搜档网
当前位置:搜档网 › 可得利益损失的计算方法

可得利益损失的计算方法

可得利益损失的计算方法
可得利益损失的计算方法

可得利益损失的计算方法

在司法实践中,确定可得利益损失数额的方法,一般包括如下几种:一、对比法,又称差别法。即依照通常方法比照受害人相同条件下所获取的利润来确定应赔偿的可得利益损失。

例如:以受害人在上一年度或者上一月的利润;以同类企业在某个时期获得的平均利润;以某项设备投入正常运营时所获得的利润等作为参照物标准来确定可得利益的损失。

这种方法适用于哪些能够获得比较稳定的财产收益的情形,运用这种方法最关键的是确定参照对象。在确定参照对象时应注意与受害人的相似性,参照对象与受害人的情况越相似,可得利益损失的计算就越精确。

二、估算法,是指人民法院在难以确定损失数额或者难以准确地确定可得利益的损失数额时,可根据案件的具体情况,责令违约方支付一个大致相当的赔偿数额。

某些情况下,可以受害人请求赔偿的数额为基础,根据违约方提出抗辩所依据的证据,根据公平责任原则确定具体数额。

三、约定法,即根据当事人事先约定的可得利益数额来确定可得利益损失。

现运用差别法,就买卖合同中可得利益损失数额的确定予以说明。在买卖合同中,如果买受人作为中间商,其可得利益损失常以转售利润的形式出现。此时,其可得利益损失的计算可区分为两种情形:一是依据特别情形进行计算,二是依据事务的通常进程,运用类型的

可得利益损失的司法认定问题(一)

可得利益损失的司法认定问题(一) 内容提要] 计算和认定可得利益损失,在司法实践中赋予了法官自由裁量权,如何统一或者规范这种裁判标准成为民商事审判中需要进一步研究的课题,文章通过对法发〔2009〕40号司法文件的最新实务解读,介绍了可得利益损失的四项计算规则,提出了相关计算公式,分配了举证责任,并得出司法认定的计算步骤,一定程度上规范了可得利益损失的司法认定标准。 关键词]可得利益;损失;计算;认定 可得利益损失,是在司法实践中比较难的问题,而且也是经常出现争议的问题。多年来由于相关认定规则比较模糊并难以把握,因此不少法院在判决中支持的并不多,且关于其计算方法和标准也是多种多样,裁判结果也有较大悬殊。鉴于司法实践中赋予了法官太多的自由裁量权,如何统一或者规范这种裁判标准便成为民商事审判中需要进一步研究的课题1],如何掌握和处理好可得利益损失(或类似)纠纷也成为司法面临的比较大的问题。 一、可得利益损失概说 (一)可得利益损失的法律属性 1、可得利益与可得利益损失 可得利益,是指在生产、销售或提供服务的合同中,生产者、销售者或服务提供者因对方的违约行为而受到的预期纯利润的损失。根据《合

同法》第一百一十三条的规定,可得利益是指合同履行以后可以获得的利益。可得利益损失,是指受害人因违约方违约而遭受的上述预期纯利润的损失。通常而言,常见的可得利益损失包括生产利润损失、经营利润损失、转售利润损失等2]。 2、可得利益的特点 可得利益是未来的利益,具有一定的实现性,以及可预见性。 3、可得利益的性质 (1)可得利益必须是纯利润,包括依合同取得对方交付的财产并利用其从事生产后可以取得的预期纯利润以及通过劳务或服务合同获得并使用该劳务或服务后获得的纯利润等,但不包括为取得这些利润所支付的费用及税收等。故可得利益主要包括生产利润、经营利润、转售利润等。 (2)可得利益不仅存在于合同领域,而且广泛存在于侵权领域。同属于可得利益,在合同违约的情况下能够获得赔偿,在其他情况下理应同样对待。 (3)可得利益损失有多种形式,既可以是财产损失,也可以是机会损失,更可以是精神利益损失。长期以来,我们一直重视物质利益的保护,法律一开始并不认可机会损失及精神利益损失,但随着人们对机会损失及精神利益损失的认识越来越深入,它们的重要性也不断地被强调,立法也为此打开了接纳之门。 (4)可得利益损失大小的确定仍须考虑损害方的利益,受其预见性的

渔业资源及损失量计算

日照港岚山港区北作业区一期码头(围填海)工程 海洋环境影响报告书 补充资料: 一、渔业资源现状 资料来源于山东省海洋水产研究所于2009年5月进行的30个站位(见表1、图1)的取样调查。

图1 渔业资源、鱼卵仔鱼调查站位 因RS11站底质为石块,导致拖网时网破,调查未能完成,实际完成站位23个。 (1)种类组成 本次调查共出现渔业资源种类58种,其中鱼类37种,占总种类数的63.8%;虾类14种,占24.1%;蟹类3种,占5.2%;头足类4种,占6.9%(见图2)。

