搜档网
当前位置:搜档网 › 用matlab将jpg转换为FIG格式

用matlab将jpg转换为FIG格式

用matlab将jpg转换为FIG格式

怎么使用MATLAB将jpg文件转化为fig格式文件

示例:图片命名为:1.jpg

第一步:将jpg文件保存到MA TLAB的工作目录中(在主程序工作框中输入“cd”,即可得到工作目录的位置)

第二步:打开MATLAB,输入:figure(1),此时弹出画图工作框,将其最小化;

第三步:主程序工作框中输入“a=imread(‘1’, ‘jpg’);imshow(a);

第四步:在画图工作框内将目标文件另存为FIG格式即可。

Matlab图像颜色空间转换

Matlab图像颜色空间转换 实验内容 用matlab软件编程实现下述任务: 读入彩色图像,提取其中得R、G、B颜色分量,并展示出来。 我们学习了多种表示图像得颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。 颜色空间得转化关系参考以下公式: 原始图片 三个色调分量 YUV与RGB之间得转换 Y=0、229R+0、587G+0、114B U=-0、147R-0、289G+0、436B V=0、615R-0、515G-0、100B

YIQ与RGB之间得转换 Y=0、299R+0、587G+0、114B I=0、596R-0、275G-0、321B Q=0、212R-0、523G+0、311B YCrCb与RGB之间得转换 Y = 0、2990R + 0、5870G + 0、1140B? Cr = 0、5000R 0、4187G 0、0813B + 128 Cb = 0、1687R 0、3313G + 0、5000B + 128

HSI与RGB之间得转换 I=(R+G+B)/3 H=arccos{ 0、5*((RG)+(RB)) / ((RG)^2 + (RB)(GB))^0、5} S=1[min(R,G,B)/ I ] CMY与RGB之间得转换

心得体会 查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换得过程。不同得颜色空间在描述图像得颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色得方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC规定得电视系统格式,YUV(亮度、色差、色差)就是用于PAL规定得电视系统格式,YCbCr(亮度单一要素、蓝色与参考值得差值、红色与参考值得差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度得分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。 通过这次实验,实现了五种颜色空间得转换,瞧到了不同得绚丽结果,掌握了一些基本得知识。 程序 clear rgb=imread('G:\Learning\MultiMedia\666、jpg'); rgb2hsi(rgb); rgb_r=rgb(:,:,1);

matlab数据类型及转换

Matlab中有15种基本数据类型,主要是整型、浮点、逻辑、字符、日期和时间、结构数组、单元格数组以及函数句柄等。 1、整型:(int8;uint8;int16;uint16;int32;uint32;int64;uint64)通过intmax(class)和intmin(class) 函数返回该类整型的最大值和最小值,例如intmax(‘int8’)=127; 2、浮点:(single;double) 浮点数:REALMAX('double')和REALMAX('single')分别返回双精度浮点和单精度浮点的最大值,REALMIN('double')和REALMIN ('single')分别返回双精度浮点和单精度浮点的最小值。 3、逻辑:(logical) Logical:下例是逻辑索引在矩阵操作中的应用,将5*5矩阵中大于0.5的元素设定为0: A = rand(5); A(A>0.5)=0; 4、字符:(char) Matlab中的输入字符需使用单引号。字符串存储为字符数组,每个元素占用一个ASCII字符。如日期字符:DateString=’9/16/2001’ 实际上是一个1行9列向量。构成矩阵或向量的行字符串长度必须相同。可以使用char函数构建字符数组,使用strcat函数连接字符。 例如,命令name = ['abc' ; 'abcd'] 将触发错误警告,因为两个字符串的长度不等,此时可以通过空字符凑齐如:name = ['abc ' ; 'abcd'],更简单的办法是使用char函数:char(‘abc’,’abcd’),Matlab自动填充空字符以使长度相等,因此字符串矩阵的列纬总是等于最长字符串的字符数. 例如size(char(‘abc’,’abcd’))返回结果[2,4],即字符串’abc’实际存在的是’abc ’,此时如需提取矩阵中的某一字符元素,需要使用deblank函数移除空格如name =char(‘abc’,’abcd’); deblank(name(1,:))。 此外,Matlab同时提供一种更灵活的单元格数组方法,使用函数cellstr可以将字符串数组转换为单元格数组: data= char(‘abc’,’abcd’) length(data(1,:)) ->? 4 cdata=cellstr(data) length(cdata{1}) ->?3 常用的字符操作函数 blanks(n) 返回n个空字符 deblank(s) 移除字符串尾部包含的空字符 (string) 将字符串作为命令执行 findstr(s1,s2) 搜索字符串 ischar(s) 判断是否字符串 isletter(s) 判断是否字母 lower(s) 转换小写 upper(s) 转换大写 strcmp(s1,s2) 比较字符串是否相同 strncmp(s1,s2,n) 比较字符串中的前n个字符是否相同 strrep(s1,s2,s3) 将s1中的字符s2替换为s3 5、日期和时间 Matlab提供三种日期格式:日期字符串如’1996-10-02’,日期序列数如729300(0000年1月1日为1)以及日期向量如1996 10 2 0 0 0,依次为年月日时分秒。 常用的日期操作函数

