钩具有以下三种位置,也就是车钩三态:锁闭位置——车钩的钩舌被钩锁铁挡住不能向外转开的位置。开锁位置——即钩锁铁被提起,钩舌只要受到拉力就可以向外转开的位置。全开位置——即钩舌已经完全向外转开的位置。 2:缓冲器的种类、机构及其运用 缓冲器缓和机车车辆纵向冲击的部件。缓冲器的工作原理是借

助于压缩弹性元件来缓和冲击作用力,同时在弹性元件变形过程中利用摩擦和阻尼吸收冲击能量。 根据缓冲器的结构特征和工作原理,一般缓冲器可分为:盘形缓冲器、弹簧摩擦式缓冲器、橡胶缓冲器、液压缓冲器等。 盘形缓冲器同螺杆链环式车钩配套使用,通常安装在端梁两侧。它只能承受纵向压缩力的作用,在改用自动车钩后,便为装在牵引梁内的缓冲器所代替。 弹簧摩擦式缓冲器早期的缓冲器只有螺旋弹簧,不能吸收冲击能量。1888年在缓冲器内增加金属摩擦元件,把所吸收的一部分能量转换成热量散发掉,因而缓冲效果较好。弹簧摩擦式缓冲器有多种形式,其中如环簧式缓冲器、楔块式缓冲器迄今还在中国铁路上使用。通过增加摩擦面的数量以增大容量的新型缓冲器正在发展。 橡胶缓冲器借助于弹性变形时橡胶分子的内摩擦以消耗能量的缓冲器。橡胶缓冲器最初使用在客车和柴油机车上。为了增大容量,货车用的橡胶缓冲器多由金属-合成橡胶弹性元件和金属摩擦元件构成。这种缓冲器在中国铁路的部分车辆上也在使用。橡胶摩擦式缓冲器的结构见图5橡胶摩擦式缓冲器。 液压缓冲器50年代中期,由于对冲击保护有了更高的要求,一些国家的铁路将液压技术应用到缓冲器上,采用了两种方式。一种是用液压缓冲器直接代替现有的缓冲器。由于行程较长,取得了增大容量的效果。这种缓冲器称为车端液压缓冲器。另一种方式是将车辆制成具有上下两层底架,上层底架连接车体,下层底架用以实现与相

A320飞机V2500放行题库(ME)

A320系列飞机概述题库(总共201题) A320系列飞机综述(11) 1.(i)东航的A320系列有几个燃油加油车加油点? A A.1个 B.2个 C.3个 D.4个 2.(ii)以下哪种描述不准确,在东航的A320上,飞机顶升时,查看飞机的水平可从 C A.可从加油面板处,查看水平仪 B.可从MCDU 进入CFDS查看 C.可从MCDU 进入AIDS查看 D.可从起落架舱处,查看水平仪 3.(ii)牵引飞机时,必须保证前起落架的高度不得大于 A A.300mm B.310mm C.400mm D.407mm 4.(i)关于发动机舱站位的描述可以从AMM哪个章节查找? B A.ATA05 B.ATA06 C.ATA12 D.ATA20 5.(ii)A320系列飞机机身分成几个主要区域? A A.5个主要区域 B.7个主要区域 C.8个主要区域 D.9个区域 6.(i)下机身的区域编号为 A A.100 B.200 C.400 D.700 7.(ii)196 BB的第二个B代表 B A.门或面板的顺序 B.门或面板的位置 C.门或面板的区域 D.主要区域 8.(ii)飞机的区域检查可从AMM内的那个章节查找? A A.ATA05 B.ATA06 C.ATA12 D.ATA20 9. (i)电路识别的显示可在哪里查询 D A.AMM、ASM B.AMM、AWM C.IPC、AMM D.ASM、AWM 10. (i)飞机X轴的0站位位于: B A.机头处B.机头前 C.机头后 D.机身纵轴 11. (i) 静电敏感器件是如何标识的: C A.用红色的环形标签 B.用绿色的三角标签 C.用黄底的黑色标签 D.用蓝色的三角标签 ATA21空调和增压一般介绍(10)

车钩及缓冲装置的检修工艺

目录 一、车钩的构造------------------------------------------------------(2) 二、牵引缓冲装置的内容----------------------------------------------(3) 三、缓冲器的构造与检修工艺------------------------------------------(5) 四、车钩及缓冲器的检修---------------------------------------------(8) 4.1缓冲装置检修--------------------------------------------------(8)4.2清扫检查与修理------------------------------------------------(8)4.3钩舌的检修----------------------------------------------------(9)4.4缓冲器的检修--------------------------------------------------(9)4.5组装----------------------------------------------------------(9)4.6检查与试验----------------------------------------------------(10)4.7技术安装与注意事项--------------------------------------------(10)参考文献----------------------------------------------------------(11)