图2 渔业资源种类组成 表2 渔业资源种类名录 种类序号名称拉丁名

(2)资源量组成及平面分布状况 调查海域渔业资源平均渔获量为53.6kg/h,平均资源密度为22816.4尾/h,平均资源量为402.2kg/km2。其中,渔获量大于100kg/h的站位2个,分别为RS22站和RS23站,渔获量分别为148.9kg/h和145.9kg/h;渔获量在50~100kg/h的站位8个,分别是RS25、RS24、RS08、RS20、RS07、RS13、RS09和RS10站,渔获量分别为96.0kg/h、84.2kg/h、78.3kg/h、78.1 kg/h、76.9 kg/h、66.7 kg/h、65.4 kg/h和59.0kg/h;渔获量在25~50kg/h的站位6个,分别为RS12、RS18、RS15、RS14和RS28站,

渔获量分别为48.6kg/h、47.6kg/h、45.9kg/h、34.3kg/h和32.3kg/h;其余站位渔获量在10~25 kg/h,渔获量最低的站位为RS19站,仅10.8 kg/h(表3)。 表3 各站位资源分布一览表 23个站位中,资源密度超过1×105尾/h的站位1站,为RS23站,资源密度为170703尾/h,资源密度在1×104尾/h以上的站位有15个,分别为RS09、RS20、RS22、RS25、RS28、RS07、RS10、RS15、RS12、RS08、RS14、RS16、RS30、RS21和RS24站;资源密度在5000~10000尾/h的站位有RS13、RS17、RS26和RS18站;资源密度在3000~5000尾/h的站位有3个,RS29、RS19和RS27站,其中资源密度最低站位为RS27站,仅为3680尾/h。 (3)资源结构及优势种类

阻力损失的计算方法

1.5阻力损失 1.5.1两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管,另一种是弯头、三通、阀门等各种管件。 直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失) 管件造成的机械能损失称为局部阻力 注意 将直管阻力损失与固体表面间的摩擦损失相区别 阻力损失表现为流体势能的降低 由机械能衡算式(1-42)可知: ρρρ212211P P g z p g z p h f -=??? ? ??+-???? ??+= (1-71) 层流时直管阻力损失 流体在直管中作层流流动时,因阻力损失造成的势能差可直接由式(1-68)求出: 232d lu μ?= ? (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 232d lu h f ρμ= (1-73) 1.5.2湍流时直管阻力损失的实验研究方法 实验研究的基本步骤如下: (1)析因实验-寻找影响过程的主要因素

对所研究的过程作初步的实验和经验的归纳,尽可能的列出影响过程的主要因素。对湍流时直管阻力损失f h ,经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε(管内壁表面高低不平): 流动条件:流速u 。 于是待求的关系式为: ) ,,,,,(ερμu l d f h f = (1-74) (2)规划实验-减少实验工作量 因次分析法的基础是:任何物理方程的等式两边或方程中的每一项均具有相同的因次,此称为因次和谐或因次的一致性。 以层流时的阻力损失计算式为例,式(1-73)可写成如下形式 ???? ????? ??=??? ? ??dup d l u h f μ322 (1-75) 式中每一项都为无因次项,称为无因次数群。 换言之,未作无因次处理前,层流时阻力的函数形式为: ) ,,,,(u l d f h f ρμ= (1-76) 作无因次处理后,可写成

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

(买卖合同)一起主张可得利益损失的买卖合同质量纠纷案

一起主张可得利益损失的买卖合同质量纠纷案 主张“可得利益损失”的法律依据源于《合同法》第一百一十三条:“当事人一方不履行合同义务或者履行合同义务不符合约定,给对方造成损失的,损失赔偿额应当相当于因违约所造成的损失,包括合同履行后可以获得的利益,但不得超过违反合同一方?⒑贤?痹ぜ?交蛘哂φ痹ぜ?降囊蛭シ春贤?赡茉斐傻乃鹗а!备锰豕娑?魅妨恕翱傻美?妗笨梢耘獬ィ??保?步缍?恕翱傻美?妗钡姆段вσ浴拔シ春贤?环蕉┝⒑贤?痹ぜ?交蛘哂φ痹ぜ?降囊蛭シ春贤?赡茉斐傻乃鹗а蔽?蕖?br 笔者代理的一起主张可得利益损失的买卖合同质量纠纷案,就涉及是否正确适用《合同法》上述规定的问题。 案情简介: 位于x区的w公司向位于y区的k公司订购一批价值400余万元的生产设备,双方签订《设备买卖合同》和《设备安装合同》各一份。设备经安装调试投入试生产,其中两台设备运转一直不正常,经k公司多次维修仍未解决,w 公司要求k公司赔偿损失,k公司要求w公司支付设备余款145万元,双方因此发生纠纷,k公司依据《设备买卖合同》将w公司诉至y法院。w公司认为案件应由x法院管辖,向y法院提出管辖权异议,但被y法院驳回。w公司即以设备质量问题为由,提出反诉,并在征求一审代理人的意见后,要求k公司赔偿损失包括可得利益损失共计1073.13万元。k公司不承认设备有质量问题,并提出w公司除维修期间外,一直生产至今,提出的赔偿数额明显不合理。

