搜档网
当前位置:搜档网 › 抽油井管杆防偏磨浅析解析

抽油井管杆防偏磨浅析解析

抽油井管杆防偏磨浅析解析
抽油井管杆防偏磨浅析解析

抽油井管杆防偏磨浅析

关键词:抽油杆;油管;防偏磨技术。文献标识码: A

文章编号:1671-7597(2011)0120170-01

胡庆油田由于多年的强注强采、自然井斜、定向斜井,加之不合理的工作参数,以及产出液的介质腐蚀等原因,造成井下管杆的工作条件日益恶劣,抽油杆在油管中的运动及油管自身的运动情况非常复杂,引起抽油杆与油管的内壁产生剧烈地摩擦,甚至将油管磨穿而造成油管漏失,或将抽油杆的节箍磨坏,造成抽油杆断脱,严重影响了抽油井的正常生产,缩短了抽油井的免修周期,加大了抽油井的维护工作量,并增加了石油开采的成本。

因此,油井的偏磨问题已经成为制约胡庆油田发展的重要因素,应用效果较好、行之有效的防偏磨技术和手段,延长管杆的使用寿命,延长油井免修期已显得尤为必要和迫切。以最大限度地解决胡庆油田油井偏磨的问题。

1影响偏磨的因素

1.1油井井身结构的影响。在抽油井正常生产时,抽油杆拉力和重力产生一个水平分力,在水平分力下油管和油杆接触产生磨擦。抽油井弯曲度越小,油管内壁与抽油杆接箍产生偏磨面积越大,磨损越轻;弯曲度越大,不仅油管内壁与油杆接箍偏磨,油管内壁与抽油杆本体也产生偏磨,油管偏磨面积较小,磨损较严重。在整个上下冲程期间,抽油杆柱只是在接触点附近的小块区域内发生磨损,而油管柱则在整个冲程范围内相对较宽的区域内发生磨损,这也是抽油杆较油管磨损严重的原因之一。

1.2生产参数的影响。冲次高,冲程短时,偏磨次数频繁,偏磨的部位相对较小,磨损较严重,并且过高的冲次将导致杆柱中性点上移,杆柱偏磨段加长。

1.3抽油杆在交变载荷作用下产生底部弯曲。在上、下冲程时抽油杆都会产生弯曲,缩短了杆管间距,从而增加了摩擦系数。特别在粘度大的稠油井环境里,不仅摩擦力较大,而且泵下行程阻力也大。一般情况,当泵径大于50m 时,并且抽吸速度较快时,泵阻力的影响较为突出。

1.4油管弯曲的影响。柱塞上冲程时,游动凡尔关闭,固定凡尔打开,此时泵筒及上部油管内测壁受油管内液体静水压力作用,外壁受一定沉没度液体压力作用,整根油管如同一根承受内压力的细长管,当内压达到一定值时,油管会出现弯曲,在弯曲点处,油管与抽油杆发生接触磨损,导致油管发生弯曲的力为虚拟轴向力,该力大小与泵径、泵挂深度及沉没度等

因素有关;另外分层采油封隔器座封同样也会造成原油管弯曲。

1.5综合含水和腐蚀介质的影响。随着开发时间的延续,产出液综合含水上升,由油包水变为水包油,管杆表面的润滑剂由原油变为产出水,失去了原油的润滑作用,使管杆磨损加重加快。另外,腐蚀介质的存在,使管杆表面变的疏松和粗糙不平,降低了管杆的表面残余应力和强度,二者相互影响,更加剧了管杆的偏磨。

2防偏磨技术及应用

防偏磨治理的出发点:减少管杆之间的正压力;减少管干之间的摩擦系数;减少管杆之间的偏磨距离。

针对胡状油田的偏磨现状,我们对油井偏磨的原因进行了详细的分析,一方面从影响偏磨的管理因素出发,减少这些因素对偏磨的影响;另一方面,应用各种防偏磨技术解决油井的偏磨问题。

2.1采用加重杆技术减少抽油杆弯曲。当采用大直径抽油泵抽油或抽稠油时,抽油泵柱塞在下冲程时将受到阻力,随着泵径和原油粘度的增大而增大,引起抽油杆柱下部纵向弯曲,使抽油杆承受附加弯曲应力,引起抽油杆的早期断裂。为了防止大泵抽油、抽稠油和深井抽油使,抽油杆柱的下部发生纵向弯曲,减少抽油杆的断脱事故,在抽油杆柱的下部采用加重杆技术。使用加重杆,采用较大直径的抽油杆,一方面可以增加底部抽油杆的抗弯强度,从而可以减少弯曲造成的偏磨;另一方面,使用加重杆,可以克服泵筒与柱塞的半干摩擦力及流体流过游动阀的阻力,帮助柱塞下行和打开游动阀,同时可以减少对底部抽油杆的压力。

2.2增加泵下尾管长度。目前胡庆油田使用尾管长度一般为100-120 米,一般不超过130 米,在抽油泵以下悬挂足够重量的尾管,使泵上油管所受的拉力增大,防止在上冲程时泵上油管受压弯曲导致管杆接触磨损。

2.3锚定油管。油管锚是将油管锚定在套管上,以防止油管上下窜动的一种工具。该工具用于有杆泵抽油,可以减小油管伸缩造成的冲程损失,提高泵的有效冲程,除此,安装油管锚,可以有效防止上行程油管弯曲及改善油管受液体载荷产生的不良影响。

2.4抽油杆扶正短节防偏磨技术。抽油杆扶正短节通常连接在抽油杆上,利用扶正套的外径大于抽油杆接箍外径,起扶正作用,利用扶正套是高强度耐磨塑料,与油管接触使扶正体磨损,而减少油管的磨损,以达到防偏磨的作用。利用扶正套的旋转使尼龙均匀磨损,以达到延长使用寿命的目的。其结构如图1。

扶正短节结构简单、现场安装方便、使用寿命长,具有自动旋转功能,能较好地解决固定式抽油杆注塑尼龙扶正器无法解决的单面偏磨问题,使用效

果较好。

2.5泵上配套3//油管。对于套管完好的井,使用3//油管,可以有效减

少油管弯曲,增大管杆之间的间隙,从而降低磨损系数。

3结论

胡庆油田通过近几年来的发展,已经能根据不同技术的不同优点,在生产实际中不断地进行应用和改进,目前应用比较成熟的技术有抽油杆注塑尼龙扶正器和旋转井口,以后将进一步扩大推广和使用范围,以便更好地解决我厂的偏磨问题。在理论上,我们也从简单的治理偏磨入手,已发展到从偏磨的根本原因出发,通过应用物理模型和数学模型,对油管和抽油杆的弯曲进行防偏磨优化设计,从中性点、扶正器安装位置、悬挂尾管、到加重杆的设计都取得了较好的现场应用效果。

参考文献:

[1]孙宝京、陈良虎等,抽油机井管杆防偏磨技术的应用,油气田地面工程,2003.

