搜档网
当前位置:搜档网 › 群论在化学中的应用

群论在化学中的应用

群论在化学中的应用
群论在化学中的应用

群论在化学中的运用——对称性的直观运用

应化1101 杨欢 1505110326【摘要】分子的对称性依赖于分子构型,反映出分子中原子核和电子云的

分布状况。因而,分子的一切性质,或多或少的必然要受到分子对称性的深刻

影响。本文将要介绍如何根据分子对称性,直接判断该分子是否具有光学活性;是否具有偶极矩;可能有几种类型的取代产物;可能有哪些等价的波普行为等。

【关键词】群,对称性,对称操作,对称元素,运用

群论是近代数学的一个分支,它是一门抽象的数学,它是研究离散元素的

代数运算的数学。在近代物理学和化学的研究中,群论已经成为一个必不可少

的重要数学工具。群论与物理、化学的联系是与对称性紧密相关的,群论被用

作沟通体系存在的对称性与必然会具有的一些性质的桥梁。[1]对称性是物质世

界最普遍的性质之一,各种物体(分子、晶体或图形)都有一定的形状,属于

特定的对称性群。群论广泛用于基本粒子、核结构、原子结构和晶体结构等许

多学科的各个方面,群论已成为近代物理及化学理论研究的很重要的工具。首

先介绍一下群这一基本概念。群是由一定结合规则(乘法)联系起来的元素集合,它满足封闭性和结合律,但不一定满足交换律;在每一个集合中有单位元

素的存在,它和集合中的每一个元素相乘均为该元素本身。由于群论在化学中

的运用与对称性紧密相关,所以有必要先了解一下对称性。对称性是指物质具

有对称元素,可以进行对称操作的性质。而能使一个物体或分子复原的物理动

作叫对称操作。所谓复原,就是使物体恢复到原来的形状,用一句形象的话说,如果没有亲眼看见进行这个动作就以为物体没有动。对称操作不改变物体或分

子中任何两点间的相对位置,也不改变物体或分子任何物理、化学性质。有两

种类型的复原,一种是等价复原,即物体中的等价部分相互交换位置,使物体

复原;另一种是全等复原,即物体回到原来自己的位置。在进行对称操作时,

要以物体中某些几何点线面为基准,它们在对称操作中保持不动,称为对称元素。有了这些基础,下面来介绍一下对称性的直观运用。

一.分子光学活性的判别

化学中的某些物质外形具有一定的几何对称性,构成物质的分子也有对称性,分子的对称性反映出分子中原子核和电子云的分布情况,因而分子的一些

性质要受到分子对称性的影响。根据分子对称性,可以直接判断该分子是否具

有旋光性。分子的对称性与旋光性的关系:判别分子是否具有旋光性的常用的

方法是比较实物和它的镜像,看它们能否完全重合,凡不能和镜像重合的分子

都具有旋光性;反之,如果两者能够重合,则分子就没有旋光性。由此可知分

子的旋光性和分子的对称性有关,若从分子的对称元素和所属对称群来判断其

是否具有旋光性,判断方法就更为直接简单。

分子有无旋光性的判据是:分子有无反轴对称性[2],即有无对称中心、镜

面和4m次反轴等第二类对称元素。一个分子如果具有对称面、对称中心或反

轴,则它自身的两半可以互相重合也必能与镜像重合,则分子无旋光性,由此可推出属于Cn,Dn,T,O,I点群的分子无旋光性。

二.分子偶极距的判断

分子的偶极距(μ)属向量性质,其大小决定于分子正负电重心间的距离与

电荷量,其方向规定为从正至负。因为分子所具有的对称性是分子中原子核和

电子云对称分布的反映,分子正负电重心一定处于分子的对称元素上。所以根

据分子的对称性,即可判断分子有无偶极距。分子的永久偶极矩是分子的静态

性质,静态性质的特点就是它在分子所属点群每一对称操作下必须保持不变,

为此μ向量必须落在每一元素上,因此可以根据“分子对称元素是否只交于一点”来预测分子有无永久μ。如果分子有对重心落在同一点上,因而无偶极距。若不存在上述的对称元素时,则分子的正负电重心不落在同一点上,就有偶极矩。