一审期间查明:w公司除维修外,生产并未停止。经y法院委托,国家建筑材料工业建材机械产品质量监督检验测试中心(下称测试中心)对设备质量做出鉴定结论即“设备质量问题系使用不当造成”。y法院据此做出判决:w公司支付k公司设备余款145万元及相应利息,驳回w公司的诉讼请求。w公司一审败诉后,要求我为其二审代理人,以实现其诉讼主张。 一审败诉原因: 接受委托前,我对w公司的一审诉讼请求及相关证据进行分析,并找出以下败诉原因: (1)w公司向k公司提出赔偿的前提是设备确实存在质量问题,并且质量问题是k公司直接造成的。但是,w公司对此缺乏证据。而且,“质量问题系使用不当造成”的鉴定结论对w公司明显不利。 一审中,w公司虽然认识到鉴定结论对其不利,但是未提出****鉴定结论的有力的证据及法律支撑。 (2)可得利益损失赔偿数额的计算明显不合理,显然超过k公司订立合同时预见到或者应当预见到的因违反合同可能造成的损失。同时,其可得利益部分的主张也无证据证明。 w公司一审请求赔偿数额构成为两部分,一为直接损失部分即设备维修费及更换材料的费用;其余为可得利益损失部分,包括维修停产利润、w公司建厂总投资的利息、税务返税、停产期间产生的工人工资等。除直接损失部分提供了证据,可得利益损失部分仅有计算方式并无证据提供。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

储罐呼吸损耗计算方法

诸位: 这是一篇关于固定顶储罐储存有机液体时所产生的呼吸损耗的计算方法(依据美国的研究成果),特提供给大家参考,如有做化工类的或加油站(库)项目环评时可套用. 1、储存有机液体的基本罐型有固定顶罐、浮顶罐、可变蒸气空间罐和压力罐等五种,而固定顶罐是一种最普通的罐型,在国内最常被使用,是储存有机液体的普通罐型,一般认为是最低的接受水平,特别是在加油站和石油库用于储存汽油和柴油。 典型的固定顶罐由带有永久性附加罐顶的园筒钢壳组成,其罐顶可以有锥形、园拱顶形到平顶的不同设计。固定顶罐一般装有压力和排气口,它使储罐能在极低或真空下操作,压力和真空阀仅在温度、压力或液面变化微小的情况下阻止蒸气释放。固定顶罐的主要是呼吸排放和工作排放等两种排放方式。 2.排放量计算 2.1呼吸排放 呼吸排放是由于温度和大气压力的变化引起蒸气的膨胀和收缩而产生的蒸气排出,它出现在罐内液面无任何变化的情况,是非人为干扰的自然排放方式。 固定顶罐的呼吸排放可用下式估算其污染物的排放量: LB=0.191×M(P/(100910-P))^0.68×D^1.73×H^0.51×△T^0.45×FP×C×KC 式中: LB—固定顶罐的呼吸排放量(Kg/a); M—储罐内蒸气的分子量; P—在大量液体状态下,真实的蒸气压力(Pa); D—罐的直径(m);

H—平均蒸气空间高度(m); △T—一天之内的平均温度差(℃); FP—涂层因子(无量纲),根据油漆状况取值在1~1.5之间; C—用于小直径罐的调节因子(无量纲);直径在0~9m之间的罐体,C=1-0.0123(D-9)^2 ;罐径大于9m的C=1; KC—产品因子(石油原油KC取0.65,其他的有机液体取1.0) 2.2工作排放 工作排放是由于人为的装料与卸料而产生的损失。因装料的结果,罐内压力超过释放压力时,蒸气从罐内压出;而卸料损失发生于液面排出,空气被抽入罐体内,因空气变成有机蒸气饱和的气体而膨胀,因而超过蒸气空间容纳的能力。 可由下式估算固定顶罐的工作排放 LW=4.188×10^-7×M×P×KN×KC 式中: LW—固定顶罐的工作损失(Kg/m3投入量) KN—周转因子(无量纲),取值按年周转次数(K)确定。 K36,KN=1 36<K≤220, K>220,KN=0.26 其他的同 (1)式。 转EIA-3一个贴子:

可得利益损失研究

可得利益损失,是在司法实践中比较难的问题,而且也是经常出现争议的问题。多年来由于相关认定规则比较模糊并难以把握,因此不少法院在判决中支持的并不多,且关于其计算方法和标准也是多种多样,裁判结果也有较大悬殊。鉴于司法实践中赋予了法官太多的自由裁量权,如何统一或者规范这种裁判标准便成为民商事审判中需要进一步研究的课题[1],如何掌握和处理好可得利益损失(或类似)纠纷也成为司法面临的比较大的问题。 一、可得利益损失概说 (一)可得利益损失的法律属性 1、可得利益与可得利益损失 可得利益,是指在生产、销售或提供服务的合同中,生产者、销售者或服务提供者因对方的违约行为而受到的预期纯利润的损失。根据《合同法》第一百一十三条的规定,可得利益是指合同履行以后可以获得的利益。可得利益损失,是指受害人因违约方违约而遭受的上述预期纯利润的损失。通常而言,常见的可得利益损失包括生产利润损失、经营利润损失、转售利润损失等[2]。 2、可得利益的特点 可得利益是未来的利益,具有一定的实现性,以及可预见性。 3、可得利益的性质 (1)可得利益必须是纯利润,包括依合同取得对方交付的财产并利用其从事生产后可以取得的预期纯利润以及通过劳务或服务合同获得并使用该劳务或 服务后获得的纯利润等,但不包括为取得这些利润所支付的费用及税收等。故可得利益主要包括生产利润、经营利润、转售利润等。 (2)可得利益不仅存在于合同领域,而且广泛存在于侵权领域。同属于可得利益,在合同违约的情况下能够获得赔偿,在其他情况下理应同样对待。 (3)可得利益损失有多种形式,既可以是财产损失,也可以是机会损失,更可以是精神利益损失。长期以来,我们一直重视物质利益的保护,法律一开始并不认可机会损失及精神利益损失,但随着人们对机会损失及精神利益损失的认识越来越深入,它们的重要性也不断地被强调,立法也为此打开了接纳之门。 (4)可得利益损失大小的确定仍须考虑损害方的利益,受其预见性的约束。这种预见性的约束是对损害方的倾斜,也是法律公正的体现。在具体案件中,预见性的考量需要结合双方当事人的情况,以合理人的标准综合评判。 4、可得利益损失的立法演变 过去在计划经济的体制模式下并不强调可得利益损失问题,更多的是积极损失的问题。在《合同法》颁行之前,《涉外经济合同法》第十九条及《技术合同法》第十七条就对可得利益损失做了规定,《合同法》颁布之后,关于可得利益损失的规定,主要散见于《种子法》第四十一条第一款[3]、《农业法》第七十六条[4]、《最高人民法院关于审理不正当竞争民事案件应用法律若干问题的解释》第十七条第二款[5],以及《合同法》第一百一十三条第一款[6]。而最高人民法院近日出台的《关于当前形势下审理民商事合同纠纷案件若干问题的指导意见》(法

热能损耗量计算讲解

热能损耗量计算 一、工作时热损耗计逄 公式:Q=K(Q1+Q2+Q3+Q4+Q5) 式中:Q——工作时总的热损耗(J/H) Q1——通过烘干室外壁散失的热损耗量(J/H) Q2——加热工件及输送机移动部分的热损耗量(J/H) Q3——加热涂料(或水份)和涂料中溶剂(或水份)气化潜热损耗量(J/H) Q4——加热新鲜空气的损耗量(J/H) Q5——通过烘室门洞散失的热量损耗(J/H) K——考虑至其它未估计至的热量损耗储蓄备系数一般耳K=1.1~1.3 通过烘干室外壁热量损耗Q1计公式 Q=KF(t-t。) K——(保温板传热系数,单位J/m2·h·℃) 烘干室保温层厚150mm,取系数3500焦耳每平方米每小时每摄氏度 F——壁板面积(H2.45m+W2m)×2×38m=338m2 风道及燃烧表面积26m2 合计364m2 t400℃-t。30℃=370° Q1=3500J×364m2×370℃=471380000J/H =471380000÷4.1868=11258.178752kal≈11.26万大卡 2台炉——11.26×2=22.52万大卡 二、加热工件及输送机移动部分的热量耗量 Q2=G×C×(t-t。) 式中:G——工件质量克 C——工件的比热容[J/(kg·℃)] 工件:铁板输入速度80m/min ,W1.25m,厚1mm 铁密度为7.85g/cm3 铁比热为0.120卡/克℃ G=125cm×8000cm×0.1cm×7.85g/cm3×60min=47100000g 底漆炉 Q2=47100000克×0.120卡/克℃×230℃=129996000kal=129.996×104kal/h 面漆炉 Q2=47100000克×0.120卡/克℃×200℃=11304000kal=113.04×104kal/h 三、加热涂料及溶剂蒸发热量耗量 Q3=G×C×(t-t。)+r G——每小时进入烘干室最大涂料消耗量 C——涂料比热量容 r——溶剂的气化潜热