[2]段保玉、景暖,斜井油管防偏磨技术及其应用,石油钻采工艺,2000,22(3) : 66?68.

2001.

[3]景思蓉等,流体力学,西安:西安交通大学出版

社,

浅析聚合物驱油井杆管偏磨、断脱的影响因素与治理措施

浅析聚合物驱油井杆管偏磨、断脱的影响因素与治理措施 发表时间:2019-06-25T11:24:44.587Z 来源:《基层建设》2019年第7期作者:郭浩[导读] 摘要:一般来说杆管偏磨、抽油机杆、管断脱现象是聚驱开发时期的典型特征,见聚浓度越高偏磨、断脱现象、频率就越严重。 大庆油田第三采油厂第四油矿黑龙江大庆 163000摘要:一般来说杆管偏磨、抽油机杆、管断脱现象是聚驱开发时期的典型特征,见聚浓度越高偏磨、断脱现象、频率就越严重。同时,冲次、泵径、举升高度、沉没度、杆管柱匹配等都会对偏磨、断脱程度产生影响。401队共有聚合物驱井61口。2014、2015上半年401队聚合物驱抽油机、螺杆泵井检泵井次为60井次,其中杆管偏磨、断脱漏失造成的检泵有31井次,占52%。本文通过对杆管偏磨以及断脱 原因进行分析,提出针对杆管偏磨问题应采取“防治结合、组合应用”的原则,在杆柱设计时应充分考虑偏磨因素,重点开展保持合理沉没度、优化抽汲参数、推广变频器、优选扶正器、低磨阻泵等配套技术的应用与研究。另外建议对高含水井提液要慎重,也不宜盲目增加扶正器数量。对抽汲参数较合理的抽油机井,可考虑安装变频器后调整为上行快下行慢的段速运行状态,以减轻偏磨程度。通过制定并实施以上治理偏磨、断脱的措施,进一步提升采油队基采效果,为油田采油降本增效提供保障。 关键词:聚合物驱油井;杆管偏磨;杆管断脱;治理措施 1、现状 2015年以来,随着萨北油田北区注聚工作的不断深入,油井见聚浓度不断升高,杆管偏磨越来越严重。401队共有聚合物驱井61口。2014、2015上半年401队聚合物驱抽油机、螺杆泵井检泵井次为60井次,其中杆管偏磨、断脱漏失造成的检泵有31井次,占52%。由此可见,杆管偏磨、断脱是造成抽油机井维护性作业的主要因素,它严重影响了油井时率和采出效率,抬高了开采成本。 2、杆管偏磨原因及分析 对2014年、2015上半年偏磨井进行了分类统计,下面从冲次、沉没度、泵径、聚合物浓度这四个方面进行数据分析。 2.1冲次的影响 从冲次统计情况来看,冲次越高,检泵周期越短。冲次增加,抽油杆下行阻力增加,造成杆管偏磨加剧。 表1 2014年、2015上半年偏磨、断脱井冲次分级统计 2.2沉没度的影响 从沉没度情况统计来看,50m以下检泵周期最短,50-100m检泵周期较短,100m以上检泵周期较长。沉没度过低时,泵筒内会产生液击现象,活塞撞击液面,造成抽油杆突然弯曲从而产生杆管偏磨甚至断脱。 表2 2014、2015上半年偏磨井沉没度分级统计 2.3泵径的影响 从泵径情况统计来看,泵径越大检泵周期越短。 表3 2014、2015上半年偏磨井泵径分级统计 2.4聚合物的影响 含聚浓度的升高导致采出液粘度增加,加大了活塞下行的阻力,使下冲程抽油杆出现明显弯曲,从而引发偏磨、断脱。浓度越高,偏磨、断脱情况就越严重。 表4 2014、2015上半年偏磨、断脱井见聚浓度分级统计 3、杆断脱其他影响因素 从目前检泵井杆断的影响因素还有很多,首先是杆管偏磨,使杆径变细,不能承受正常生产载荷造成杆断;其次是扶正器磨杆,造成杆断;第三,抽油机井高负荷生产,抽油杆在交变载荷作用下产生疲劳,造成杆断;第四是抽油杆质量问题,部分油井更换全井新杆投产后短期内杆断。 4、偏磨、断脱井的治理

抽油井管杆防偏磨技术的现场应用

龙源期刊网 https://www.sodocs.net/doc/c88265921.html, 抽油井管杆防偏磨技术的现场应用 作者:李彩云张睿王荣美 来源:《教育科学博览》2014年第03期 摘要:针对抽油井管杆偏磨现象,先后推广应用了内衬油管、镀新钨防腐蚀偏磨抽油杆、防偏磨抽油杆、抽油杆扶正器、抽油杆双向防偏磨接箍、电潜油泵、防偏磨旋转式悬绳器等工艺,该文系统分析了油井管杆偏磨腐蚀原因,对目前各种管杆偏磨腐蚀工艺进行论述比较,以期对管杆偏磨防治工作提供指导。 关键词:抽油杆油管防偏磨技术现场应用 1 抽油井管杆偏磨现状及危害 在有杆机械采油过程中,经常会发生抽油杆与油管的相互接触磨损,造成杆断、杆脱、管漏等事故,缩短油井免修期,影响油井正常生产,增大作业及材料成本投入。 据统计,孤岛油田90%以上的油井采用有杆机械采油工艺,因特高含水期,参数大,生产任务紧张等原因,50%的井存在管杆偏磨腐蚀的现象,随着斜井、侧钻井的增多,偏磨腐蚀现象越来越严重。管杆偏磨造成了频繁躺井和作业、油井免修期的降低和作业材料成本的大量投入,严重影响了油田的原油生产和经济效益的提高。 2 抽油井管杆偏磨原因分析 在有杆抽油系统中,抽油杆在油管中的运动及油管自身的运动情况非常复杂,这种运动会引起抽油杆与油管内壁的剧烈摩擦,致使抽油杆本体及接箍磨穿,油管磨损裂缝,造成杆管报废。 随着近年来油管泄油锚的应用,在高含水期,基本上是由于大泵和高参数的影响,致使了躺井的频繁,检泵周期的缩短,即使把泵上油管锚定,但在游动凡尔关闭,固定凡尔打开时,油管向上运动发生螺旋弯曲,抽油杆下行时螺旋弯曲上行摩擦,也会引起抽油杆接箍与油管内壁的摩擦。在油管锚定且处于拉伸状态下,柱塞下行中抽油杆螺旋弯曲也会造成管杆偏磨,而且这种弯曲、偏磨通常发生在泵以上几百米的管柱范围内。 孤一区该类井平均泵径80.8mm,平均泵深737.2m,平均液量102.8t/d,平均动液面659.5m,平均冲次7.6次(高于我队平均冲次6.8次),平均沉没度100.3m,平均检泵周期226d,平均矿化度9905mg/l。 3 抽油井管杆防偏磨技术的研究与应用情况分析 3.1 抽油杆扶正器与抽油杆双向防偏磨接箍工艺