matlab图像数据类型转换

uint 8:无符号的8位(8bit)整型数据(unit 都是存储型) int :整型数据 1、在MATLAB中,数值一般都采用double型(64位)存储和运算. 2、为了节省存储空间,MATLAB为图像提供了特殊的数据类型uint8(8位无符号整数),以此方式存储的图像称为8位型像。 3、函数image能够直接显示8位图像,但8位型数据和double型数据在image中意义不一样, 4、对于索引图像,数据矩阵中的值指定该像素的颜色种类在色图矩阵中的行数。当数据矩阵中的值为0时,表示用色图矩阵中第一行表示的颜色绘制;当数据矩阵中的值为1时,表示用色图矩阵中的第二行表示的颜色绘制该像素,数据与色图矩阵中的行数总是相差1。所以,索引图像double型和uint8型在显示方法上没有什么不同,只是8位数据矩阵的值和颜色种类之间有一个偏差1。调用格式均为image(x); colormap(map); 5、对于灰度图像,uint8表示范围[0,255],double型表示范围[0,1]。可见,double型和uint8型灰度图像不一样,二者转换格式为: I8=uint8 (round (I64*255)); !!double转换成uint 8 I64=double (I8)/255; !!!uint转换成double 反之,imread根据文件中的图像种类作不同的处理。当文件中的图像为灰度图像时,imread 把图像存入一个8位矩阵中,把色图矩阵转换为双精度矩阵,矩阵中每个元素值在[0,1]内;当为RGB图像时,imread把数据存入到一个8位RGB矩阵中。!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! MATLAB中读入图像的数据类型是uint8,而在矩阵中使用的数据类型是double 因此 I2=im2double(I1) :把图像数组I1转换成double精度类型; 如果不转换,在对uint8进行加减时会产生溢出 图像数据类型转换函数 默认情况下,matlab将图象中的数据存储为double型,即64位浮点数;matlab还支持无符号整型(uint8和uint16);uint型的优势在于节省空间,涉及运算时要转换成double型。 im2double():将图象数组转换成double精度类型 im2uint8():将图象数组转换成unit8类型 im2uint16():将图象数组转换成unit16类型 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 默认情况下,matlab将图像中的数据存储为double型,即64位浮点数;matlab还支持无符号整型(uint8和uint16);uint型的优势在于节省空间,涉及运算时要转换成double型。 但是,问题的真正的解释其实应该是这样的。首先是在数据类型转换时候uint8和im2uint8的区别,uint的操作仅仅是将一个double类型的小数点后面的部分去掉;但是im2uint8是将输入中所有小于0的数设置为0,而将输入中所有大于1的数值设置为255,再将所有其他值乘以255。 图像数据在进行计算前要转化为double类型的,这样可以保证图像数据运算的精

彩色空间转换

实验五彩色空间转换一、 实验目的 掌握MATLAB 中彩色空间的转换 二、实验步骤 1、由RGB 空间转换到YIQ: 读入5.jpg 图像; clc;clear; f = imread('5.jpg') yiq_image=rgb2ntsc(f); imshow(yiq_image) 显示结果如下: 2、由YIQ 彩色空间转换到RGB 空间下: rgb_image=ntsc2rgb(yiq_image); figure,imshow(rgb_image) 转换结果如图:

2、YCbCr 和RGB 彩色空间的相互转换 ycbcr_image=rgb2ycbcr(f); figure,imshow(ycbcr_image) rgb_image=ycbcr2rgb(ycbcr_image); figure,imshow(rgb_image) 效果如下图: 3、HSV 和RGB 彩色空间的相互转换 >> hsv_image=rgb2hsv(f); >> figure,imshow(hsv_image); >> rgb_image=hsv2rgb(hsv_image); >> figure,imshow(rgb_image); 效果如下图: 4、CMY 和RGB 彩色空间的相互转换 >> cmy_image=imcomplement(f); >> figure,imshow(cmy_image); >> rgb_image=imcomplement(cmy_image); >> figure,imshow(rgb_image); 效果如下图:

5、RGB 彩色空间到HSI 彩色空间的转换 hsi=rgb2hsi(f); figure,subplot(141),imshow(hsi) subplot(142),imshow(hsi(:,:,1)) subplot(143),imshow(hsi(:,:,2)) subplot(144),imshow(hsi(:,:,3)) 效果如下图: 三、实验总结 通过本次实验我掌握了MATLAB 中彩色空间的转换的基本方法。本次实验与上次实验联系比较紧密。但本次实验于上次实验相比,难度上有了一些变化,尤其是在RGB 彩色空间到HSI 彩色空间的转换的时候,出现了一点问题。由于在系统中本身没有rgb2hsi这个函数,所以运行时出现了错误,但通过,上网查找资料终于解决了这一问题。总体来说本次实验收获还是比较大的。