冷却塔损失量计算

冷却塔的工作原理: 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。 冷却塔的工作过程: 圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类: 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按形状分有圆形冷却塔、方形冷却塔、矩形冷却塔。 五、按冷却温度分有标准型冷却塔、中温型冷却塔、高温型冷却塔。 六、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 七、按用途分有塑机专用冷却塔、发电机专用冷却塔、中频炉专用冷却塔、中央空调冷却塔、电厂冷却塔。 八、其他有喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却水的补水问题 冷却塔水量损失,包括三部分 :蒸发损失,风吹损失和排污损失,即: Qm=Qe+ Qw+Qb

过滤器阻力损失计算及滤网规格

过滤器阻力损失计算 ΔP--阻力损失,Pa λ--摩擦系数,无因次 Re-雷诺数,Re=(ω·dn)/u,无因次 ω-流体速度,m/s ρ-流体密度,kg/m3 μ-动力粘度,kg/m·s u-运动粘度u=μ/ρ,m2/s L-当量直管段长度,m,类管件过滤器查阅下表“类管件过滤器公称直径与当量直管段长度关系” D-类管件过滤器内径,m dn-当量直径m,类管件过滤器取管件内径"D",筒壳式过滤器取‘4s/c’ S-液体流通面积,m2 C-液体湿周(湿润周长),C=2X(筒体内径+筒体高度)m ξ-入口阻力系数,取1.1 ξ-出口阻力系数,取0.5 类管件过滤器公称直径与当量直管段长度关系 公称直径DN 50 80 100 150 200 当量直管段长度L 25∽30 18∽23 15∽20 22∽38 32∽40 (×103mm) 公称直径DN 250 300 350 400 450 当量直管段长度L 27~43 58~65 48~85 60~95 62~98 (×103mm) 对于‘筒壳’类过滤器,按下式计算: 过滤面积及孔目数 过滤面积通常指丝网的有效流通面积,可以查阅下表“滤网规格”得知有效面积,滤网总面积与有效面积率的乘积即为过滤面积(有效流通面积)。通常,考虑过滤面积按过滤器公称通径的20倍设计,已足够满足使用场合。除非在非常见的特殊环境使用,才予以特殊考虑。 孔目数(目数/英寸)的选择,主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 滤网规格

不锈钢丝网的技术特性一般金属丝网的技术特性 孔目数目英寸丝径mm 可拦截的 粒径um 有效面积%孔目数目 英寸 丝径mm 可拦截的 粒径um 有效面积% 10 0.508 2032 64 10 0.559 1981 61 12 0.475 1660 61 12 0.457 1660 61 14 0.376 1438 63 14 0.367 1438 63 16 0.315 1273 65 16 0.315 1273 65 18 0.315 1096 61 18 0.315 1096 61 20 0.273 955 57 20 0.274 996 62 22 0.234 882 59 22 0.274 881 59 24 0.234 785 56 24 0.254 804 58 26 0.234 743 59 26 0.234 743 59 28 0.234 673 56 28 0.234 673 56 30 0.234 614 53 30 0.234 614 53 32 0.234 560 50 32 0.213 581 54 36 0.234 472 46 36 0.213 534 52 38 0.234 455 46 38 0.213 493 50 40 0.193 442 49 40 0.173 462 54 50 0.152 356 50 50 0.152 356 50 60 0.122 301 51 60 0.122 301 51 80 0.102 216 47 80 0.102 216 47 100 0.081 173 46 100 0.08 174 50 120 0.081 131 38 120 0.07 142 50 (1)金属材料温度适用范围 铸铁-10~200℃碳钢-20~400℃低合金钢-40~400℃不锈钢-190~400℃(2)辅助密封材料温度适用范围 丁晴橡胶-30~100℃氟橡胶-30~150℃石棉板报≤300℃石墨金属缠绕垫≤650℃ 公称压力:按照过滤管路可能出现的最高压力确定过滤器的压力等级,也可通过技术协议要求,考虑进出口管路的统一性,选择与出口管路中最高压力相匹配的压力等级过滤器实际适用最高压力与介质 P--过滤器所能承受的最高工作压力Mpa P--过滤器的公称压力Mpa T--过滤器使用工作温度(应考虑裕度)℃ ΔT--温度偏差ΔT=T-200 ℃ K--强度减弱系数Mpa/℃ K值按如下原则选取: ①工作温度≤200℃时,K=0; ②铸铁过滤器(200-300℃),K=0-0.004; ③碳钢过滤器(200-400℃),K=0.0016-0.008; ④低合金钢过滤器(200-400℃),K=0.0006-0.006; ⑤不锈钢过滤器(200-400℃),K=0.00018-0.006;