飞机起落架中减震缓冲装置及零部件的设计与加工工艺编制

目录 1 绪论 (4) 1.1 起落架常见类型 (5) 1.1.1前三点式 (5) 1.1.2后三点式 (6) 1.1.3自行车式 (7) 1.1.4多轮小车式 (6) 1.2起落架的设计要求 (8) 1.3起落架受到的外载荷 (9) 1.4起落架的结构......................................... 错误!未定义书签。 1.4.1简单支拄式和撑杆支柱式............................. 错误!未定义书签。 1.4.2摇臂支柱式......................................... 错误!未定义书签。 1.4.3多轮小车式起落架................................... 错误!未定义书签。 2 起落架的减震缓冲装置 (10) 2.1减震器的不同形式和对比 (11) 2.2油式减震器........................................... 错误!未定义书签。 2.2.1工作原理........................................... 错误!未定义书签。 2.2.2减震器中的气体..................................... 错误!未定义书签。 2.2.3油液和阻尼扎的作用及对功量图的影响................. 错误!未定义书签。 2.3油气式减震器......................................... 错误!未定义书签。 2.4全油式减震器的设计 (12)

飞机起落架机构设计及安全性分析开题报告

毕业设计(论文)开题报告 题目飞机起落架机构设计及安全性分析 一、毕业设计(论文)依据及研究意义: 飞机的起落架是飞机起飞和着陆的重要装置,它在工作过程中承受着极大的冲击载荷,所以采用高强度钢或超高强度钢制作。起落架在长期使用的过程中,受到外界各种因素的影响,它的坚固程度会变差,甚至产生裂纹。本文针对起落架的焊接进行了深入的分析与研究,并在此基础上研究了完善和加强飞机起落架的焊接工艺与材料的焊接性,从而大大的降低了飞机起落架焊接时出现的问题并提高了其焊接质量。起落架是飞机起飞、着陆系统,对飞机的性能和安全起着十分重要的作用 起落架是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。概括起来,起落架的主要作用有以下四个: ①承受飞机在地面停放、滑行、起飞着陆滑跑时的重力。 ②承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量。 ③滑跑与滑行时的制动。

④滑跑与滑行时操纵飞机。 二、国内外研究概况及发展趋势 起落架的收放机构运动复杂,起落架的收放,上、下位锁开锁和上锁,舱门的打开和关闭等均要正确匹配和协调,否则将会发生飞行事故。 我国开展了与起落架现代设计技术密切相关的专题研究,并取得了一大批研究成果,其中有些达到世界先进水平,如变油孔双腔缓冲器设计技术,飞机前轮防摆技术,飞机地面运动动力学分析技术,长寿命、高可靠性起落架设计及寿命评估技术,起落架结构优化设计技术,起落架收放系统仿真分析技术,起落架主动控制技术等,这些成果部分地应用于型号研制中,并取得了一定效果。许多学者与研究生在理论方面也开展了一系列研究工作。《起落架设计与评定技术指南》集中反应了我国近年来在起落架现代设计理论与方法方面的进展情况。但与国外相比,我国的大量研究成果是分散的,孤立的,没有作为模型、算法或程序模块集成于一套系统中,成为设计师的实用工具,更没有在高水平的硬件与软件平台上形成一套先进、实用、高效的起落架专业CAD/CAE软件系统,因而我国型号研制基本上仍是完全采用传统模式,费时、费力、耗资。 国内起落架的研究软件主要有南京航空航天大学和西北工业大学共同开发的起落架设计分析软件系统LCAE,功能比较强大,能进行结构布局设计、起落架机构运动分析或应力分析、有限元总体应力分析、变形及载荷分析、缓冲性能分析、损伤绒线分析、及破坏危险性分析。可以实现图形及文本的前处理功能、后处理功能、分析程序的过程处理功能。另外还有南京理工大学和沈阳飞机研究所的起落架设计专家系统ALGDES,它能进行结构布局设计和强度分析、系统空间位置造型仿真机干涉分析,它建立了起落架设计的知识表示形式和组织形式,即专家系统。北京航空航天大学和西北工业大学都做过起落架防滑刹车系统的机械装置和仿真软件。有人研究了飞机接地时所受到的加速度的计算方法[6],介绍了最大过载对飞行、起落架和气动力参数的敏感性。从国外文献上来看,有的从动能的角度研究了起落架摆振,还有的对在各种条件下的起落架性能进行了仿真,主要是在载荷及变形方面给予仿真。 在起落架行业,国外在大力开展起落架理论与专题研究的基础上,发展和推广应用起落架现代设计技术。在与现代设计技术密切相关的起落架专业理论研究方面,国外从六十年代开始,己做了大量专题研究工作。如DAUTI等公司从六、

A320系统知识普及帖之22-主起落架减震支柱

A320的主起落架减震支柱采用的是两腔式油气减震器 如下图所示. 在主起落架减震支柱的上部和下部各有一个填充活门. 需要检查内筒的伸出长度H值来判断是否需要做起落架的勤务工作,充油和充气.

