搜档网
当前位置:搜档网 › 动态最优化第12讲 动态规划的扩展形式

动态最优化第12讲 动态规划的扩展形式

动态规划之-0-1背包问题及改进

动态规划之-0-1背包问题及改进

有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题。 形式化描述为:给定n个物品,背包容量C >0,重量第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,X n,), X i∈{0,1}, 使得∑(w[i] * Xi)≤C,且∑ v[i] * Xi达最大.即一个特殊的整数规划问题。 数学描述为: 求解最优值:

设最优值m(i,j)为背包容量为j、可选择物品为i,i+1,……,n时的最优值(装入包的最大价值)。所以原问题的解为m(1,C) 将原问题分解为其子结构来求解。要求原问题的解m(1,C),可从m(n,C),m(n-1,C),m(n-2,C).....来依次求解,即可装包物品分别为(物品n)、(物品n-1,n)、(物品n-2,n-1,n)、……、(物品1,物品2,……物品n-1,物品n)。最后求出的值即为最优值m(1,C)。 若求m(i,j),此时已经求出m(i+1,j),即第i+1个物品放入和不放入时这二者的最大值。 对于此时背包剩余容量j=0,1,2,3……C,分两种情况: (1)当w[i] > j,即第i个物品重量大于背包容量j时,m(i,j)=m(i+1,j) (2)当w[i] <= j,即第i个物品重量不大于背包容量j时,这时要判断物品i放入和不放入对m的影响。 若不放入物品i,则此时m(i,j)=m(i+1,j) 若放入物品i,此时背包

数学建模-动态规划

-56- 第四章动态规划 §1 引言 1.1 动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。 例1 最短路线问题 图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由A 到G 距离最短(或费用最省)的路线。 图1 最短路线问题 例2 生产计划问题 工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3 (千元),工厂每季度的最大生产能力为6(千件)。经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。还规定年初和年末这种产品均无库存。试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。 1.2 决策过程的分类 根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time -57- decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随 机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。§2 基本概念、基本方程和计算方法 2.1 动态规划的基本概念和基本方程 一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。 2.1.1 阶段

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

基于动态规划的面试时间优化模型概述

2015年天津商业大学数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、 电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨 论与赛题有关的问题。 我们明白,抄袭不人的成果是违反竞赛规则的, 假如引用不人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考 文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。 如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 参赛队员 (打印并签名) :1. 叶恒扬 2. 施艺敏 3. 张一鸣 日期: 2015 年 4 月 27 日

基于动态规划的面试时刻优化模型 摘要 现代信息社会中,求职面试差不多成为就业的一个重要环节。科学有效的组织和安排不管对面试者依旧对组织单位、用人单位差不多上省时省力、节略成本的。因此如何紧凑、高效、省时地安排面试者按顺序完成面试具有重要研究意义。 本文综合运用运筹学、统计学、经济学、平面设计、计算机软件等知识,通过建立数学模型来求解面试的最短时刻,进一步规划最优的面试流程。 针对问题一,通过分析给定的面试时期顺序和不同意插队等特性,为满足面试时刻最短,建立了求解最短时刻的0-1非线性规划模型(见公式(1)),然后利用Lingo11.0程序(见附录1),求解出最短面试时刻为100分钟,最佳安排顺序为:3 → →,同学最早9:40 → 4→ 1 5 2 一起离开。接着利用AutoCAD2007分不绘制出同学和面试官的面试过程时刻图(见图1~2)。在此基础上,利用Excel2007制作出同学的