抽油机井示功图口诀

示功图口诀 1、四边平行泵正常,左右斜率最重要,高产稳产有保障;井筒提产有潜力。 2、充满不好象菜刀,供液原因及时找,调整制度不能忘;调层压裂是方向。 3、油杆断脱黄瓜状,电流变化失平衡,井口无液载荷降;验泵对扣再检泵。 4、砂卡出现锯齿样,砂阻卡死不一样,油层井筒把砂防;防砂方案要得当。 5、图形斜直杆拉伸,活塞卡死不做功,解卡无效速上修;原因查明措施订。 6、双阀漏失象鸭蛋,漏失原因多方面,碰泵洗井是手段;漏失严重要换泵。 7、上阀漏失抛物线,增载缓慢卸载快,漏失严重不出油;及时检泵莫耽误。 8、下阀漏失泵效减,卸载缓慢增载快,曲线上翘两边圆;洗井无效就检泵。 9、油井结蜡图肥胖,上下行程波峰大,峰点对乘有规律;热洗加药快清蜡。 10、油稠图形变肥胖,磨阻增大呈凸圆,冲程速度中间快;电流正常不管它。 11、油管漏失图形窄,容易隐藏不好辨,憋压计量问题现;细查漏点换油管。 12、碰泵左下出圆圈,及时调整防冲踞,上提高度图中显;调后测图再核实。 13、上阀失灵图偏下,此图复杂难度大,多方分析细排查;措施一般要检泵。 14、下阀失灵图偏上,负荷提住不下降,液面变化查现象;措施洗井再检泵。 15、图形增胖曲线平,管堵闸门没改通,措施解堵查流程;热洗管线找原因。 16、图形右上少一块,行程未完突卸载,活塞脱出工作筒;计算下放问题无。 17、上死点处长犄角,光杆驴头有碰挂,井下碰挂要分清;管串数据重调配。 18、增载正常卸载快,左右曲线不对称,上行程处泵已漏;及时下放或换泵。 19、上下左右不平行,泵已磨损间隙松,疲劳磨损超周期;据情适时要换泵。 20、玻璃钢杆图形怪,增程取决冲次快,弹性较大图变形;搞清原理需提高。 21、气体影响卸载慢,泵内进气产量减,调小余隙参数改;控套加深多方面。 22、气锁出现双曲线,泵已不出气充满,加深防止泡沫段;气油比高查油层。 23、图形倾斜不要怕,这是惯性载荷大,保持生产防断杆;合理泵深与冲次。 24、图形出现阻尼线,波峰由大到平缓,冲次过大是因缘;未曾断杆属正常。 25、修后完井不出液,此图出现原因多,井口疑点要搞清;综合分析下结论。 26、上下死点出圆圈,二级震动冲次快,合理冲次防杆断,保持泵效防断脱。 27、抽喷图型有特点,增载卸载不明显,产液较高憋压缓;制度调整再挖潜。

抽油井管杆偏磨应力分析与治理措施

抽油井管杆偏磨应力分析与治理措施 发表时间:2014-10-31T14:46:12.547Z 来源:《科学与技术》2014年第9期下供稿作者:刘雪红 [导读] 随着油田不断深入开发,综合含水逐渐上升,油井的偏磨、腐蚀等情况不断加剧。 中石化胜利油田胜利采油厂采油二矿刘雪红 摘要:抽油机深井泵采油中,油管与抽油杆偏磨是造成抽油机井躺井的一项主要因素,通过对油管与抽油杆之间偏磨损伤机理的分析研究,找出了影响偏磨速度的因素,提出了减缓偏磨速度的方法,取得了较好的经济效益。 关键词:偏磨机理;应力分析;减缓;对策 随着油田不断深入开发,综合含水逐渐上升,油井的偏磨、腐蚀等情况不断加剧。有杆泵油井生产过程中,由于井身结构限制、管柱失稳和管杆弹性变形、产出液性质影响等因素,造成抽油杆与油管之间总是存在接触磨损现象,导致油井油管磨损漏失、抽油杆磨损断脱等问题,严重影响油井检泵周期。而且随着油田开发的进一步深入,低品位油藏相继投入开发,油井泵挂深度加大,同时,老油田高含水期开发产出液物性逐渐变差等因素都从不同程度上加剧了油井管杆偏磨问题的发生。消除或减缓抽油杆及油管的偏磨速度,延长检泵周期是提高油田开发效益的重要路径。 1抽油杆与油管偏磨损伤机理 偏磨损伤的成因是抽油杆与油管之间发生相对运动,相对运动在抽油杆与油管接触面产生的接触应力大于油管与抽油杆的表面接触疲劳强度,从而导致接触面的损耗,接触应力越大,油管与抽油杆的损耗越快。损耗的直接结果是导致油管裂缝或抽油杆接箍断或抽油杆脱。治理管杆偏磨损伤的核心是如何减小油管与抽油杆表面的接触应力,减缓管杆磨损的速度。 2偏磨影响因素分析 2. 1接触应力分析根据赫兹公式接触应力计算方法如下: 式中: m, n, s, r, ,fυ分别代表:抽油节箍质量,冲次,冲程,偏磨点拐弯半径,向心力,摩擦系数。由上式可以看出,在同一口井的同一偏磨点,偏磨接触面上的载荷的大小与冲次的平方成正比,冲次变小,作用在接触面上的载荷也随之变小,接触应力σH也将变小,偏磨减轻。 2. 3综合曲率半径分析在采油生产中,抽油杆是在油管内部来回做上下运动的,属于内接触,在公式ρ=ρ1ρ2/(ρ2±ρ1)中适用于负号,因此当抽油杆偏磨点外半径ρ1越接近于油管偏磨点内半径ρ2时,综合曲率半径ρ越大,接触应力σH则越小,偏磨将随之减轻。 2. 4综合弹性模量分析综合弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力,是反映材料抵抗弹性变形能力的指标,与材料的化学成分有关。 2.5接触长度分析从赫兹公式可以看出,接触应力的大小与接触长度呈反比,接触长度长度愈大,接触应力愈小。在油管和抽油杆偏磨的过程中,油管偏磨部位为油管内面,偏磨轨迹为线状,长度为抽油机冲程,在油田一般为4. 8米,而抽油杆偏磨部位通常为抽油杆节箍,长度一般为0.2米,其有效的接触长度为抽油杆节箍长度,对油管和抽油杆来说,接触应力是相同的,但由于油管和抽油杆偏磨行程的不同,会造成油管抽油杆偏磨速度的不同。在一个单向运动过程中,抽油杆节箍每一点的偏磨行程是4. 8米,而油管每一点的偏磨行程是0. 2米,油管偏磨面的接触应力属于脉动循环应力,与抽油杆节箍脱离接触后接触应力就等于零,因而在材质相同的情况下,油管的磨损速度要远远小于抽油杆节箍,在厚度相同的情况下,理论上要磨坏20个以上的抽油杆节箍才能使油管损坏,可以通过定期更换抽油杆节箍来实现检泵周期的延长。 3减缓管杆磨损速度,延长检泵周期 3.1降低作用在偏磨接触面上的载荷前面的公式已经指出,造成偏磨的摩擦力的大小与冲次的平方成正比,降低冲次可以降低作用在油管、抽油杆接触面上的载荷,减小接触应力,减缓磨损速度。现场应用:旋卡扶正器+普通抗磨副。加强新技术研究应用,引进弹力支撑定位扶正装置、弹力支撑抗磨副技术开展现场实验,并取得了显著效果。 3.2增大综合曲率半径接触应力的公式已经指出,综合曲率半径的大小与接触应力成反比,在油管内径不变的情况下,增大偏磨点处的抽油杆本体与节箍直径,可以有效地增大综合曲率半径,减小接触应力,减缓磨损速度。在现场生产中,可以通过调整抽油杆组合解决这个问题,在条件允许的情况下将偏磨部位的抽油杆提高一个级别使用,如将Φ19mm抽油杆改换为Φ22mm抽油杆,或者使用加大节箍,将原来的Φ19mm抽油杆节箍直径加大为Φ22mm抽油杆节箍。抽油杆节箍加大,一是增大了综合曲率半径,二是增大节箍厚度,延长了节箍完全损坏的时间。 3.3改变接触面材质,降低综合弹性模量减少摩擦系数。上部近井地带的偏磨可以通过定期更换抽油杆节箍来实现检泵周期的延长。针对采出液腐蚀严重,采取常规防偏磨技术效果差、生产周期短的井,选择内衬HDPE/EXPE油管+配套Ⅱ型接箍配套治理技术。该抗磨抗腐油管是在普通油管中内衬高密度聚乙烯材料,内衬层抗磨强度高,与钢的滑动磨擦系数为0·20,比钢对钢的磨擦系数降低0.13,能够有效减少杆管间的磨擦磨损,内衬材料的肖氏硬度为60~70m,耐磨性是金属的3~5倍;内衬材料耐腐蚀能力强:对酸、碱、盐等众多物质具有很好的耐腐蚀性。 3.4陀螺测斜。定向井在钻井过程中,录取了造斜曲线,给油井偏磨治理提供了依据,而对于地层蠕动和钻井过程中管柱失稳造成的弯曲变形,部分老井则没有录取井身轨迹资料,陀螺曲线的测试正好填补了这一资料空白。应用曲线测试数据,落实井斜角、方位角,变化明显处加以治理,可以使方案的设计更具有针对性,从而最大限度的提升治理效果。针对部分偏磨严重、采取治理措施效果不明显,井深轨迹不明确井,