主起落架减震支柱包括一个滑动筒,减震支柱和主接头相连,把着陆,起飞,和滑行期间的载荷传递到机翼上.当减震支柱压缩时,载荷就加在液压油和氮气上.

如上图所示 减震支柱的上部顶端有隔膜UPPER DIAPHRAGM,由一个中空的销子PIN把隔膜和中间筒CENTER TUBE连接在外筒MAIN FITTING上. 通过上部的填充阀和LEVEL TUBE来给上腔充气和加液压油.

工作原理 油气减震器采用的油液是粘度相对较高,高温下化学稳定性较好的石油基液压油俗称红油,常见的是BMS3-32 TYPE2.采用的气体是干燥的氮气,避免液压油在高温,高压下氧化工作原理见下图 油气减震器主要利用气体的压缩变形吸收撞击动能,利用油液高速流过阻尼孔的摩擦消耗能量。 在压缩过程中,撞击动能的大部分由气体吸收,其余则由油液高速流过阻尼孔时的摩擦和密封装置等的摩擦,转变成热能消散掉。 在伸张过程中,气体放出能量,其中一部分转化成飞机的势能,另一部分则由油液高速流过小孔时的摩擦和密封装置等的摩擦,转变成热能消散掉。 A320的减震支柱采用的是两腔式油气减震器,包括四个腔 第一级气腔(FIRST STAGE)包括低压氮气和掖压油

防反弹腔(RECOIL CHAMBER)只有液压油 利用防反跳活门(RECOIL PLATE)为单向节流活门, 压力腔(COMPRESSION CHAMBER) 在起落架伸张行程中堵住一部分通油孔(RECOIL PLSTE VALVES),限制流速,达到防反跳的目的. 液压油从防反弹腔流到气腔,在从气腔流到压力腔. 带有限流孔的(ORIFICE)的调节油针(DAMPING TUBE)和限流孔组件ORIFICE BLOCK 用来调节油液流速 第二级气腔(SECOND STAGE)包含高压氮气,通过浮动活塞FLOATING PISTONG把下腔和上腔分隔开来. 备用封严作动阀SPARE SEAL ACTIVATING VALVE 为了便于维修,设计了两套封严. 主封圈和备用封圈.两套封圈不是同时起作用.油掖经过备用封圈而作用在主封圈上,主封圈伸开贴在滑动筒上起密封作用. 备用封圈两侧压力相同,不起作用.

飞机起落架的减震系统

8. 6起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成?其中减震器(也称缓冲器)是所有现代 起落架所必须具备的构件,也是最重要的构件?某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%?15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动?减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作 用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实一一也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%?80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架 恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o. 8s。以上⑵,(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mn高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8. 24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/ LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8. 25所示波音-737 主起落架的试验曲线表明其效

某型飞机起落架设计改进及制造技术

2010 年第 8 期·航空制造技术 69 学术论文 RESEARCH [摘要] 详细介绍了某型飞机起落架设计改进及制造技术。改进后的起落架经试验以及预先飞行验证,各项指标符合要求,满足了新研飞机的使用需要。 关键词: 起落架 设计改进 制造技术 [ABSTRACT] The new technology and processes are introduced in detail, which are adopted in the landing gear design improvement for one type of aircraft. The testing and advance flight validation after improvement shows that all functional performances are qualified and can meet the application requirements of the retrofit aircraft. Keywords: Landing gear Design improvement Manufacturing technology 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、工艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安 全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。1.1 缓冲支柱优化设计 飞机着陆重量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。 通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架 某型飞机起落架设计改进及制造技术 Design Improvement and Manufacturing Technology of Landing Gear for One Type of Aircraft 中国人民解放军驻陕飞公司军事代表室 王晓平 周 亮 李 鹏 阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2 部分零 (组)件结构重新设计对起落架的部分零(组)件结构重新进行设计,改善 了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起 图1 圆角方形截面油针 Fig. 1 Square section pin with round corner 落架斜撑杆的协调承载能力,减少结构不协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结构如图2、图3所示。 1.3 关键重要件结构加强 由于新研飞机载荷的增加,经计算分析起落架部分零件强度不够,因此必须对零件结构进行改进,对簿弱部位进行加强。为了克服焊接结构的缺点,提高结构件的疲劳强度,前起落架活塞杆、主起落架外筒、前 图2 刚性斜撑杆(原结构) Fig. 2 Rigid batter brace (original structure) 图3 弹性斜撑杆(改进结构) Fig. 3 Flexible batter brace (improved structure) 3mm 3mm A腔