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

3 (修改)大规模状态空间中的动态规划和强化学习问题

3 大规模状态空间中的动态规划和强化学习问题 本章我们将讨论大规模状态空间中的动态规划和强化学习问题。对于这类问题,我们一般很难求得问题的精确解,只能得到问题的近似解。前面章节所介绍的一些算法,如值迭代、策略迭代和策略搜索,无法直接用于这类问题。因此,本章将函数近似引入这些算法,提出三类基于函数近似的算法版本,分别是近似值迭代、近似策略迭代和近似策略搜索。本章将从理论和实例两个角度分析算法的收敛性,讨论如何获取值函数逼近器的方法,最后比较分析三类算法的性能。 3.1 介绍 第二章详细介绍了DP/RL中三类经典算法,这三类算法都需要有精确的值函数及策略表示。一般来说,只有存储每一个状态动作对回报值的估计值才能得到精确地Q值函数,同样V值函数只有存储每一个状态的回报值的估计值才能得到;精确的策略描述也需要存储每一个状态对应的动作。如果值函数中某些变量,比如某些状态动作对、状态等,存在很多个或者无穷多个潜在值(又或者这些值是连续的),那么我们就无法精确描述对应的Q值函数或者V值函数,因此,考虑将值函数和策略通过函数近似的方式来表示。由于实际应用中大部分问题都存在大规模或者连续状态空间,因此,函数近似方法是求解动态规划和强化学习问题的基础。 逼近器主要可以分为两大类:带参的和非参的。带参的逼近器主要是从参数空间到目标函数空间的映射。映射函数及参数的个数由先验知识给定,参数的值由样本数据进行调整。典型的例子是对一组给定的基函数进行加权线性组合,其中权重就是参数。相比之下,非参的逼近器通过样本数据直接得到。本质上,非参的函数逼近器也是含带参数的,只是不像带参的函数逼近器,参数的个数及参数的值直接有样本数据决定。例如,本书中所讨论的基于核函数的逼近器就是带参数的函数逼近器,它为每一个数据点定义一个核函数,并对这些核函数做加权线性组合,其中权重就是参数。 本章主要对大规模状态空间中动态规划和强化学习问题进行广泛而深入的讨论。第二章中所介绍的三类主要算法,值迭代、策略迭代和策略搜索,将与函数近似方法相结合,获得三类新的算法,分别是近似值迭代、近似策略迭代以及近似策略搜索。本章将从理论和实例两个角度讨论算法的收敛性,并对比分析三类算法的性能。关于值函数近似与策略逼近的一些其他重要问题,本章也将给予讨论。为了帮助读者更好的阅读本章的内容,图3.1给出一个本章的内容脉络图。