如果分子具有对称中心,那么分子的所有对称元素都交于此点,此点亦即分子正负电荷的重心。因此,具有对称中心的分子没有偶极矩。如果分子有两个对称元素交于一点,比如有一个对称面和垂直于此面的对称轴,或者有两个以上不相重合的对称轴,那么分子的正负电荷中心必重合于此交点,因而也没有偶极矩。分支虽有对称面和对称轴,但他们若不相较于一点,而且对称轴为对称面所包含,则他们具有偶极矩。

按照这一判据,可将分子所属点群和它是否具有偶极矩的关系总结为:

轴时,偶极矩必沿对于具有偶极矩的分子可以进一步推断:当分子有C

2

着此轴;当分子有对称面时,偶极矩必位于此面上;当分子有几个对称面时则偶极矩必沿着他们的交线。

三.化学位移等价性的判别

质子或其他的原子核,在一定的交变磁场的作用下,由于分子中所处的化学环境不同,从而将在不同的共振磁场下显示吸收峰。这一现象就叫做化学位移。化学位移是核磁共振波普中反映化合物结构特征最重要的信息之一。

氢气(H1)谱亦即质子谱,在核磁共振波普中应用最为广泛。氢谱中的各个峰与分子中的不同环境的质子相对应。这样便可根据分子对称性识别等价院子或基团,进而可以判别氢谱中化学位移的等价性。

全同质子(通过旋转操作课互换的质子)在任何化学环境中都是化学位移等价的。对映异位质子(存在对称操作使分子中两个质子互换的质子)在非手性溶剂中具有相同的化学性质,也是化学位移等价的,但在光学活性或酶产生的手性环境中就不再是化学等价的,在核磁共振波普中可以显示偶合现象。此外,非对映异位质子(不能通过操作达到互换的质子)在任何化学环境中都是化学位移不等价的。

分子中化学位移等价的核构成一个核组,相互作用的许多核组构成一个自

旋系统。考虑分子的对称性,有利于对它们进行分类,因而群论就是最基础的。四.群论在杂化轨道中的应用

群论应用于分子结构的问题,是基于分子外形的对称性与分子结构有着内

在的联系,而其联系的桥梁是分子的波函数[3]。它可以作为分子所属点群的不

可约表示的基。杂化轨道理论主要是研究分子的几何构型,而构型和杂化的原

子轨道在空间的分布和方向有密切的联系。由于在微观世界中,分子都具有一

定的对称性,而对称性不同时,则其分子构型也必然不同,因此分子对称性就

与其杂化轨道有内在的联系。群论的方法可以告诉我们:在具有一定形状的分

子的化学成键中,中心原子可能采用什么样的杂化方式。运用群论的知识还可

以知道中心原子提供哪些原子轨道去构成合乎对称性要求的杂化轨道,而且还

可以进一步求出杂化轨道的数学表达式。

结束语

以上是对称性及群论在化学中的一些简单利用,在量子化学中还很多群论

的应用事例,如:讨论光谱选律、波函数的数学简化处理等。群论是量子化学

的数学基石,群论在化学方面的应用很广,在应用于原子、分子结构问题上,

它不能回答它们的所有结构问题。群论是一种认识自然、探索自然的思维方式

和有力工具,群论中充满了自然的和谐简约之美,如果没有群论,就不会有当

今的理论化学所取得的成果。总之,群论是很值得研究的一门科学知识。

参考文献

[1]李奴义.浅议群论在化学中的应用[J].青海师范大学民族师范学院学

报,2012,(1):95-96.DOI:10.3969/j.issn.1671-7473.2012.01.027.