可得利益损失的司法认定问题

可得利益损失的司法认定问题

可得利益损失的司法认定问题 [ 潘志国 ]——(2009-8-19) / 已阅40433次 [内容提要] 计算和认定可得利益损失,在司法实践中赋予了法官自由裁量权,如何统一或者规范这种裁判标准成为民商事审判中需要进一步研究的课题,文章通过对法发〔2009〕40号司法文件的最新实务解读,介绍了可得利益损失的四项计算规则,提出了相关计算公式,分配了举证责任,并得出司法认定的计算步骤,一定程度上规范了可得利益损失的司法认定标准。 [关键词] 可得利益;损失;计算;认定 可得利益损失,是在司法实践中比较难的问题,而且也是经常出现争议的问题。多年来由于相关认定规则比较模糊并难以把握,因此不少法院在判决中支持的并不多,且关于其计算方法和标准也是多种多样,裁判结果也有较大悬殊。鉴

于司法实践中赋予了法官太多的自由裁量权,如何统一或者规范这种裁判标准便成为民商事审判中需要进一步研究的课题[1],如何掌握和处理好可得利益损失(或类似)纠纷也成为司法面临的比较大的问题。 一、可得利益损失概说 (一)可得利益损失的法律属性 1、可得利益与可得利益损失 可得利益,是指在生产、销售或提供服务的合同中,生产者、销售者或服务提供者因对方的违约行为而受到的预期纯利润的损失。根据《合同法》第一百一十三条的规定,可得利益是指合同履行以后可以获得的利益。可得利益损失,是指受害人因违约方违约而遭受的上述预期纯利润的损失。通常而言,常见的可得利益损失包括生产利润损失、经营利润损失、转售利润损失等[2]。

2、可得利益的特点 可得利益是未来的利益,具有一定的实现性,以及可预见性。 3、可得利益的性质 (1)可得利益必须是纯利润,包括依合同取得对方交付的财产并利用其从事生产后可以取得的预期纯利润以及通过劳务或服务合同获得并使用该劳务或服务后获得的纯利润等,但不包括为取得这些利润所支付的费用及税收等。故可得利益主要包括生产利润、经营利润、转售利润等。 (2)可得利益不仅存在于合同领域,而且广泛存在于侵权领域。同属于可得利益,在合同违约的情况下能够获得赔偿,在其他情况下理应同样对待。 (3)可得利益损失有多种形式,既可以是财产损失,也可以是机会损失,更可以是精神利益损失。长期以来,我们一直重视物质利益的保护,

矿井通风阻力计算方法

矿井通风阻力 第一节通风阻力产生的原因 当空气沿井巷运动时,由于风流的粘滞性和惯性以及井巷壁面等对风流的阻滞、扰动作用而形成通风阻力,它是造成风流能量损失的原因。 井巷通风阻力可分为两类:摩擦阻力(也称为沿程阻力)和局部阻力。 一、风流流态(以管道流为例) 同一流体在同一管道中流动时,不同的流速,会形成不同的流动状态。当流速较低时,流体质点互不混杂,沿着与管轴平行的方向作层状运动,称为层流(或滞流)。当流速较大时,流体质点的运动速度在大小和方向上都随时发生变化,成为互相混杂的紊乱流动,称为紊流(或湍流)。(降低风速的原因) (二)、巷道风速分布 由于空气的粘性和井巷壁面摩擦影响,井巷断面上风速分布是不均匀的。 在同一巷道断面上存在层流区和紊区,在贴近壁面处仍存在层流运动薄层,即层流区。在层流区以外,为紊流区。从巷壁向巷道轴心方向,风速逐渐增大,呈抛物线分布。 巷壁愈光滑,断面上风速分布愈均匀。 第二节摩擦阻力与局部阻力的计算 一、摩擦阻力 风流在井巷中作沿程流动时,由于流体层间的摩擦和流体与井巷壁面之间的摩擦所形成的阻力称为摩擦阻力(也叫沿程阻力)。 由流体力学可知,无论层流还是紊流,以风流压能损失(能量损失)来反映的摩擦阻力可用下式来计算: H f =λ×L/d×ρν2/2pa λ——摩擦阻力系数。 L——风道长度,m