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

智能公交动态调度优化模型

Abstract An intelligent bus dispatching system can better meet people's travel needs.The optimized algorithm takes advantage of advanced technology and equipments.However,in recent years the development of Chinese intelligent bus dispatching systems is not satisfactory with an.excessive attention to advanced technology but less to practicality.Dynamic scheduling has yet to be fully exploited.In this paper,intelligent transportation scheduling systems and scheduling characteristics are analyzed. The information about dynamic transportation and vehicle locations is acquired and merged.An optimization model for intelligent dispatching of buses is proposed on basis of real data.This model is under the support of GPS positioning,communications,computers and other technologies,where intelligent algorithms are used in bus operation and dispatching and both passengers satisfaction and company profit are considered.The method of collecting data automatically and the algorithm of this model are presented.This model is shown to be able to significantly improve the rate of bus full loading,shorten the waiting time of passengers,and reduce the total vehicle trips,with an evident effect of optimized dispatching. Keywords intelligent transportation;optional model;dynamic dispatching;intelligent bus;Matlab software 0引言 伴随经济社会的发展,中国城市交通问题日益突出。交 通问题的出现,严重影响了城市的生产生活,而且从长远来看,影响了城市功能的发挥,制约了城市的健康发展。国际上城市交通发展的经验证明,解决城市交通问题,关键是要树立城市公共交通在城市交通体系中的主导地位,大力优先发展公共交通,建立先进的公共交通系统APTS (Advanced Public Traffic System )[1],实现公交调度智能化,提高道路通行 能力和公交运营管理水平。 近年来,由于科学技术的进步和政府对公交投入力度的加大,中国智能公共交通调度系统初现端倪,已经有杭州、上海、北京等地安装了电子站牌,车载GPS 定位设备,实现了车辆的实时跟踪、定位,公交车与调度室的双向通讯,以及电子站牌上实时显示下班车位置信息等功能。青岛、贵阳、石家庄等城市在实现公交系统智能化管理方面,已经有了一系列有益的探索[2]。但是,这些系统普遍存在先进的系统与静态、原始的调度方法共存现象,未能充分利用智能系统提供的动态 智能公交动态调度优化模型 摘要 利用先进的技术和设备实现公交的优化调度,充分满足人们的出行需要,是智能公交系统发展的目标。然而近年来中国智 能公交发展在一定程度上出现过于追求先进性、忽略实用性、运营效果不理想、动态调度尚待充分开发等问题。结合中国智能公交系统现状,通过对智能公交调度系统和调度特点深入分析,在GPS 定位、通信、计算机等技术的支持下,将动态交通状态信息与车辆定位信息有效融合,将智能化算法引入到公交运营调度中,建立了基于实时动态数据,兼顾乘客满意度和企业效益的动态调度优化模型。并且阐述了模型数据的自动采集方法、模型Matlab 程式化的解法。结果表明,该模型可以显著提高公交车辆满载率、缩短乘客等车时间和减少车辆总班次,优化调度效果明显。 关键词智能交通;优化模型;动态调度;智能公交;Matlab 软件 中图分类号U494.22,TP29文献标识码A 文章编号1000-7857(2009)17-0069-04 李志强,周建立,张毅 河南科技大学车辆和动力工程学院,河南洛阳471003 An Optimization Model for Dynamic Intelligent Dispatching of Buses 收稿日期:2009-05-11 基金项目:河南教育厅自然科学基金项目(200510464028);河南科技大学科研基金项目(2004ZY030,2006ZY027)作者简介:李志强,经济师,研究方向为智能交通,电子信箱:liqiangsqjt@https://www.sodocs.net/doc/c915831062.html, LI Zhiqiang,ZHOU Jianli,ZHANG Yi Vehicle &Motive Power Engineering College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China

动态规划

动态规划的特点及其应用 摘要:本文的主要内容就是分析它的特点。第一部分首先探究了动态规划的本质,因为动态规划的特点是由它的本质所决定的。第二部分从动态规划的设计和实现这两个角度分析了动态规划的多样性、模式性、技巧性这三个特点。第三部分将动态规划和递推、搜索、网络流这三个相关算法作了比较,从中探寻动态规划的一些更深层次的特点。文章在分析动态规划的特点的同时,还根据这些特点分析了我们在解题中应该怎样利用这些特点,怎样运用动态规划。这对我们的解题实践有一定的指导意义。本文介绍了动态规划的基本思想和基本步骤,通过实例研究了利用动态规划设计算法的具体途径,讨论了动态规划的一些实现技巧,并将动态规划和其他一些算法作了比较,最后还简单介绍了动态规划的数学理论基础和当前最新的研究成果。 关键词: 动态规划,阶段 1 引言 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 2 动态规划的基本思想 一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解

运筹学之动态规划(东南大学)汇总

引言——由一个问题引出的算法 考虑以下问题 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图 1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u表示从v到u的边的长度。 具体算法如下: 开始时标记所有的顶点未访问过,MinDistance(A就是从A到E的最短距离。 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!,这是一个“指数级”的算法,那么,还有没有更好的算法呢? 首先,我们来观察一下这个算法。在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。也就是说,从C2到E的最短距离我们求了两遍。同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。而在整个程序中,从D1到E的最短距离被求了四遍。如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。于是,可以改进该算法,将每次求出的从v到E的最短距离记录下来,在算法中递归地求MinDistance(v时先检查以前是否已经求过了MinDistance(v,如果求过了则不用重新求一遍,只要查找以前的记录就可以了。这样,由于所有的点有n个,因此不同的状态数目有n 个,该算法的数量级为O(n。 更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。 请看图1,可以发现,A只和Bi相邻,Bi只和Ci相邻,...,依此类推。这样,我们可以将原问题的解决过程划分为4个阶段,设