浅谈油井的防偏磨技术

浅谈油井的防偏磨技术 浅谈油井的防偏磨技术 1、前言 随着水平井、斜井、高含水井、低产井等类型油井的日渐增多,抽油机井杆管磨损问题已经成为困扰油井生产的主要问题之一。以高升采油厂某地区为例,初步统计有近60口井存在较严重的偏磨问题。油井磨损主要表现在管杆偏磨严重、检泵周期明显缩短、生产成本显著上升等方面,现阶段管、杆磨损问题已成为我厂生产中急需解决的现实问题之一。由于对我厂抽油机井杆、管偏磨机理没有准确、清晰的认识,目前采取的各项防偏磨措施有效率偏低,措施有效期短。因此有必要开展油井杆管偏磨机理及防偏磨技术的研究与应用,以达到延长油井检泵周期、降低生产管理难度及生产成本并改善区块开发效果的目的。 2、存在的主要问题 某地区共部署油井107口,其中11块有油井67口,开井62口,64块有油井40口,开井39口。由于受地面条件和征地限制,大部分油井钻井时均利用老井场,井眼轨迹复杂、斜度大及狗腿度大,油井最大井斜97.1°,平均21.3°,最大狗腿度达12.21°/30m。生产过程中52%以上的油井存在着不同程度的偏磨,各井偏磨井段见附表1。另外,由于油藏埋藏深,油井下泵深度大(最深2130m,平均泵深1906m),导致油井负荷增加,增加了断脱的可能性。区块油井断脱平均免修期只有180d左右,因偏磨造成的检泵工作量占维护性作业工作量的54.2%,偏磨断脱已成为导致油井检泵的主要原因。 目前针对油井偏磨问题,主要使用尼龙防偏磨器和高强接箍,实施之后,取得了一定的防偏磨效果,但是尼龙防磨器使用寿命仅3个月,限制了防偏磨效果,另外磨损产生的碎片易导致卡泵,高强接箍使用之后,有效的解决了抽油杆接箍磨损问题,但对油管磨损较严重,出现了多次管漏问题,因此,目前尚缺乏有效的解决该地区油井偏磨问题的技术手段。

抽油井管杆防偏磨浅析解析

抽油井管杆防偏磨浅析 关键词:抽油杆;油管;防偏磨技术。文献标识码: A 文章编号:1671-7597(2011)0120170-01 胡庆油田由于多年的强注强采、自然井斜、定向斜井,加之不合理的工作参数,以及产出液的介质腐蚀等原因,造成井下管杆的工作条件日益恶劣,抽油杆在油管中的运动及油管自身的运动情况非常复杂,引起抽油杆与油管的内壁产生剧烈地摩擦,甚至将油管磨穿而造成油管漏失,或将抽油杆的节箍磨坏,造成抽油杆断脱,严重影响了抽油井的正常生产,缩短了抽油井的免修周期,加大了抽油井的维护工作量,并增加了石油开采的成本。 因此,油井的偏磨问题已经成为制约胡庆油田发展的重要因素,应用效果较好、行之有效的防偏磨技术和手段,延长管杆的使用寿命,延长油井免修期已显得尤为必要和迫切。以最大限度地解决胡庆油田油井偏磨的问题。 1影响偏磨的因素 1.1油井井身结构的影响。在抽油井正常生产时,抽油杆拉力和重力产生一个水平分力,在水平分力下油管和油杆接触产生磨擦。抽油井弯曲度越小,油管内壁与抽油杆接箍产生偏磨面积越大,磨损越轻;弯曲度越大,不仅油管内壁与油杆接箍偏磨,油管内壁与抽油杆本体也产生偏磨,油管偏磨面积较小,磨损较严重。在整个上下冲程期间,抽油杆柱只是在接触点附近的小块区域内发生磨损,而油管柱则在整个冲程范围内相对较宽的区域内发生磨损,这也是抽油杆较油管磨损严重的原因之一。 1.2生产参数的影响。冲次高,冲程短时,偏磨次数频繁,偏磨的部位相对较小,磨损较严重,并且过高的冲次将导致杆柱中性点上移,杆柱偏磨段加长。 1.3抽油杆在交变载荷作用下产生底部弯曲。在上、下冲程时抽油杆都会产生弯曲,缩短了杆管间距,从而增加了摩擦系数。特别在粘度大的稠油井环境里,不仅摩擦力较大,而且泵下行程阻力也大。一般情况,当泵径大于50m 时,并且抽吸速度较快时,泵阻力的影响较为突出。 1.4油管弯曲的影响。柱塞上冲程时,游动凡尔关闭,固定凡尔打开,此时泵筒及上部油管内测壁受油管内液体静水压力作用,外壁受一定沉没度液体压力作用,整根油管如同一根承受内压力的细长管,当内压达到一定值时,油管会出现弯曲,在弯曲点处,油管与抽油杆发生接触磨损,导致油管发生弯曲的力为虚拟轴向力,该力大小与泵径、泵挂深度及沉没度等