飞机起落架的减震系统讲解学习

8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具有很好的能量消散能力。因此现代飞机一般多采用泊气式减震器。全泊液式减震器结构紧凑,尺寸小,效率

A320机型 第22章自动飞行系统

22章重点 1、FMGC、ELAC、惯导,哪个是AFS(自动飞行系统)的计算机?FMGC 2、FCU(飞行控制组件)在遮光板上。 3、FMA(飞行方式指引)在PFD 顶部 4、A320飞行系统核心计算机?FMGC 5、自动飞行系统的FMGC(飞行管理指引计算机)装在电子舱 MCDU(多功能控制显示组件)装在驾驶舱 FCU装在驾驶舱遮光板上 6、FMGC有2个 FAC有2个 FCU有1个,分为3部分FCU有两个通道 7、自动飞行系统有2套 自动推力有1套A/THR也有两个通道 8、AP(自动驾驶)衔接电门在FCU A/THR(自动推力)衔接电门在FCU 9、FE叫飞行包络保护,FEC叫飞行包络计算机,FE有2套 10、FE的功能:风切变探测、alpha-floor包络保护 11、包络保护功能在FAC 12、自动飞行系统操纵时,飞机侧杆不动,油门杆也不动,但是脚蹬可能会动,因为脚蹬是钢索传动 13、自动飞行系统的功能:自动操纵飞机各个舵面,自动完成推力的计算和改变,使飞机沿着预先设定的飞行计划飞行 14、AFS(自动飞行系统)的故障探测隔离功能在:FIDS(故障隔离和探测系统) 15、FMGC输出指令到AP,再由AP输出到ELAC,SEC和FAC,操纵各个舵面 16、飞控计算机有ELAC(升降舵和副翼计算机)、FAC(飞机增稳计算机)、SEC(扰流板升降 舵计算机)、FMGC(飞机管理指引计算机) 17、AP推力载荷:在AP接通时,侧杆上会有推力载荷,即防止误操作,若施加一定的力,克服了负载会断开自动驾驶(同A/THR) 18、自动推力输出推力给FADEC(全权限数字电子控制) 19、自动推力切断方法:油门杆放入慢车位或者使用油门杆侧面的自动推力切断电门 20、FMGC功能:(全选) 21、FMGC功能分为FM和FG部分,FM主管飞行计划,FG主管飞行制导,FG的功能分为AP,FD,A/THR 22、飞行计划的监控由FM(飞行管理)完成 23、AP、FD、A/THR功能在FMGC实现 24、着陆测试由FMGC完成,检查自动着陆的能力 FMA上显示着陆能力的等级CAT 3 2 1 25、在进近过程中可以同时衔接2个AP,AP1为主,AP2热备份(同DIR) 26、自动推力可以人工或自动脱开。人工脱开:按压油门杆侧面的脱开电门,或者设置推力在慢车位,或者再次按压FCU上的A/THR衔接电门(不推荐此种方式,因为会在EWD上出现一个自动推力断开的黄色警告信息)。 27、自动推力由FMGC计算 28、AP在离地5s后可以接通

飞机起落架故障分析

飞机起落架故障分析 【摘要】 起落架是飞机的重要组成部分,飞机的停放、起飞着陆主要是由起落架来完成的。所以起落架的工作性能直接影响了飞机的安全性和机动性。 飞机起落架故障很多,本文主要针对歼七和歼八飞机的一些故障加以分析。主要阐述了歼八飞机主起落架机轮半轴裂纹故障分析和歼七飞机起落架收放系统典型故障分析。 关键词:起落架机轮半轴裂纹法兰盘自动收起油路堵死电液换向阀 Abstract: Landing gear is an important part of the plane, the plane's parking, off and landing is mainly composed of landing gear to finish. So the landing gear on the working performance directly affect the safety of the aircraft and mobility. Landing gear fault many, this article mainly aims at annihilates seven and fighters eight aircraft some fault analysis. Mainly expounds the main annihilates eight plane aeroplane undercarriage tyre half axle crack fault analysis and fighters seven aircraft gear fault analysis of typical positioning systems. And explained how to judge whether these faults and some trouble-shooting reason method. Key words:Landing gear Tire half shaft Crack Flanges Automatic pack up Oil-wayquartz Electro-hydraulic reversing valves

飞机起落架的减震系统

` 8.6 起落架的减震系统 一、概述 飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求. (1)在压缩行程(正行程)时,减震装置应能吸收设计规要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率. (2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。 (3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。 (4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。 二、减震器的类型 总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具

相关主题