MATLAB模块介绍$

MATLAB 模块介绍 -------- 数学 & 金融 u Curve Fitting Toolbox Curve Fitting Toolbox 扩展MATLAB 环境,集成数据管理,拟合,显示,检验和输入分析过程等功能。所有能通过GUI 使用的功能都可以通过命令行来进行。

u Database Toolbox ——与关系数据库交换数据 Database Toolbox提供了同任何支持ODBC/JDBC标准的数据库进行数据交换的能力。利用在工具箱中集成的Visual Query Builder工具,无需学习任何SQL语句就可以实现在数据库中查寻数据的功能。这样MATLAB就能够对存储在数据库中的数据进行各种各样的复杂分析。在MATLAB环境中,也可以使用SQL命令来进行如下操作: 对数据库数据进行读、写操作;应用简单或复杂的条件查询数据库中的内容。 特点: ?与支持ODBC/JDBC 数据库建立连接,包括Oracle 、Sybase SQL Server ,Sybase SQL Anywhere ,Microsoft SQL Sever ,Microsoft Access ,Informix Ingres 等。?支持SQL 语句,可以在MATLAB 环境下直接执行SQL 查询命令 ?动态数据调入:可以根据需要使用SQL 在MATLAB 中获取数据,本工具箱对某一种类型的数据库进行大量或小量的查询 ?数据类型保持:在MATLAB 中对数据的调入或调出操作都能保持原有的数据类型 ?多个对话能力,采用本工具箱可在MATLAB 中从一个数据库中调入数据,对那些数据进行分析,然后输出到另一个数据库中 ?处理大量数据的能力:采用本工具箱你可以一次或分几次处理大量的数据,这样能让你根据任务高效地进行数据处理 ?连续状态的数据库联接:一旦和某个数据库的联接建立起来后,数据库一直是打开的,除非你在MATLAB 中执行关闭语句。这提高了数据库的读取速度,减少了不必要的命令来调入、输出数据。 ?无需了解SQL 也能够对数据库数据进行查询。 功能: Database Toolbox 可以与流行的数据库交互数据,其中包括Oracle ,Sybase ,Microsoft SQL Server 及Informix 等。工具箱还允许在单个MATLAB 进程中对多个数据库进行操作,同时支持对大量数据处理。工具箱中包含的Visual Query Builder ,即使不知道SQL ,也能可视化地与数据库打交道。 u Financial Derivatives Toolbox Financial Derivatives Toolbox 用于分析金融衍生工具和投资。 特点 ?提供各种利息率模型 ?提供七种金融工具一系列计算的函数

实验8多媒体实验颜色空间转换

多媒体实验报告——颜色空间的转换 一、实验目的 通过本章的课程设计,加深对数字图像基础知识的理解,并获得如何处理图像的实际经验,并达到以下目的 1、熟练使用matlab进行图像的读取和显示; 2、了解各种颜色空间的不同; 3、掌握各种颜色空间的转换方法。 二、实验内容 1、完成实验指导书3.5节的内容,掌握颜色空间的转换方法; 2、在以上基础上完成下列程序的编写: 练习1:将图片flowers.tif图像转换为hsv空间图像,并提取hsv空间下的每个分量,对转换后的hsv图像进行调整,并将调整后的图像重新转换为rgb空间图像,要求:(1)用一个显示原始图像。(2)用另一个窗口分四个区域显示hsv的三个分量,以及调整后的图像。 练习2:仿照上面的练习,将rgb空间转换为ycbcr空间,显示要求同上。 三、实验结果(粘贴程序以及程序运行结果,或运行结果的说明) 练习1: (1)编程如下: clear all; clc pic = imread('flowers.tif'); phsv = rgb2hsv(pic); figure(1) subimage(pic):colorbar; figure(2) ph = phsv(:,:,1); ps = phsv(:,:,2); pv = phsv(:,:,3); pm = cat(3,ph,ps,pv); phsv = hsv2rgb(pm); subplot(2,2,1),subimage(ph):colorbar; xlabel('(a)色调分量图像','FontSize',14,'FontName','隶书','color','b');