[2]康桃英.浅议群论在化学中的两种应用[J].化学世界,2004,45(9):502-504.DOI:10.3969/j.issn.0367-6358.2004.09.018.

[3]唐有琪.对称性原理[J].科学出版社.1977-1979

生物化学在工业及环境方面的应用

生物化学在工业及环境方面的应用 化工10904 杨庆序号18 学号200903052 生物化学是运用化学的理论和方法研究生命物质的边缘学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。从早期对生物总体组成的研究,进展到对各种组织和细胞成分的精确分析。目前正在运用诸如光谱分析、同位素标记、X射线衍射、电子显微镜一级其他物理学、化学技术,对重要的生物大分子(如蛋白质、核酸等)进行分析,以期说明这些生物大分子的多种多样的功能与它们特定的结构关系。 生物化学在发酵、食品、纺织、制药、皮革等行业都显示了威力。例如皮革的鞣制、脱毛,蚕丝的脱胶,棉布的浆纱都用酶法代替了老工艺。近代发酵工业、生物制品及制药工业包括抗生素、有机溶剂、有机酸、氨基酸、酶制剂、激素、血液制品及疫苗等均创造了相当巨大的经济价值,特别是固定化酶和固定化细胞技术的应用更促进了酶工业和发酵工业的发展。70年代以来,生物工程受到很大重视。利用基因工程技术生产贵重药物进展迅速,包括一些激素、干扰素和疫苗等。基因工程和细胞融合技术用于改进工业微生物菌株不仅能提高产量,还有可能创造新的抗菌素杂交品种。一些重要的工业用酶,如α-淀粉酶、纤维素酶、青霉素酰化酶等的基因克隆均已成功,正式投产后将会带来更大的经济效益。据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置

已达75 m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM (Archer Danie1s Mid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。 环境污染是指人类直接或间接地向环境排放超过其自净能力的物质或能量,从而使环境的质量降低,对人类的生存与发展、生态系统和财产造成不利影响的现象。具体包括:水污染、大气污染、噪声污染、放射性污染等。随着科学技术水平的发展和人民生活水平的提高,环境污染也在增加,特别是在发展中国家。环境污染问题越来越成为世界各个国家的共同课题之一。处理环境污染的方法日新月异,近年来生物化学的方法越来越得到人们的重视。 在生物化学技术发展的同时,污水化学处理技术也在不断发展,其主要特点是投资省、运行稳定、操作灵活、除磷效果好,但不能去除溶解性有机污染物,出水水质也难以达到二级处理的排放要求,运行费用往往偏高。 当代污水处理技术的最重要发展趋势就是生物处理与化学处理的结合,二者