第十八章动态优化模型

第十八章 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。 1.1 变分法的基本概念 1.1.1 泛函 设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。 例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出 dx x y x y x y J x x )('1)(2))((2 12?+=π (1) 容许函数集可表示为 })( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2) 最简单的一类泛函表为 ?=2 1 ),,())((t t dt x x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。 1.1.2 泛函的极值 泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的 S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为 |})()(||,)()({|max ))(),((0002 1t x t x t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为 )()()(0t x t x t x -=δ 也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为 ))(),(())(),((00t x t x r t x t x L J δδ+=?

对动态优化设计的认识及其应用-

东北大学 研究生考试试卷 考试科目:对动态优化设计的认识及其应用 课程编号: 阅卷人: 考试日期:2012.06 姓名:黄孙进 学号:1100487 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生

对动态优化设计的认识及其应用 摘要 本文主要阐述了动态优化设计的概念、内容方法;介绍了动态优化设计相关理论;以及以系统体积、重量最小和传动构件的扭转振动加速度最大值最小为目标函数,以传动构件的扭转振动加速度均方根值为动态性能约束,建立时变外载荷下系统的动态优化设计模型,采用混合离散变量优化方法进行优化,即风力发电机齿轮传动系统动态优化设计方法。 关键词:动态优化设计;风力发电机;齿轮传动;

摘要 (i) 第一章动态优化设计的认识 (1) 1.1引言 (1) 1.2动态优化设计的目标、内容及方法 (1) 1.3动态优化设计的相关理论 (4) 1.3.1有关动态优化设计内容方面的理论基础 (5) 1.3.2有关动态设计手段方面的理论基础 (7) 第二章风力发电机齿轮传动系统动态优化设计方法 (10) 2.1风力发电机齿轮传动系统结构 (10) 2.2齿轮传动系统动态优化设计模型目标函数 (10) 2.3齿轮传动系统动态优化设计模型设计变 (11) 2.4风电齿轮传动系统优化结果比较 (11) 2.5风力发电机齿轮动态优化设计结论 (14) 参考文献 (15)

第一章动态优化设计的认识 1.1引言 现代机械产品正在向高速、高精度、轻量化的方向发展,产品结构日趋复杂,产品更新换代的速度日益加快,对产品或设备的结构系统的静态和动态特性要求越来越高。如何提高系统的性能越来越受到人们的重视。对产品进行动态优化设计是提高产品性能的主要手段,在产品设计中起着非常重要的作用。现代机械动态优化设计是在产品的研究和开发过程中,对机械产品的运动学与动力学及与此相关的动态可靠性、安全性、疲劳强度和工作寿命等问题,进行分析和计算,以保证所研究和开发的设备具有优良的结构性能及其它相关性能。动态优化设计在现代机械产品设计中占有十分重要的地位,这是因为绝大多数现代机械设备都处在连续运转过程中,而且由于这些机械的工作速度越来越高,结构越来越复杂,尺寸越来越大(对微型机械来说,尺寸越来越小),精度越来越高,功能越来越齐全,对其工作的可靠性、安全性和工作连续 性的要求也越来越高。在这种情况下,产品动 态设计已成为现代机械研究开发不可缺少的和 至关重要的环节,对保证产品的工作可靠性、 安全性、工作耐久性。本文将概要论述通过学 习机械设备的动力学与动态分析这门课程对动 态优化设计的认识,并运用ANSYS对简单结构 进行了模态分析和静力学分析。 1.2动态优化设计的目标、内容及方法 现代机械产品动态优化设计是一项涉及现代动态分析、计算机技术、产品结构动力学理论、设计方法学等众多学科领域的新的学科分支,其基本思想是对按功能要求设计的结构或要改进的机械结构进行动力学建模,并做动特性分析。根