色彩空间介绍及从RGB到LUV的转换

UV色彩空间介绍及从RGB到LUV的转换收藏 CIE 1931 XYZ 色彩空间(也叫做CIE 1931 色彩空间)是其中一个最先采用数学方式来定义的色彩空间,它由国际照明委员会(CIE)于1931年创立。人类眼睛有对于短(S)、中(M)和长(L)波长光的感受器(叫做视锥细胞),所以原则上只要三个参数便能描述颜色感觉了。在三色加色法模型中,如果某一种颜色和另一种混合了不同份量的三种原色的颜色,均使人类看上去是相同的话,我们把这三种原色的份量称作该颜色的三色刺激值。CIE 1931 色彩空间通常会给出颜色的三色刺激值,并以X、Y和Z来表示。 因为人类眼睛有响应不同波长范围的三种类型的颜色传感器,所有可视颜色的完整绘图是三维的。但是颜色的概念可以分为两部分:明度和色度。例如,白色是明亮的颜色,而灰色被认为是不太亮的白色。换句话说,白色和灰色的色度是一样的,而明度不同。 CIE xyY空间是由XYZ值导出的空间,Y 是颜色的明度或亮度。x和y是CIE xy色度坐标,它们是所有三个三色刺激值X、Y 和Z 的函数所规范化的三个值中的两个: 反变换:(Y是亮度,x和y是色度坐标,已知) 在这里,x和y是色度坐标,CIE 1931色度图如下:

---------------------------------------------------------------------------------- LUV色彩空间全称CIE 1976(L*,u*,v*)(也作CIELUV)色彩空间,L*表示物体亮度,u*和v*是色度。于1976年由国际照明委员会(International Commission on Illumination)提出,由CIE XYZ空间经简单变换得到,具视觉统一性。类似的色彩空间有CIELAB。对于一般的图像,u*和v*的取值范围为-100到+100,亮度为0到100。 ----------------------------------------------------------------------------------- 转换: RGB to LUV 1,RGB to CIE XYZ:

MATLAB与C#数据类型转换

以下是本人编程中总结的一些思路,拿出来与大家共享。不对之处,请留言说明。 版本:Matlab R2007b,Visual Studio2005 C++/C#数据类型到M类型 此方向转换十分简单。 如果C++/C#数据不是数组, ?直接将值传递给已经初始化的MWArray数组中的成员 ?直接将数据类型赋值给已经初始化的MWNumericArray变量。 ?直接将字符串类赋值给已经初始化的MWCharArray变量。 如果是数组类型: ?直接赋值给MWNumericArray变量; ?赋值给MWArray变量,则在前面加上类型转换如:(MWNumericArray)进行强制转换。 总之,MWArray是总类型,其它的以MW开头,以Array结尾的变量类型都可以直接对它进行赋值或取值。 M类型到C++/C#数据类型 MWArray M类型,它是M文件的编译后内部的标准类型,一切C++/C#类型都要最终转换成此类型,方可作为参数调用M语言函数。 MWCharArray M的字符串类型,使用它可以将M中的字符类型转换成C++/C#的字符串类型。 MWNumericArray MWNumericArray是MWArray与C#等语言的转换中间类型。 常用的转换函数: ①public Array ToArray(MWArrayComponent component); 将M类型转换成C#的Array类型,然后可以直接转换成其它类型的数组。 ②public byte ToScalarByte();

将M类型转换成C#的字节类型; ③public double ToScalarDouble(); 将M类型转换成C#的双精度类型; double temp=((MWNumericArray)(mwArgout[0])).ToScalarDouble(); ④public float ToScalarFloat(); 将M类型转换成C#的单精度类型; ⑤public int ToScalarInteger(); 将M类型转换成C#的整型类型; ⑥public long ToScalarLong(); 将M类型转换成C#的长整C/C++/C#数据型类型; ⑦public short ToScalarShort(); 将M类型转换成C#的短整型类型; ⑧public override string ToString(); 将M类型转换成C#的字符串类型;string arror=mwArgout[2].ToString(); ⑨public Array ToVector(MWArrayComponent component); 将M类型转换成C#的Array类型,然后可以直接转换成其它类型的数组。 下面使用调试过的代码示例表述①⑨两个函数的区别: ① double[,]Temp1=new double[1,3]; Temp1=(double[,])((MWNumericArray)mwArgout[1]).ToArray(MWArrayComponent.Real);⑨ double[]s1=new double[2]; s1=(double[])((MWNumericArray)mwArgout[1]).ToVector(MWArrayComponent.Real);

C#实现颜色空间转换

实验一颜色空间转换 下载链接:https://www.sodocs.net/doc/c311133969.html,/share/link?shareid=139708&uk=521254270 一、实验目的 理解颜色空间的原理,并实现各颜色空间的转换算法. 二、实验内容和步骤 请编程实现以下转换算法: 1.RGB ←→CMY 2.RGB ←→ HSL 3.RGB ←→ HSV 三、实验要求 1. 实现语言不做要求, C, C++, Java, Matlab均可 2. 要求按照课本上的算法实现 3. 请关键语句都加上注释 四、实验结果(本次实验采用C#语言) 1.实验界面截图: (1)初始截图 (2)操作后截图