化学动力学与化学热力学在有机化学中的应用

化学热力学与动力学在有机化学中的应用 一.化学热力学: 一个反应能否自发发生及反应平衡时反应物和产物之间的相对比例是一个化学热力学问题。可以解决,一个反应的能否自发进行及反应的限度问题,是用自由能ΔG 来判断的,ΔG<0反应可以自发进行,直到平衡即ΔG=0,相反如果大于0时,反应是不能自发进行的,由平衡常数与ΔG 的关系可以知道,此时K 很小所以往往是可逆的。S T H G ?-?=?,Δ H 反应的是反应的热效应,在反应中焓的变化反映了反应物键的断裂与生成物键的生成能量 之差(其中包括张力能,离域能等),即断裂键的键能之和减去生成键的键能之和(键能为正值)。当ΔS 可以忽略不计的时候,ΔG ≈ΔH ,当反应是放热的时候,即ΔH<0,则ΔG<0,即反应可以自发进行。ΔS 的判断:1.分子在体系中的自由度越大,她的熵值也就越大。即气>液>固。在一个反应中如果反应物都是液相的,而产物至少有一个是气相的,那么在热力 学上由于熵增大所以是有利的。2.产物的分子数目等于反应物的分子数目的反应,熵变通常是不大的,但是如果生成物的分子数增加,通常会有较大的熵值增加。所以分解,分裂的反应在热力学上是有利的。但是注意,有些时候分解反应的热焓变比较大抵消了ΔS 的增大,最终ΔG 仍>0,反应仍不自发。3.链状分子比对应的环状分子有更大的熵值,因而分子的打开是有利的,闭环意味着熵值的减少。如果弱键断裂,强健生成,则反映放热,ΔH<0,在放热反应中,焓变对G 有一个负的的贡献,所以反应易于由弱键生成强键,反之,由强键生成 弱键,会消耗能量,H>0对G 有正的贡献,不易发生。综上焓减少是反应的推动力,熵增加是反应的推动力。 化学动力学: 对反应速度的处理研究涉及到化学动力学问题。有机化学中主要应用过渡态理论。过渡态是反应途径中能量最高点时所存在的结构。它和反应物、产物或中间体不同,并不是一个化学实体,无法分离和实验观察,仅是一个有一定几何形状的和电荷分布的高度不稳定状态。 微观可逆原理::(1)一个基元反应的逆反应也必然是基元反应,即任何基元反应都是可逆的;(2)正反应与逆反应经过相同的过渡态即正逆反应途径一样,机理一样。 当我们研究一个有机反应时,最希望了解的是这一反应将向产物方向进行到什么样程度?一般来说,任何体系都有转变成它们最稳定状态的趋势(即自发的趋势都是体系自由能减小的方向,ΔG<0),因此,可以预料当产物的稳定性愈大于反应物的稳定性时,则平衡愈移向产物一侧。这句话的意思可由下式看出来。△G=-RTlnK ,当两个物质的稳定性差很大的时候,即自由能差很大,如果生成物的自由能比反应物的小,即ΔG 很负,所以K 很大,平衡常数大,说明向稳定的方向进行的趋势很大,即平衡移向产物一侧,反应进行的很完全。 要使反应发生,产物的自由能必须低于反应物的自由能,即△G 必须是负值。说白了对于一个自发反应,反应物与产物之间自由能差别越大,或者说稳定性差别越大,反应进行的趋势完全程度也越大。 过渡态理论:1.起反应的物质结合时需要通过比原始和终了的状态较高的势能,具有较高势能的状态较过渡态。即假设一个反应先达到一个过渡态,然后从过渡态以极快的速度变成产物。2.反应有几种产物时,每一种产物都从不通过过渡态过来的,主要产物是过渡态能量最低的转化而来的。3反应物与过渡态之间存在一个平衡,反应的速度(生成过渡态的速度)依赖于平衡常数,而K 又与活化自由能有关。过渡态的自由能的高低成为衡量反应速率的重要标志。 在一步反应的图中能量最高点是活化络合物,在它的左边,所有络合物都被认为同反应物处于平衡中;而在它右边,所有络合物则被认为是同产物处于平衡中。 A+B 反应物 D 产物△G 双步 反 应G ΔG 1≠ΔG 2≠ C 中间体 A+B 反应物 C 产物过渡态△G 单 步 反 应G ΔG 1≠a b