动态规划

动态规划 关健字:阶段状态决策函数递推式 摘要: 动态规划是解决多阶段决策最优化问题的一种思想方法。所谓“动态”,指的是在问题的多阶段决策中,按某一顺序,根据每一步所选决策的不同,将随即引起状态的转移,最终在变化的状态中产生一个决策序列。动态规划就是为了使产生的决策序列在符合某种条件下达到最优。动态规划思想近来在各类型信息学竞赛中频繁出现,它的应用也越来越受人重视。本文就是讨论如何运用动态规划的思想设计出有效的数学模型来解决问题。 一动态规划问题的数学描述 我们先来看一个简单的多阶段决策问题。 [例1]现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点1到结点10的最短路径。 第一阶段第二阶段第三阶段第四阶段第五阶段 图1 本问题的解决可采用一般的穷举法,即把从结点1至结点10的所有道路列举出来,计算其长度,再进行比较,找出最小的一条。虽然问题能解决,但采用这种方法,当结点数增加,其运算量将成指数级增长,故而效率是很低的。 分析图1可知,各结点的排列特征: (1) 可将各结点分为5个阶段; (2) 每个阶段上的结点只跟相邻阶段的结点相连,不会出现跨阶段或同阶段

结点相连的情况,如不会出现结点1与结点4连、结点4与结点5连的情况。 (3) 除起点1和终点10外,其它各阶段的结点既是上一阶段的终点,又是下一阶段的起点。例如第三阶段的结点4、5、6,它即是上一阶段结点2、3中某结点的终点,又是下一阶段结点7、8、9中某结点的起点。 根据如上特征,若对于第三阶段的结点5,选择1-2-5和1-3-5这两条路径,后者的费用要小于前者。那么考虑一下,假设在所求的结点1到结点10最短路径中要经过结点5,那我们在结点1到结点5之间会取那条路径呢?显然,无论从结点5出发以后的走法如何,前面选择1-3-5这条路都总是会优于1-2-5的。也就是说,当某阶段结点一定时,后面各阶段路线的发展不受这点以前各阶段的影响。反之,到该点的最优决策也不受该点以后的发展影响。 由此,我们可以把原题所求分割成几个小问题,从阶段1开始,往后依次求出结点1到阶段2、3、4、5各结点的最短距离,最终得出答案。在计算过程中,到某阶段上一结点的决策,只依赖于上一阶段的计算结果,与其它无关。例如,已求得从结点1到结点5的最优值是6,到结点6的最优值是5,那么要求到下一阶段的结点8的最优值,只须比较min{6+5,5+5}即可。这样,运用动态规划思想大大节省了计算量。可以看出,动态规划是解决此类多阶段决策问题的一种有效方法。 二动态规划中的主要概念,名词术语 1阶段:把问题分成几个相互联系的有顺序的几个环节,这些环节即称为阶段。 2 状态:某一阶段的出发位置称为状态。通常一个阶段包含若干状态。如图1中,阶段3就有三个状态结点4、5、6。 3 决策:从某阶段的一个状态演变到下一个阶段某状态的选择。 4策略:由开始到终点的全过程中,由每段决策组成的决策序列称为全过程策略,简称策略。 5 状态转移方程:前一阶段的终点就是后一阶段的起点,前一阶段的决策选择导出了后一阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转移方程。 6 目标函数与最优化概念:目标函数是衡量多阶段决策过程优劣的准则。最优化概念是在一定条件下找到一个途径,经过按题目具体性质所确定的运算以后,使全过程的总效益达到最优。 三运用动态规划需符合的条件 任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同理,动态规划也并不是万能的。那么使用动态规划必须符合什么条件呢?必须满足最优化原理和无后效性。 1 最优化原理 最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状