抽油机井防偏磨集成配套技术的研究与应用

云南化工Yunnan Chemical Technology Apr.2018 Vol.45,No.4 2018年4月第45卷第4期 1 项目主要内容 在有杆抽油系统中,抽油杆、接箍油管的磨损现象普遍存在,随着文中、文东油田三十多年的开发,尤其是已进入高含水开发阶段,井液含水较高,杆管偏磨愈演愈烈,甚至直井中杆管偏磨问题也相当严重,在我厂针对偏磨问题也配套研究了多种多样防偏磨工艺,虽然已取得了一定的效果,但随着定向斜井、侧钻井的增加,含水上升、油井泵挂加深导致振动载荷加大、管杆修复使用率上升等不利因素的上升,抽油井工作的环境日益恶化,抽油井偏磨状况随之加重。统计近5年的偏磨致躺数据,2017年因偏磨导致的躺井25口,偏磨因素导致的躺井数逐年上升。 目前油田开发阶段对抽油机井偏磨的影响:1)介质变化对管杆偏磨影响加剧。油田进入高含水期,含水不断上升,受产出介质的影响,一是使产出液由油包水→水包油,油管与抽油杆之间的接触面因失去润滑,摩擦力增大1~3倍;二是含水上升会导致产出液温度升高,同时含砂、结垢和CO2、H2S、H+、Cl-等腐蚀介质的产出水会使管杆摩擦力加大、接触面变得更加粗糙摩擦系数进一步增大;三是修复管杆使用率上升,高含水下井液对修复管杆更易腐蚀导致偏磨。2)有效提液稳油和深抽提液对偏磨技术提出更高的要求。高含水期,受投入成本的影响,采油方式进行优化,电泵和气举井转抽力度在加大,大排量的抽油泵使用增多,大泵提液和大泵深抽工作量增加,杆柱失稳和弯曲造成的偏磨增多。2 主要应用的工艺技术、工作量及创新点 2.1 主要应用的工艺技术及工作量 1)Wellinfo三维井身轨迹在防偏磨技术中的应用。前期在防偏磨技术的配套应用主要在井斜资料的基础上,依靠作业现场描述,通过作业现场中油管和抽油杆的偏磨情况,判断偏磨段和偏磨程度,验证前期配套的合理性,制定和调整防偏磨配套工艺。但是在防偏磨配套工作中发现前期的配套方法存在技术缺陷:一是井斜数据与现场描述差异性较大,井斜(或狗腿度)不大处却偏磨严重;二是电泵、气举转抽井,在没有抽油机生产史情况下如何防偏磨配套;三是新井仅依靠井斜数据不直观的反映出井身轨迹的变化,配套难度加大。 2)防偏磨集成配套技术应用。①内衬管+双向保护接箍集成应用技术。内衬管具有表面光滑、摩擦系数较低,优良弹性、柔韧性、耐磨性和耐腐蚀的技术特点,通常在管杆偏磨严重井使用。但在使用过程中发现,由于普通抽油杆接箍表面摩擦系数较高,对内衬管损伤较大,降低了防偏磨效果,严重时导致内衬管损坏脱落。针对这个问题,一是在内衬管内配套双向保护接箍,利用双向保护接箍表面AOC-160涂层的光洁度高、摩擦系数低的特点,进一步减少管杆之间的摩擦,同时起到延长内衬管使用寿命的作用,从而提高防偏磨效果。二是对双向保护接箍的端面进行改进,将平端面改进为倒角端面,避免在上下运动时由于端面对管壁造成的损伤。 ②“二旋”+抗磨类集成应用技术。偏磨较轻井:主要是指油井井斜和狗腿度不大,三维井身轨迹未见明显拐点,仅受杆柱失稳影响,作业现场只是发现杆本体和抽油杆接箍轻微偏磨井。主要应用旋转悬绳器+双向保护接箍或旋转悬绳器+注塑杆(单个注塑块)集成技术。双向保护接箍以油管厂修复为主。2015年应用45井次。 偏磨中度井:主要是指三维井身轨迹有拐点,作业现场管杆明显偏磨,历史上有偏磨致躺作业的井。主要应用旋转悬绳器+注塑杆(双注塑块)或旋转井口+注塑杆(双注塑块)集成技术。2017年应用78井次。 3 现场应用效果分析 2017年开展抽油机井防偏磨集成技术的研究与应用项目以来,现场应用防偏磨集成配套148井次,其中内衬管+双向保护接箍集成技术15井次,“二旋”+抗磨类集成应用技术133井次。与2016年对比,减少偏磨因素躺井10口,有效的提高了防偏磨技术配套工艺水平,效果显著。 4 结语 油田进入高含水期,抽油机井工作环境日渐恶化,特别是管杆修复使用率上升后,偏磨问题导致躺井数逐年上升。针对这个问题,开展油田抽油机井防偏磨集成配套技术的研究与应用项目,应用现有的防偏磨工艺技术特点,形成防偏磨集成化配套技术,提高防偏磨工艺技术水平,最终达到油田稳产的目的。 参考文献: [1] 杨海滨,刘松林.三维井眼抽油杆与油管防偏磨技术研究与应 用[J].钻采工艺,2008(36):94-97 [2] 赵子刚,褚英鑫.抽油杆管偏磨的综合分析与防治[J].大庆石油 学院学报,2002,26(3):22-25. 收稿日期:2018-03-16 作者简介:李艳丽、朱绍华、庞顺利、赵晓梅、朱红,中原油田分公司采油一厂。 doi:10.3969/j.issn.1004-275X.2018.04.042 抽油机井防偏磨集成配套技术的研究与应用 李艳丽,朱绍华,庞顺利,赵晓梅,朱 红 (中原油田分公司采油一厂,河南 濮阳 457001) 摘 要:文中-文东油田经过三十多年的开发,已进入注水开发中后期,含水不断上升使井下杆管工作状况逐年变差,油井偏磨程度不断加重,而目前现阶段单一的防偏技术适用性不强,因此在前期机采井防偏磨工艺技术的基础上,开展防偏磨集成技术的研究与应用,完善油田抽油机井防偏磨工艺技术,为油田稳产提供技术支撑。 关键词:防偏磨;集成技术;稳产;效益 中图分类号:TE355.5 文献标识码:B 文章编号:1004-275X(2018)04-056-01 ·56·