分析化学在现实生活中的应用1

分析化学在现实生活中的应用我们的生活离不开物质。如何让物质能更加美好我们的生活呢?掌握一点化学知识其实是非常实用的方法。无论是生产、生活,还是环境保护、能源与资源的利用、医药卫生与人体健康等与化学有着广泛的关系。因此,生活中有许多化 学知识需要我们去认识。 “民以食为天”,我们先来看看吃里的化学吧。 油条是我国传统的早餐食品之一,它的历史非常悠久。当大家吃着香脆可口的油条时,是否会想到油条制作过程中的化学知识呢? 先来看看油条的制作过程:首先是发面,用鲜酵母或老面(酵面)与面粉一起加水揉和,使面团发酵到一定程度后,再加入适量纯碱、食盐和明矾进行揉和,然后切成厚1厘米,长10厘米左右的条状物,把每两条上下叠好,用窄木条在中间压一下,旋转后拉长放入热油锅里去炸,便成了一根香、脆的油条。 在发酵过程中,由于酵母菌在面团里繁殖分泌酵素(主要是分糖化酶和酒化酶),使一小部分淀粉变成葡萄糖,又由葡萄糖变成乙醇,并产生二氧化碳气体。同时,还会产生一些有机酸类,这些有机酸与乙醇作用生成有香味的酯类。反应产生的二氧化碳气体使面团产生许多小孔并且膨胀起来。有机酸的存在,就会使面团有酸味,加入纯碱,就是要把多余的有机酸中和掉,并能产生二氧化碳气体,使面团进一步膨胀起来;同时,纯碱溶于水发生水解,后经热油锅一炸,由于有二氧化碳生成,使炸出的油条更加疏松。 从上面的反应中,也许大家会担心,在制作油条时不是使用了氢氧化钠吗?含有如此强碱的油条,吃起来怎么会可口呢?然而其巧奥妙之处也在于此。当面团里出现游离的氢氧化钠时,原料中的明矾就立即跟它发生了反应,使游离的氢氧化钠经成了氢氧化铝。氢氧化铝的凝胶液或干燥凝胶,在医疗上用作抗酸药,能中和胃酸、保护溃疡面,用于治疗胃酸过多症、胃溃疡和十二指肠溃疡等。常见的治

化学热力学在科研及工业生产中的应用

化学热力学在科研及工业生产中的应用 【摘要】化学热力学是物理化学和热力学的一个分支学科,它主要研究物质系统在各种条件下的物理和化学变化中所伴随着的能量变化,从而对化学反应的方向和进行的程度作出准确的判断。因此,学热力学在材料学、生命科学等方面有着极其重要的作用。同时,在工业生产中,化学反应对热量的需求,直接影响到能源的成本,因此,在研发中找到一个合适的节能的反应路线就显得非常重要,而化学热力学在其中就扮演着不可或缺的角色。 【关键词】药物研究、环境保护、工业生产 正文: 一. 化学热力学在药物研究中的作用 1.药物晶型的研究 晶型不同的药物起理化性质不同,且生物利用度也有所差别。对药物热力学参数如熔解热、熔化热、熵及自由能等研究,有助于选择适当的药物品行。苄青霉素是一种应用广泛的抗生素,其钠盐注射剂在临床上具有优势,目前我国苄青霉素钠盐钠盐的收率很低。很有必要研究钠盐多晶型问题,然后测定相应晶型的结晶热力学数据,有助于提高苄青霉素钠盐结晶产率。研究普鲁卡因青霉素结晶过程的热力学问题,对其结晶动力学、反应动力学等理论研究及工业放大化设计提供了重要的理论依据。 2.对药物分散作用的研究 分散作用的热力学,对分散作用很有帮助。胡道德等研究了对吗氯贝胺与聚氯酮等形成的无定形固体分散体,可以提高药物的体外溶解速度,有助于开发吗氯贝胺高生物利用度的新型剂。青蒿素为新型抗疟疾药物,李国栋等研究聚乙二醇和青篙素分散作用的热力学,发现发散作用是焓反应起支配作用,并认为药物和载体之间具有氢键、范德华力等综合作用,为青蒿素制剂研究提供了重要参数。 二、化学热力学在环境保护方面的作用 自人类开辟工业化发展道路以来,直至今日,能源危机和气候变化已成为困扰人类的两大难题。传统工业化道路主要以煤炭、石油、铀等非再生资源为发展条件,主要发达国家已经完成了工业化历程,而包括中国、印度等发展中国家在内的数十亿人口正在踏上工业化进程,人类一直依赖的能源环境现在却面临枯竭。传统工业化道路也带来全球气候异常和生态平衡遭破坏的危机,海平面上升、臭氧层空洞、空气污染、极端天气现象等,都是其负面效应的体现。 现代化的先进、繁荣以加剧能源危机和气候危机为代价,本以为可充分享受工业化便利的个人,也越来越多地受现代社会带来的环境污染、身体受损、精神负担的困扰。这和能源的不合理以及低效使用密不可分。而能源和化学热力学则有着千丝万缕的联系。我们就以化学热力学中的熵增的概念加以说明。能和熵,从这两个概念的建立到上个世纪初,人们相信能源在经济和社会发展中的重要作用,能量主宰了宇宙中的一切。但是随着时代的发展,熵概念的重要性越来越突显出来了。人们越来越多的把它和无效能量,混乱度,废物,污染联系在一起。认识到了熵的重要意义,我们再用熵增这个概念对环境污染加以说明。 熵增加就是意味着系统的能从数量上讲虽然守恒,但是品质却越来越差,越来越不中用,被用来做功的可能性越来越小,不可用程度越来越高,这个就是能量的“退化”。而被转化成了无效状态的能量构成了我们所说的污染。许多人