动态规划的发展及研究内容

动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 多阶段决策问题 多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解成若干相互联系的阶段,在每一个阶段都要做出决策,全部过程的决策是一个决策序列。要使整个活动的总体效果达到最优的问题,称为多阶段决策问题。 引言——由一个问题引出的算法 [例1] 最短路径问题 现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。 图1 我们可以用深度优先搜索法来解决此问题,该问题的递归式为 其中是与v相邻的节点的集合,w(v,u)表示从v到u的边的长度。 具体算法如下: function MinDistance(v):integer; begin if v=E then return 0 else begin min:=maxint; for 所有没有访问过的节点i do if v和i相邻then begin 标记i访问过了; t:=v到i的距离+MinDistance(i); 标记i未访问过; if t

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

1D1D动态规划优化初步

1D/1D 动态规划优化初步 所谓1D/1D 动态规划,指的是状态数为O(n),每一个状态决策量为O(n)的动态规划方程。直接求解的时间复杂度为O(n 2),但是,绝大多数这样的方程通过合理的组织与优化都是可以优化到O(nlogn)乃至O(n)的时间复杂度的。这里就想讲一讲我对一些比较初步的经典的优化方法的认识。 本文中不想进行过多的证明与推导,主要想说明经典模型的建立、转化与求解方法。 由于本人认识与水平相当有限,如果出现什么错误与疏漏,还请大牛多多指正。另外,也希望大牛们更多地向我们介绍一下有关动态规划优化的更深入的东西。 本文中使用两种方式表示一个函数:f(x)与f[x],用方括号表示的函数值可以在规划之前全部算出(常量),而用圆括号表示的函数值必须在规划过程中计算得到(变量)。无论是什么函数值一经确定,在以后的计算中就不会更改。 经典模型一:11 ()min{()[,]}x i f x f i w i x -==+ 相信这个方程大家一定是不陌生的。另外,肯定也知道一个关于决策单调性的性质: 假如用k(x)表示状态x 取到最优值时的决策,则决策单调性表述为: ,()()i j k i k j ?≤≤,当且仅当: ,[,][1,1][1,][,i j w i j w i j w i j w i j ?≤+++≤+++,对于这个性质的证明读者可以在任意一篇讲述四边形不等式的文章中找到,所以这里不再重复。而且,从实战的角度来看,我们甚至都不需要验证w 函数的这个性质,最经济也是最可靠的方法是写一个朴素算法打出决策表来观察(反正你总还是要对拍)。当然,有的时候题目要求你做一点准备工作,去掉一些明显不可能的决策,然后在应用决策单调性。这是上述性质也许会有点用处。 正如前文中所述,我们关注的重点是怎样实现决策单调性。有了决策单调性,怎样高效地实现它呢?很容易想到在枚举决策的时候,不需要从1开始,只要从k(x-1)开始就可以了,但这只能降低常数,不可能起到实质性的优化。 另一种想法是从k(x-1)开始枚举决策更新f(x),一旦发现决策u 不如决策u+1来得好,就停止决策过程,选取决策u 作为f(x)的最终决策。这样时间是很大提高了,但可惜是不正确的。决策单调性并没有保证f(j)+w[j,x]有什么好的性质,所以这样做肯定是不对的。 刚才我们总是沿着“f(x)的最优决策是什么”这个思路进行思考,下面我们换一个角度,思考对于一个已经计算出来的状态f(j),“f(j)能够更新的状态有哪些”。这样,每一步过程中某些状态的决策可能不是最优的,但是当算法结束的时候所有状态对应的决策一定是最优的。 一开始,只有f(1)的函数值被计算出来,于是所有状态的当前最优决策都是1。 111111111111111111111111111111111111111111111111111111111111111 现在,显然f(2)的值已经确定了:它的最有决策只能是1。我们用决策2来更新这个决策表。由于决策单调性,我们知道新的决策表只能有这样的形式:

相关主题