2.实验代码

using System; using System.Collections.Generic; using https://www.sodocs.net/doc/c311133969.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace RGBChange { public partial class Form1 : Form { public Form1() { InitializeComponent(); } //选择转换模式 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e) { if (comboBox1.Text == "RGB-->CMY" || comboBox1.Text == "RGB--->HSL" || comboBox1.Text == "RGB-->HSV") { label6.Text = "请输入数据,R:[0,255],G:[0,255],B:[0,255]"; label1.Text = "R:"; label2.Text = "G:"; label3.Text = "B:"; } if (comboBox1.Text == "CMY-->RGB" ) { label6.Text = "请输入数据,C:[0,360],M:[0,1],Y:[0,1]"; label1.Text = "C:"; label2.Text = "M:"; label3.Text = "Y:"; } if (comboBox1.Text == "HSV--->RGB" ) { label6.Text = "请输入数据,H:[0,360],S:[0,1],:[0,1] "; label1.Text = "H:"; label2.Text = "S:"; label3.Text = "V:"; }

MATLAB数据输入和输出

数据输入和输出 一、概述 二、使用输入向导(Import Wizard) 从菜单File->Import Data打开Import Wizard;或者命令窗口输入函数uiimport。 从剪贴板开始Import Wizard:Edit->Paste to workspace。 三、保存和加载MAT文件 MA T文件是双精度、二进制、MA TLAB格式的文件。 输出到MA T文件:save filename [var1 var2 …] [str*];可以通过[var1 var2 …]选择性保存变量;也可以使用通配符“*”。 查看MA T文件中的变量:whos –file 文件名。 存放结构数组的某个字段:加上“-struct”选项。 在已经存在的MA T文件上添加数据:-append选项。 禁止压缩和Unicode字符编码文件,在save语句中加入“-v6”或者File->Preferences-> General->MA T-Files->MA T-File save options->Ensure backward compatibility(-v6)。save语句默认为数据压缩。 选择输出格式:“-ascii”、“-tabs”、“-double”“-v4”。 从MA T文件输入数据:load函数。 四、输入文本数据 各种输入函数的数据定界符: textscan和textread性能比较:前者有更好的性能,特别是读大文件时;使用前者首先要

打开文件,最后要关闭文件,可从文件任意位置读;前者只输出一个单元数组,不必给每个被读字段指定一个输出参数;前者有更多的数据转换选项和更多的用户设置选项。 五、输出文本数据 六、输入/输出标准图像文件 七、输入/输出音频和视频数据 八、输入/输出电子表数据 九、低级文件输入/输出函数

几种典型的颜色空间

几种典型的颜色空间 (一)CIE色度模型 国际照明委员会(CIE,Commission Internationale de L'Eclairage / International Commission on Illumination)的色度模型是最早使用的模型之一。它是三维模型,其中,x和y两维定义颜色,第3维定义亮度。 CIE 在1976 年规定了两种颜色空间。一种是用于自照明的颜色空间,叫做CIE LUV(图06-02-2)。 图06-02-2 CIE 1976 Lu’v’色度图 另一种用于非自照明的颜色空间,叫做CIE 1976 L*a*b*,或者叫CIE LAB。CIE LAB 系统使用的坐标叫做对色坐标(opponent color coordinate),如图06-02-3 所示。CIELAB 使用b*, a *和 L*坐标轴定义CIE 颜色空间。其中,L*值代表光亮度,其值从0(黑色)~100(白色)。b*和a*代表色度坐标,其中a*代表红-绿轴,b*代表黄-蓝轴,它们的值从0到10。a* = b*= 0表示无色,因此L*就代表从黑到白的比例系数。使用对色坐标(opponet color coordinate)的想法来自这样的概念:颜色不能同时是红和绿,或者同时是黄和蓝,但颜色可以被认为是红和黄、红和蓝、绿和黄以及绿和蓝的组合。 图06-02-3 CIE LAB 颜色空间 CIE XYZ 是国际照明委员会在1931 年开发并在1964年修订的CIE 颜色系统(CIE Color System),该系统是其他颜色系统的基础。它使用相应于红、绿和蓝三种颜色作为三种基色,而所有其他颜色都从这三种颜色中导出。通过相加混色或者相减混色,任何色调都可以使用不同量的基色产生。CIE 1931 色度