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

阿城区职称论文表油井生产抽油杆治理措施论文选题题目

阿城区职称论文发表-油井生产|抽油杆|治理措施论文选题题目 阿城区职称论文发表-以下是油井生产|抽油杆|治理措施职称论文发表选题参考题目,均采用云论文发表选题题目软件,经过大数据搜索对比精心整理而成,各职称论文发表题目均为近年来所发表论文题目,可供油井生产|抽油杆|治理措施职称论文发表选题参考题目,也可以作为油井生产|抽油杆|治理措施毕业论文撰写选题参考。 更多论文选题,论文发表题目可登陆“云发表”网站自主选择! 关键词:教育教学论文,现代建筑论文,初等教育论文 1……油井管杆偏磨失效分析 2……油井井下防腐工具的应用评价 3……固体缓蚀剂对抽油杆材料CO_2腐蚀行为的影响 4……油气井杆管柱力学研究进展与争论 5……网络规制中的法治、技治、德治及其全球“共治” 6……of a head of hollow sucker rods for oil well 7……油井空心抽油杆杆头断裂失效分析 8……油井管杆腐蚀结垢原因分析及防治技术 9……増油短节提高抽油杆系统效率的机理研究及应用 10……基于ZigBee的油井载荷监测系统设计 11……浅析抽油杆接箍失效成因及对策 12……抽油杆柔性防磨接箍的研发与应用 13……稠油井变阻尼系数的计算方法 14……不同抽油机井系统效率计算模型研究与节能效果 15……同轴式双空心抽油杆下入深度设计方法 16……抽油机斜直井杆管接触与磨损力学模型 17……抽油机悬点与抽油杆柱运动协调及临界冲次研究 18……碳纤维复合材料抽油杆研究进展 19……重力热管式抽油杆柱加热井筒技术现场试验 20……内衬油管油井洗井液的研究与应用 21……重力热管式抽油杆柱吸收地热加热井筒技术 22……三维井眼抽油杆扶正器间距配置计算方法 23……油井采出液中聚合物的负影响与综合处理 24……抽油井修井作业中抽油杆净油工具的研制 25……应用井简三维可视化技术设计油井扶正器安装位置 26……油井管杆材料配对腐蚀试验研究 27……油水井阴极保护技术在现河采油厂的应用 28……油井管防腐抗磨涂层技术研究 29……大港南部油田有杆泵井偏磨机理探讨及综合防治 30……基于瞬态动力学分析的抽油杆柱动态特性研究

油井实测示功图解释大全

六、解释抽油机井理论示功图 A-驴头位于下死点 D点卸载终止点 C-驴头位于上死点AB-增载线 CD-卸载线 B-吸入凡尔打开,游动凡尔关闭点增载终止点 λ+λ-冲程损失(抽油杆伸长及油管缩短之和) D-固定凡尔关闭,游动凡尔打开点 BC-活塞冲程上行程线也是最大负荷线 AD- 下行程线也是最小负荷线 B1C-光杆冲程 OA-抽油杆在液体中重量 AB1-活塞以上液柱重量ABCD-抽油泵所做的功

七、实测示功图的解释 (1) 图1为其它因素影响不大,深井泵工作正常时测得的示功图。这类图形共同特点是和理论示功图的差异不大,均为一近似的平行四边形。 (2) 图2为供液不足的典型示功图。理论根据:活塞下行时,由于泵内没有完全充满,游动凡尔打不开,当活塞下行撞击到液面游动凡尔才打开,光杆突然卸载。该图的增载线和卸载线相互平行。 (3) 图3为供液极差的典型示功图。理论根据:活塞行至接近下死点时,才能接触到液面,使光杆卸载,但由于活塞刚接触到液面,上冲程又开始,液体来不及进入活塞以上,所以泵效极低。 (4) 图4为气体影响的典型示功图。理论根据:在活塞上行时,泵内压力降低,溶解气从石油中分离出来,由于气体膨胀,给活塞一个推动力,使增载过程变缓。当活塞下行时,活塞压缩泵内气体,使泵内压力逐渐增大,直到被压缩的气体压力大于活塞以上液柱压力时,游动凡尔才能打开。因此,光杆卸载较正常卸载缓慢。卸载线成为一条弯曲的弧线。

(5) 图5为“气锁”的典型示功图。所谓“气锁”是指大量气体进入泵内后,引起游动凡尔、固定凡尔均失效,活塞只是上下往复压缩气体,泵不排液。 (6) 图6为游动凡尔漏失的典型示功图。当光杆开始上行时,由于游动凡尔漏失泵筒内压力升高,给活塞一个向上的顶托力,使光杆负荷不能迅速增加到最大理论值,使增载迟缓,增载线是一条斜率较小的曲线。卸载线变陡,两上角变圆。 (7) 图7为游动凡尔失灵,油井不出油的典型示功图。图形呈窄条状,整个图形靠近下负荷线。 (8) 图8为固定凡尔漏失的典型示功图。示功图的特点:反应在卸载时,右下角变圆,卸载线与理论负荷线夹角变小,漏失越严重夹角越小。图形左下角变圆,漏失越严重,此角越圆滑。 (9) 图9为固定凡尔严重漏失,油井不出油的典型示功图。图形呈窄条状,且接近理论上负荷线。

油井功图计量及专家诊断系统

油井功图计量及专家诊断系统 一、系统简介 示功图测量是抽油机井工况分析诊断的一种有效手段,该系统运用传感器技术、无线采集技术、无线网络数据传输即全无线技术,实现了油井远程液量计量、数据后期处理以及部分专家故障诊断和管理功能,为综合应用功图、电参、压力、温度等多元数据的实时油井故障综合诊断分析及优化设计提供基础支持;克服了以往的油井的产液量、故障状况、效率与损耗状况、泵运行状况等细节单井运行信息反馈不及时或无法反馈的问题,达到了国内同类产品相当水平。 我公司将常见抽油机故障做了基础分类,依据一级筛选诊断和二级诊断即故障类型16条规则作为专家系统推理依据,利用功图特征法,建立知识库或专家库,实现常见典型故障诊断。见下图。 油井功图计量及专 家诊断系统以“功图法” 作为油井计量及诊断的 技术手段,是基于地面示 功图和泵的示功图以及 故障诊断技术发展而来 的油田量油新技术。通过 功图量油法和计算机技 术、通信技术的结合实现 了油水井远程监测、液量 自动计量及分析,提高了油田自动化管理水平,降低了产能建设投入和运行成本,实现了提山东世通信息科技有限责任公司 0546-8226773 7770781 1 / 7