d——圆形风管直径,非圆形管用当量直径; ρ——空气密度,kg/m3 ν2——断面平均风速,m/s; 1、层流摩擦阻力:层流摩擦阻力与巷道中的平均流速的一次方成正比。因井下多为紊流,故不详细叙述。 2、紊流摩擦阻力:对于紊流运动,井巷的摩擦阻力计算式为: H f =α×LU/S3×Q2 =R f×Q2pa R f=α×LU/S3 α——摩擦阻力系数,单位kgf·s2/m4或N·s2/m4,kgf·s2/m4=9.8N·s2/m4 L、U——巷道长度、周长,单位m; S——巷道断面积,m2 Q——风量,单位m/s R f——摩擦风阻,对于已给定的井巷,L,U,S都为已知数,故可把上式中的α,L,U,S 归结为一个参数R f,其单位为:kg/m7 或N·s2/m8 3、井巷摩擦阻力计算方法 新建矿井:查表得α→h f→R f 生产矿井:已测定的h f→R f→α,再由α→h f→R f 二、局部阻力 由于井巷断面,方向变化以及分岔或汇合等原因,使均匀流动在局部地区受到影响而破坏,从而引起风流速度场分布变化和产生涡流等,造成风流的能量损失,这种阻力称为局部阻力。由于局部阻力所产生风流速度场分布的变化比较复杂性,对局部阻力的计算一般采用经验公式。 1、几种常见的局部阻力产生的类型: (1)、突变 紊流通过突变部分时,由于惯性作用,出现主流与边壁脱离的现象,在主流与边壁之间形成涡漩区,从而增加能量损失。

损失量的计算方法

填写植保专业统计报表时损失量的计算方法 一、在计算前,首先要掌握几个概念: 1、自然损失量又叫不防总损失,作物受有害生物危害后在不防治的情况下的自然损失量。 2、挽回损失量通过防治有害生物后挽回的损失。 3、实际损失量通过防治后因残存有害生物为害造成的损失。 三者的关系可以表达为:挽回损失量=自然损失量—实际损失量 二、病虫草害大发生时的综合产量损失率 病虫草害的发生程度,按照全国统一的分级方法分为五级:1级轻发生,2级中等偏轻发生,3级中等发生,4级中等偏重发生,5级大发生。一种作物不止发生单一的病虫草,而是多种病虫草综合发生危害造成产量损失。现在通用的病虫害大发生时的综合损失率为:粮食作物25%,油料作物30%,棉花50%,果树、蔬菜40%,烟麻25%;农田杂草大发生时的综合损失率为:麦田15%,杂食(玉米、谷物)10.4%,大豆19.4%,花生9%,棉花14.8%,果树40%,蔬菜19.5%。 不同发生程度对应的损失率为:(大发生时的综合损失率/5)×发生程度。如小麦纹枯病发生程度为3级,则其损失率为(25%/5)×3=15%。 三、损失量的计算公式 (一)在计算一种病虫的损失量之前,还要知道作物的种植面积、亩产、该病虫的发生面积、防治面积和发生程度,才可进行计算。 每亩损失=亩产×发生程度×大发生时的综合损失率/5 不防总损失=每亩损失×种植面积 单病虫发生比= (单病虫发生面积×发生程度)/(总发生面积×发生程度)

单病虫不防损失=不防总损失×单病虫发生比 单病虫挽回损失=单病虫不防损失×(防治面积/发生面积)×90% 单病虫实际损失=单病虫不防损失-单病虫挽回损失 把这几个公式融合在一个公式里,就是下面这个: 单病虫挽回损失= 亩产×大发生时的综合损失率/5×种植面积×单病虫发生程度×单病虫防治面积 ————————————————————————————×0.9 总发生面积 单病虫不防总损失= 亩产×大发生时的综合损失率/5×种植面积×单病虫发生面积×单病虫发生程度 ———————————————————————————— 总发生面积 单病虫实际损失=单病虫不防总损失-单病虫挽回损失 例如:2008年肥城市小麦种植面积为57.8万亩,亩产418公斤,小麦病虫害总发生面积304.5万亩次,防治面积255万亩次,其中小麦纹枯病发生面积50万亩,防治面积35万亩,发生程度为2级,那么防治小麦纹枯病挽回的产量损失和实际损失为: 挽回损失=(0.418×0.05×57.8万×2×35×0.9)÷304.5=2499.35(吨)不防损失=(0.418×0.05×57.8万×50×2)÷304.5=3967.22(吨)实际损失=3967.22-2499.35=1467.87(吨) (二)农田草害的危害损失参考前述病虫害计算的损失量的办法,计算各种作物田杂草的挽回损失和实际损失。 例如:2007年肥城市玉米田杂草发生面积52万亩,防治面积50万亩,发生程度为3级,玉米种植面积56.8万亩,亩产509公斤,那么杂草防治

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

论我国合同法上可得利益赔偿的规则选择

论文摘要 合同制定的目的是为了保障合同双方当事人按照约定的交易来顺利完成,在一方或双方违约的时候有处理纠纷的依据。合同的利益也包括既得利益和可得利益,其中可得利益是当事人订立合同时期待利益的重要组成部分,法律设立单独的条文规定可得利益应该受到保护,可见保护当事人预期利益的重要性和意义,虽然我国《合同法》也有保护当事人可得利益的规定,但是在处理合同损害赔偿纠纷司法实践中,困扰最多的也往往是可得利益赔偿问题。 关键词:可得利益完全赔偿赔偿规则