matlab数据类型和转换

matlab数据类型和转换 Matlab中有15种基本数据类型,主要是整型、浮点、逻辑、字符、日期和时间、结构数组、单元格数组以及函数句柄等。 1、整型:(int8;uint8;int16;uint16;int32;uint32;int64;uint64)通过intmax(class)和intmin(class) 函数返回该类整型的最大值和最小值,例如intmax(‘int8’)=127; 2、浮点:(single;double) 浮点数:REALMAX('double')和REALMAX('single')分别返回双精度浮点和单精度浮点的最大值,REALMIN('double')和REALMIN ('single')分别返回双精度浮点和单精度浮点的最小值。 3、逻辑:(logical) Logical:下例是逻辑索引在矩阵操作中的应用,将5*5矩阵中大于0.5的元素设定为0: A = rand(5); A(A>0.5)=0; 4、字符:(char) Matlab中的输入字符需使用单引号。字符串存储为字符数组,每个元素占用一个ASCII字符。如日期字符:Date String=’9/16/2001’ 实际上是一个1行9列向量。构成矩阵或向量的行字符串长度必须相同。可以使用char函数构建字符数组,使用strcat函数连接字符。 例如,命令 name = ['abc' ; 'abcd'] 将触发错误警告,因为两个字符串的长度不等,此时可以通过空字符凑齐如:name = ['abc ' ; 'abcd'],更简单的办法是使用char函数:char(‘abc’,’abcd’),Matlab自动填充空字符以使长度相等,因此字符串矩阵的列纬总是等于最长字符串的字符数. 例如s ize(char(‘abc’,’abcd’))返回结果[2,4],即字符串’abc’实际存在的是’abc ’,此时如需提取矩阵中的某一字符元素,需要使用deblank 函数移除空格如name =char(‘abc’,’abcd’); deblank(name(1,:))。 此外,Matlab同时提供一种更灵活的单元格数组方法,使用函数cellstr 可以将字符串数组转换为单元格数组: data= char(‘abc’,’abcd’) length(data(1,:)) ->? 4 cdata=cellstr(data) length(cdata{1}) ->?3 常用的字符操作函数 blanks(n) 返回n个空字符 deblank(s) 移除字符串尾部包含的空字符 (string) 将字符串作为命令执行 findstr(s1,s2) 搜索字符串 ischar(s) 判断是否字符串 isletter(s) 判断是否字母 lower(s) 转换小写 upper(s) 转换大写 strcmp(s1,s2) 比较字符串是否相同

颜色空间概述

一、颜色的基本概念 亮度、色调、饱和度 Y亮度:亮度是人眼对被观察物体明亮程度的感觉,主要表现光的强和弱。 H色调:色调是人眼对光源产生的色彩感觉,它反映颜色的种类。 S饱和度:饱和度是指颜色的纯度即掺入白光的程度,表示颜色深浅的程度。例如:红 + 白光 =粉红色饱和度下降 红 + 另一种颜色的光色调发生变化 色调和饱和度通称为——色度。 三基色(RGB)的原理 自然界常见的各种颜色光,都是由红(R)、绿(G)、蓝(B)三种颜色光按不同比例相配而成,同样绝大多数颜色也可以分解成红、绿、蓝三种色光,这就是色度学中最基本的原理—三基色原理(颜色加法)。 红+绿=黄 红+蓝=品红 绿+蓝=青 红+绿+蓝=白 RGB和黑白电视信号不兼容,希望空中发射的信号转换成YUV信号。 亮度Y与RGB的关系如下: NTSC电视制式: Y=0.299R+0.587G+0.114B PAL电视制式的亮度方程为: Y=0.222R+0.707G+0.071B

二、彩色空间表示 1.RGB彩色空间 一个能发出光波的物体称为有源物体,它的颜色由该物体发出的光波决定,使用RGB相加混合模型。 计算机彩色显示器的输入需要RGB三个分量按不同比例,在显示屏幕上合成所需要的任意颜色。在RGB彩色空间,任意彩色光F的配色方程可表达为: F = r[R](红色百分比) +g[G](绿色百分比) + b[B](蓝色百分比) 2.CMYK色彩空间 一个能不发光波的物体称为无源物体,它的颜色由该物体吸收或者反射哪些光波决定,使用CMY相减混合模型。 彩色印刷或彩色打印的纸张是不能发射光线的,因而印刷机或彩色打印机就只能使用一些能够吸收特定的光波而反射其它光波的油墨或颜料。 印刷三原色(CMYK模式):青(Cyan)、品红(Magenta)、黄(Yellow) 组合颜色:青+品红=蓝;品红+黄=红;黄+青=绿;青+黄+品红=黑。 青色,品红,黄色分别是红、绿、蓝三色的补色。 3.YUV和YIQ彩色空间 电视系统中用YUV和YIQ模型来表示的彩色图像。 ·PAL彩色电视制式中使用YUV模型:Y表示亮度信号,U、V表示色差信号,UV构成彩色的两个分量。 ·NTSC彩色电视制式中使用YIQ模型,Y表示亮度,I、Q是两个彩色分量。YUV 彩色空间特点 ·亮度信号(Y)和色度信号(U,V)是相互独立的,也就是Y信号分量构成的黑白灰度图与用U,V信号构成的另外两幅单色图是相互独立的。由于Y,U,V是独立的,所以可以对这些单色图分别进行编码。黑白电视机能够接收彩色电视信号也就是利用了YUV分量之间的独立性。 电视系统为什么采用YUV或YIQ模型呢? ·眼对彩色图象细节的分辨本领比对黑白图象低,因此,对色差信号, U , V,可以采用“大面积着色原理”。 大面积着色原理 ·用亮度信号Y 传送细节,用色差信号U . V 进行大面积涂色。因此,彩色信号的清晰度由亮度信号的带宽保证,而把色差信号的带宽变窄。正是由于这个原因,在多媒体计算机中,采用了YUV彩色空间,数字化的表示,通常采用Y:U:V = 8:4:4,或者 Y:U:V = 8:2:2。