高油井系统效率的目的。 本系统概括起来就是围绕一个中心、整合五大技术、提供十大功能、实现四大目标; 围绕一个中心:优化油井生产整合五大技术:自动化技术、计算机技术、网络技术、系统工程方法以及油气田开发技术。 提供十大功能:实时采集、数据管理、生产动态预测、实时工程分析、故障诊断、远程计量、系统效率及损耗分析、生产参数、实时优化设计、措施方案发布、智能控制。 实现四大目标:提高油井产量、系统效率、油田数字化水平和简化地面流程。 二、系统主要功能模块简介 2.1、数据录入模块 针对油井的基础数据,例如泵径、杆柱组合、油藏参数、设备参数、油井管理等信息进行人工录入或从油田开发数据库导入。该模块可对油井工况监控和故障诊断结果进行实时报警,可以设置报警的种类、各种报警的展现方式(如报警信息的颜色、声音),并可以选择报警的井范围。安装油井功图量油及诊断综合系统软件的任何计算机终端都能实时收到故障的语音、颜色、闪烁报警。 山东世通信息科技有限责任公司 0546-8226773 7770781 2 / 7

抽油机典型示功图

抽油机示功图是将抽油机井光杆悬点载荷变化所作的功简化成直观封闭的几何图形,是光杆悬点载荷在动态生产过程中的直观反映,是油田开发技术人员必须掌握的分析方法。通过示功图的正确分析评价,可诊断抽油机井是否正常生产。本文将通过典型示功图示例阐述,结合现场实际,对井下生产情况进行解释分析,应用地面示功图解决现场实际问题,为油田开发现场分析诊断提供可借鉴性依据。 1、泵正常工作 图像分析:供液充足、泵的沉没度大、泵阀基本不漏 失,泵效高,游动阀尔和固定阀尔能够及时开、闭,柱塞 能够迅速加载和卸载。 管理措施:此类井供液充足,沉没度大,仍有生产潜 力可挖,可以将机抽参数调整到最大,以求得最大产量, 发挥井筒应有的产能水平。 2、振动影响 图形分析:泵深超过800m时抽油杆会发生有规律的振动,一 般不会影响泵效,振动引起悬点载荷叠加在正常工作产生的曲 线上,由于抽油杆柱的振动为阻尼振动,所以出现逐渐减弱 的波浪线。 管理措施:一般不考虑振动影响,如果冲次加大后,振动幅度 变大,就导致功图失真,上下死点有小尾巴出现,泵效低,这 时需要对油井进行综合评估,减小冲次建立合理制度。 3、供液不足 图形分析:供液不足为油田常见工况,当泵充满系数小于0.6 时,可以认为深井泵的工作制度不合理,泵的排出能力大于油 层的供液能力,造成沉没度太小,液体充满不了泵筒。 管理措施;主要进行油层改造,改善供液条件,机抽参数,对于 泵挂较深井可采取长冲程,小泵径、慢冲次,泵挂相对较浅的 井,在井况及抽油设备允许情况下,加深泵挂深度,以求得最 大泵效。 4、泵工作正常,油稠时的情况。 图像分析:油稠,使摩擦等附加阻力变大,造成上负荷线 偏高,下负荷线偏低,同时,油稠可能使得凡尔开关比6B63 常时滞后,凡尔和凡尔座配合不严密,造成较大漏失。 管理措施:对于稠油井,主要对进泵液体降粘,定期地向 油田区块注入降粘剂,采取环空加热措施,并采用反馈抽 稠泵机抽。

抽油井示功图图谱

抽油井示功图图谱 1、考虑弹性的理论示功图 2、冲程损失 增载线越长,冲程损失越大,它与泵挂深度有关系。 3、考虑惯性和振动的理论示功图 ①实际上抽油杆是有弹性会“形变”的。 ②ab 段为增载线(是受力后伸长);bc 段为上行过程。 ③cd 段为卸载线(卸载后缩短);da 为下行过程 ④ab 和cd 都是倾斜着上下,与位移过程成线性的线段。 ⑤理论示功图的特征:ab ∥cd 、 bc ∥ da

3.2振动大后产生下倾现象。冲数越快,动载也越大。 3.3地面平衡轻,下冲程平衡块向下运动,井下负荷轻,动载增大,下行程曲线阻尼特征较明显,振幅大;平衡重后与之相反。 3.4二级振动示功图图形 抽油杆上、下运动时就会发生二级振动。这种示功图图形在左下方和右上方(即在冲程:下死点和上死点处)经图形的右上方会有一个“结”出现。这是抽油杆杆柱受力换向与杆柱弹性作用下造成的。由于弹性振动传递快,而杆柱与油管和液体摩擦等因素造成滞后,影响曲线的形状而产生扭结。 冲次:4-6 冲次:4-5 平衡轻示功图 平衡轻示功图

4、抽油机所承受最大载荷主要为抽油杆自重+液柱载荷+振动惯性载荷。对同一口井杆柱自重与振动载荷是相同的,液体由于含气不同,井液密度不同,因此含气量越大,液柱载荷越小,相对最大悬点载荷越小,功图上下行程线相距越窄,功图面积越小。反之越大。 功图a 相对密度为0.4 功图b 相对密度为0.6 功图c 相对密度为0.9 功图d 相对密度为1.1 4.1

5、抽喷理论功图 由于抽喷井井液梯度小,上下行程距离短。图形特征为近于水平状,很少有大的振动波,图形两端曲线近于平行(有增载和卸载特征),喷势较大的井,两端还有圆形面积,属于抽油过程中接近上,下死点时速度慢,喷势容易顶开游动阀球,相当于阀常开,也给下行柱塞以托力而减载。 6、有气体影响的理论示功图 含气井由于抽油泵筒内存在大量气体,抽油杆下行时没有立刻卸载,而是首先压缩泵筒内气体,造成缓慢卸载特征,下行曲线为凸圆弧曲线特征。气体影响越大,圆弧的曲率半径越大。 该曲线特征为上、下曲线没有明显的“阻尼”状,而是呈“小牙齿”状的不规则、不重复的示功图

油井示功图分析

二零一零年二零一零年八八月月工艺研究所抽油机井示功图,可以真实反映油井生产工况。随着高含水区块杆管偏磨,地层出砂严重,油井失效频繁,典型示功图可作为生产现场初步判断抽油机井泵况的参考依据。因此,应通过示功图分析方法研究,对油井作业和实测功图进行对比,总结典型示功图特征,以正确指导油井工况分析和管理。 三、现场油井失效功图分析一、理论示功图分析二、典型示功图分析理论示功图:就是认为光杆只承受抽油杆柱与活塞截面积以上液柱的静载荷时,理论上所得到的示功图ABC为上冲程静载变化线: 上冲程A:下死点,静载W rl , 开关,关。AB:加载线,加载过程,关,关。B:加载完毕,,关,关开。BC:吸入过程,BC=S p ,关,开。C:上死点。 ' BB 游动阀固定阀CDA为下冲程静载变化线:下冲程C:上死点,静载,关,开关;CD:卸载线,卸载过程,关,关;D:卸载完毕,,关开,关;DA:排出过程,DA=Sp, 开,关(相对位移);A:下死点。 ' DD l r W W 游动阀固定阀*若不计杆管弹性,静载作用下理论示功图为矩形。静载荷作用的理论示功图为一平行四边形。三、现场油井失效功图分析一、理论示功图分析二、典型示功图分析P S A B D 由于在下冲程末余隙内还残存一定数量压缩的溶解气,上冲程开始后泵内压力因气体的膨胀而不能很快降低,加载变