目录 引言 (1) 一、可得利益在我国合同法中的规定及使用情况 (1) (一)可得利益在我国合同法中的规定 (1) (二)司法实践中对可得利益规定的使用情况 (1) 二、可得利益在我国法律规定及司法实践中存在的不足 (2) (一)可预见规则适用标准模糊不确定 (2) (二)可得利益赔偿请求难以获得支持 (2) (三)可得利益在我国合同损害赔偿案例中很少适用 (2) 三、国外关于可得利益损失赔偿的规定及其对我国的借鉴 (3) (一)国外关于可得利益损失赔偿的规定 (3) (二)国外规定对我国的借鉴 (4) 四、可预见规则的完善及确定性规则的确立 (4) (一)、关于可得利益损失赔偿数额的确定 (4) (二)、确定可得利益损失赔偿范围应遵循的规则 (5) 五、结语 (6) 六、参考文献 (7)

论我国合同法上可得利益赔偿的规则选择 引言 在我国司法实践中,法官对“预期可得利益”的赔偿享有完全的自由裁量权,导致可得利益的诉讼十分混乱,这严重违反我国立法的保护受害人合法权益的精神,合法权益不仅包括实际损失,还应该包括应得利益的损失,这是无可争议的,但是如何赔?怎么赔?我国法律却没有相关的规定,也有很多学者呼吁立法者进一步对《合同法》第113条做出明确、细致的规定或解释。为此,笔者主要结合我国司法实践对可得利益的运用来研究我国《合同法》第113条的不足进行研究,并结合国外的规定提出完善建议。 一、可得利益在我国合同法中的规定及使用情况 (一)可得利益在我国合同法中的规定 我国《合同法》第113条规定,当一方当事人不履行合同义务或履行合同义务不符合约定,即一方违约,给对方造成损失的,损失赔偿数额应当相当于因违约造成的损失。这里所说的损失既包括受害人所遭受的全部损失,即积极损失,也包括合同履行后可以获得的利益,即可得利益,但不得超过违反合同一方订立合同时预见到或者应当预见的因违反合同可能造成的损失。据此规定,损害赔偿就应该包括对受害人遭受的全部实际损失及可得利益损失的赔偿,这是完全赔偿原则的体现。 通过研究我们可以发现可得利益主要具有以下特点:1、可得利益是未来能得到的利益,合同当事人在违约的时候并不享有该利益,它是将来通过当事人的一定努力才能获得的;2、可得利益是合同当事人在订立合同时期待获得的利益,是当事人在订约时能够合理预见的利益;3、可得利益的获得必需具备一定的现

置换过程气量损失量计算

置换供气过程中燃气损失量的计算方法 1.置换供气过程中损失的液化气量,是指燃气管道在安装或检修后,使用气化后的液化气或液化气混空气,将燃气管道中的空气置换出去的过程中,排出管道的液化气数量。 2.此计算方法为总公司核算气站置换供气过程中损失的液化气量的依据。 3.置换供气过程中损失的液化气量计算方法 置换过程中损失燃气体积=置换燃气管道的容积×2倍 3.1当使用液化气置换时,置换供气过程中损失的液化气量W: W=置换管道容积(米3)×2倍×2.5公斤/米3 3.2当使用液化气混空气置换时,置换供气过程中损失的液化气量W: W=置换管道容积(米3)×2倍×0.45×2.5公斤/米3 3.3置换管道容积=0.25×3.14×(DN)2×置换管道长度(米)。 式中:DN-置换管道内径(米) 3.4在计算置换供气过程中损失的液化气量时,室内燃气管道和室外管径小于D63的PE管道及管径小于DN50的钢管道忽略不计。 3.4各种管径燃气管道置换供气过程中损失的液化气量列表如下。 管道种类(PE 管SDR17.6)管道内径 (㎜) 单位管长容积 (m3/m) 单位管长损失液化气量(㎏/m) 纯液化气置换混空液化气置换 De63 55.8 2.44×10-3 1.22×10-2 5.49×10-3 D90 79.6 4.97×10-3 2.49×10-2 1.12×10-2 De110 97.4 7.45×10-3 3.73×10-2 1.68×10-2 De160 141.8 1.58×10-27.9×10-2 3.56×10-2 De200 177.2 2.46×10-2 1.23×10-1 5.54×10-2钢管DN50 50 1.96×10-39.8×10-3 4.41×10-3钢管DN65 65 3.32×10-3 1.66×10-27.47×10-3钢管DN80 80 5.02×10-3 2.51×10-2 1.23×10-2钢管DN100 100 7.85×10-3 3.93×10-2 1.77×10-2

相关主题