RGB到Lab颜色空间转换

RGB到Lab颜色空间转换 一、引言 随着印刷行业从模拟到数字的变化,色彩的准确再现问题已经变得十分关键。我们需要使用色彩管理,以确保更好、更快、更准确地获得彩色图像。要做到图像处理等过程中的色彩统一性和与设备无关性,就必须实行标准化、规范化的色彩管理。 所谓色彩管理,就是解决图像在各色空间之间的转换问题,使图像的色彩在整个复制过程中失真最小。其基本思路是:首先选择一个与设备无关的参考色空间,然后对设备进行特征化,最后在各个设备的色空间和与设备无关的参考色空间之间建立关系,从而使数据文件在各个设备之间转换时有一个明确的关系可寻。虽然不可能让不同设备上的所有颜色完全相同,但可以使用颜色管理来确保大多数颜色相同或相似,从而达到在某种意义上一致的颜色复制效果。 二、色彩空间转换 色彩空间转换是指把一个色彩空间中的颜色数据转换或表示成另一个色彩空间中的相应数据,即用不同的色彩空间中的数据表示同一颜色。在本文中,是将与设备相关的RGB色彩空间转换到与设备无关的CIELab色彩空间。任何一个与设备有关的色彩空间都可以在CIELab色彩空间中测量、标定。如果不同的与设备相关颜色都能对应到CIELab色彩空间的同一点,那么,它们之间的转换就一定是准确的。 色彩空间转换的方法有很多种,本文主要介绍三维查表插值法和多项式回归法。 1.三维查表插值法 三维查找表法是目前研究色彩空间转换较为常用的算法。三维查找表算法的核

心思想是,将源色彩空间进行分割,划分为一个个规则的立方体,每个立方体的八个顶点的数据是已知的,将所有源空间的已知点构成一张三维查找表。当给定源空间中任意一个点时,能够找到与之相邻的八个数据点构成一个小立方体格子的节点,通过这个小立方体的八个顶点进行插值,得到目标空间对应的数据。 一般查找表法都是与插值法结合起来使用,变成带有插值算法的三维查找表法,这种方法可分为三个步骤: ①分割:将源色彩空间按一定的采样间隔分区,建立三维查找表; ②查找:对于一个已知的输入点,搜索源空间,找出包含它的由八个栅格点构成的立方体; ③插值:在一个立方体的栅格内,计算出非栅格点上的颜色值。 根据源空间的不同分割方式,常见的插值算法有:三线性插值、三棱柱插值、金字塔插值和四面体插值方法。 2.多项式回归法 多项式回归算法是指假设色彩空间的联系可以通过一组联立的方程估算出来。多项式回归算法的唯一必要条件就是源空间的点数应该大于所选择的多项式的项数。此算法的重点在于计算出多项式的系数,再将源色彩空间的数据代入多项式,就可以根据方程求出转换后的结果。 多项式回归算法的特点是简单、实现起来较为方便,且有着不错的转换效果;但使用项数少时精度较低,当项数过大时计算量大、且精度也不一定高。 3.色差 在评价彩色复制质量和控制彩色复制过程时,例如在实施色彩管理和评价印刷品颜色时,往往需要计算颜色的色差来实现控制颜色的目的。目前印刷业普遍采用