慢,使吸入阀打开滞后(B'点)B ’ C 残存的气量越多,泵口压力越低,则吸入阀打开滞后的越多,即B B'线越长B' C 为上冲程柱塞有效冲程1、气体影响示功图P S A B D 下冲程时,气体受压缩,泵内压力不能迅速提高,卸载变慢,使排出阀滞后打开(D' )B ’ C 泵的余隙越大,进入泵内的气量越多,则DD '线越长D'A为下冲程柱塞有效冲程D' 1、气体影响示功图P S A B D 而当进泵气量很大而沉没压力很低时,泵内气体处于反复压缩和膨胀状态,吸入和排出阀处于关闭状态,出现“气锁” 现象。B ’ C 如图中点画线所示: D ’ 1、气体影响示功图S 气体使泵效降低的数值可使用下式近似计算: P A B D B ' C D' 充满系数: ' AD AD ' ' DD g S 式中:S—光杆冲程1、气体影响示功图P S A B D 当沉没度过小或供液不足使液体不能充满工作筒时,均会影响示功图的形状。 C 供液不足不影响示功图的上冲程,与理论示功图相近。下冲程由于泵筒中液体充不满,悬点载荷不能立即减小,只有当柱塞遇到液面时,才迅速卸载,卸载线与增载线平行,卸载点较理论示功图卸载点左移(如图中D '点) D ' 2、充不满影响的示功图充不满程度越严重,则卸载线越往左移。(如图中2、3线所示)有时,当柱塞碰到液面时,由于振动,最小载荷线会出现波浪线。 1 2 3 P S A B D C D?0?7 2、充不满影响的示功图P S A B D (1)排出部分漏失 C 上冲程时,泵

油井计量原理及功图分析(I)

油井产液量计量原理 目前,我厂已经在40多口抽油井、自喷井以及注水井上推广应用了微功耗无线变送器油水井井口自动计量装置,应用范围涉及6个采油队。这套系统最基本的求产原理、示功图以及泵功图的定性分析有必要向各采油队技术人员做如下介绍,希望能对各位分析油井的生产状况起到作用。 (一)游梁式抽油机井功图法求产原理 抽油井示功图的纵坐标为光杆(露出地面,通过悬绳器与驴头连接的第一根光滑的抽油杆)在抽油过程中受力的载荷坐标,横坐标为抽油杆上、下行程时的位移坐标。抽油机驴头所悬拄的悬绳器承受光杆和井下全部抽油杆柱,并带动最下部有杆泵的柱塞作上、下运动,即一个周期。相应地可画出一个载荷与位移的函数关系曲线,即示功图。抽油井生产情况千变万化,井下泵况相当复杂,只有通过自动量油技术或动力仪、诊断仪测得反映有杆泵工作状况的示功图,只有掌握了诊断技术,才能分析和管理好抽油井。 采油二厂管辖的油田抽油机井目前已经有30多口井采用了“功图法”自动计量,相比较采用分离器求产,由于受各种因素影响求产波动较大,而且求产时间较长,不利于快速、准确、及时掌握油井生产动态,直接关系到油田的稳产,流量计或分离器的检修,也大量增加油气操作成本;以往在油田产量紧张时,大多是技术人员通过繁重

的油水井大调查工作来摸清所辖井的生产情况,费时费力,其中个别油井因工程技术人员水平差异而无法进行定论,不但增加了井下作业工作量,也存在一定程度的误诊,漏诊,给油田生产造成极大不便。 通过示功图求产可以解决常期困绕油田的各类机采井求产、诊断和综合评判中存在的问题,在一定程度上不仅解决油井的求产困难,而且减轻采油工作者劳动强度。自动计量系统油井产量提供了一个快速、准确测算方法,使决策部门能够对我厂所辖油井实现宏观上的控制和决策。

理论示功图的分析和解释

示功图的分析和解释 前言 抽油机井采油是目前油田开发中普遍应用的方式,抽油机井的管理水平的好坏,关系到油田整体经济效益的高低。要做好抽油机井的生产管理工作,必须取准取全各项生产资料,制定抽油机井合理的工作制度,不断进行分析,适应不断变化的油藏动态,加强并提高抽油机井的日常管理水平。 分析和解释示功图,就是直接了解深井泵工作状况好坏的一个主要手段,不但深井泵工作中的一切异常现象可以在示功图上比较直观的反映出来,而且,还可以结合有关资料,来分析判断油井工作制度是否合理,抽油设备与油层和原油性质是否适应,还可以通过“示功图法”对低产、低能井制定出合理的开关井时间,减少设备的磨损和电能的浪费等。 由于抽油井的情况复杂,在生产过程中,深井泵不但要受到抽油设备制造质量和安装质量的影响,而且要受到油层中的砂、蜡、气等多种因素的影响。致使实测示功图形状多变,各不相同。尤其是在深井上,这种情况就更为突出。因此,在分析示功图时,既要全面地了解油井的生产情况、设备状况和测试仪器的好坏程度,根据多方面的资料综合分析,又要善于从各种因素中,找出引起示功图变异的主要因素,这样,才能做出正确的判断。 一、示功图的基础知识 1、示功图的概念:

示功图的概念:反映深井泵工作状况好坏,由专门的仪器测出,画在坐标图上,被封闭的线段所围成的面积表示驴头在一次往复运动中抽油机所做的功,称为示功图。 动力仪力比:示功图上每毫米横坐标长度所代表的负荷值。 减程比:示功图上每毫米横坐标长度所代表的位移值。 2、计算驴头最大负荷、最小负荷 计算公式: (1)根据油井生产资料,绘制该井理论示功图. (2)根据油井生产参数,计算并画出驴头最大负荷、最小负荷在图中理论负荷线上的位置。 两种较简便的计算公式: ①最大载荷: P1大=P液/+P杆[b+sn2/1440] P2大=P液/+P杆[b+sn2/1790] ②最小载荷: P1小=P杆[b-sn2/1440] P2小=P杆[b-sn2/1790] 式中: P1大------悬点最大载荷(第一种计算方法); P2大------悬点最大载荷(第二种计算方法); P1小------悬点最小载荷(第一种计算方法); P2小------悬点最小载荷(第二种计算方法);

相关主题