RGB到Lab颜色空间转换

RGB到Lab色彩空间转换 课程设计 机电工程系1003班 2010090343 余丽萍

RGB到Lab颜色空间转换 一、引言 所谓色彩管理,就是解决图像在各色空间之间的转换问题,使图像的色彩在整个复制过程中失真最小。其基本思路是:首先选择一个与设备无关的参考色空间,然后对设备进行特征化,最后在各个设备的色空间和与设备无关的参考色空间之间建立关系,从而使数据文件在各个设备之间转换时有一个明确的关系可寻。虽然不可能让不同设备上的所有颜色完全相同,但可以使用颜色管理来确保大多数颜色相同或相似,从而达到在某种意义上一致的颜色复制效果。 其基本思路是:首先选择一个与设备无关的参考色空间,然后对设备进行特征化,最后在各个设备的色空间和与设备无关的参考色空间之间建立关系,从而使数据文件在各个设备之间转换时有一个明确的关系可寻。虽然不可能让不同设备上的所有颜色完全相同,但可以使用颜色管理来确保大多数颜色相同或相似,从而达到在某种意义上一致的颜色复制效果。 二、色彩空间转换 色彩空间转换是指把一个色彩空间中的颜色数据转换或表示成另一个色彩空间中的相应数据,即用不同的色彩空间中的数据表示同一颜色。在本文中,是将与设备相关的RGB色彩空间转换到与设备无关的CIELab色彩空间。任何一个与设备有关的色彩空间都可以在CIELab色彩空间中测量、标定。如果不同的与设备相关颜色都能对应到CIELab色彩空间的同一点,那么,它们之间的转换就一定是准确的。 色彩空间转换的方法有很多种,本文主要介绍多项式回归法。 2.多项式回归法 多项式回归算法是指假设色彩空间的联系可以通过一组联立的方程估算出来。多项式回归算法的唯一必要条件就是源空间的点数应该大于所选择的多项式的项数。此算法的重点在于计算出多项式的系数,再将源色彩空间的数据代入多项式,就可以根据方程求出转换后的结果。 多项式回归算法的特点是简单、实现起来较为方便,且有着不错的转换效果;但使用项数少时精度较低,当项数过大时计算量大、且精度也不一定高。

RGB、HSV色彩空间模式的互相转换

RGB、HSV色彩空间模式的互相转换 文章来源: https://www.sodocs.net/doc/c311133969.html,/1168000.html 在开发有关bitmap方面的程序时,经常需要将位图的颜色在RGB和HSV色彩空间之间转换,前段时间本人研究过,现在整理一下,希望对大家能有所帮助,该颜色转换由C++实现 在开发有关bitmap方面的程序时,经常需要将位图的颜色在RGB和HSV 色彩空间之间转换,前段时间本人研究过,现在整理一下,希望对大家能有所帮助,该颜色转换由C++实现: RGB颜色空间转换为HSV空间颜色值: void Rgb2Hsv(float R, float G, float B, float& H, float& S, float&V) { // r,g,b values are from 0 to 1 // h = [0,360], s = [0,1], v = [0,1] // if s == 0, then h = -1 (undefined) float min, max, delta,tmp; tmp = min(R, G); min = min( tmp, B ); tmp = max( R, G); max = max(tmp, B ); V = max; // v delta = max - min; if( max != 0 ) S = delta / max; // s else { // r = g = b = 0 // s = 0, v is undefined S = 0; H = UNDEFINEDCOLOR; return; } if( R == max ) H = ( G - B ) / delta; // between yellow & magenta else if( G == max )

深度剖析打印中色彩空间的转换意图

深度剖析打印中色彩空间的转换意图 转化意图:可感知、饱和度 我们在打印机icc曲线制作问题的时候,常常会发现对于色彩空间转换中着色方法(renderingintents)的选用感到迷茫。因此,在这里通过图解可以更直观的比较色彩空间的四种转换意图的区别。 一般来讲,实际设备的色域是不足以重现源空间色彩的,也就是说目标空间小于原空间,当然这不是我们期望的,但实际往往如此,超出目标色彩空间的色彩如何处理,这便是着色方法的问题的由来。icc共提供了四种着色方案,或者说色域映射方法来处理这一问题,每种方法都是一种妥协和压缩,问题是怎么取舍。这四种方法在photoshop中文版中被分别翻译为:可感知、饱和度、绝对比色、相对比色。 可感知(perceptualintent) 可感知是最常用的一种转换方式。可感知转换方式即在保持所有颜色相互关系不变的基础上,改变源设备色空间中所有的颜色,但使所有颜色在整体感觉上保持不变。

我们的眼睛对颜色之间的相互关系较为敏感,而对于颜色的绝对值感觉并不太敏感。如果一副图像中明显包含了一些色域外颜色时,采用可感知意图是一个很好的选择。可感知比较适合轿大的rgb 色域的相较小的cmyk色域转换使用。通俗一点理解,可以叫做整体的压缩。优点是能保持图像上所有颜色之间的对比关系,缺点是图像上每个颜色都会发生变化,经常可以看到图像整体会变浅之类的。 这种方法可以说是兼顾了比色法和饱和度法的优点,旨在保留颜色之间的可视关系,尽管颜色值本身可能有改变,但人眼看起来感觉更自然,此方案由于保持原色彩关系,等比例压缩,所以适合需要高质量的摄影图像。 饱和度(saturationintent) 饱和度实际上是一种线性压缩,饱和度转换方式力求保持颜色的鲜艳度,较为忽略颜色的准确性。它把源设备色空间中最饱和的颜色映射到目标设备中最饱和的颜色。好处是所有的颜色相对关系都没有改变,保留了层次;但是缺点也是明显的,就是所有的颜色都改变了,饱和度降低了,通俗一点理解即保持图像鲜艳的色彩而丢失了颜

相关主题