数学在各方面的的应用

附录三关于数学在理科中应用的调查报告 我们对理科中物理、化学、计算机基础中数学知识的应用进行了相关的调查。调查过程中翻阅了大量的相关资料,并询问了不少相关的专家,现将结果公布如下: 一、物理学中的数学知识 数学是物理学的基础和工具。离开了数学,物理学几乎寸步难行。现行大学物理系的数学教材几乎囊括了所有高等数学的基础知识。理论物理和实验物理都必需具备相当高深的数学知识。 理论物理中所应用的数学知识有:空间及其拓朴、映射、实分析、群论、线性代数、方阵代数、微分流形和张量、黎曼流行、李导数、李群、矢量分析、积分变换(包括傅里叶变换和拉普拉斯变换)、偏微分方程、复变函数、球函数、柱函数、函数、格林函数、贝塞尔函数、勒让德多项式等。 实验物理中所应用的数学知识呈主要集中在概率统计学中。包括一维、多维随机变量及其分布、概率分布、大数定律、中心极限定理、参数估计、极大似然法等。其中概率分布包括伯努力分布、泊松分布、伽马分布、分布、t分布、F分布等。 从上可以看出,上述数学知识对物理专业来讲,必需了解,且有的需要深入了解。比如群论、空间及拓朴、积分变换、偏微分方程、概率分布、参数估计等。工科和理科、师范类和非师范类、物理专业和非物理专业、其物理学习中所应用的数学知识也有范围和程度上的变化。工科就没有理科要求高,物理专业中所涉及的数学知识也比非物理专业所学物理课本上的数学知识丰富的多。 二、化学中的数学知识 初等化学只是简单介绍物质的组成、结构、性质、变化及合成。除了相应的计算外,与数学的联系没有物理学那么紧密。高等化学需要更深入的研究物质,因此需要相应的高等数学知识为基础。下面我们就化学理论和化学实验两种课程来讨论。 化学理论中所应用的数学知识有:级数及其应用、幂级数与Taylor展开式、Fourier级数、Forbemus方法、Bessel方程、Euler-Maclaurh加法公式、String公式、有限差分、矩阵、一阶偏微分方程、二阶偏微分方程、常微分方程(包括一阶、二阶、线性、联立)、特殊函数(包括贝尔函数和勒让德多项式)积分变换、初步群论等。 化学实验中所应用的数学知识有:随机事件及其概率、随机变量的数字特征、随机分量及其分布、大数定理、中心极限定理、参数估计等。 从上面可以看出,化学中的数学知识主要应用于计算,因此大部分是一些数学公式和方程,并没有更深一步理论推导及逻辑思维、形象思维的要求。所以,化学专业中数学知识的要求不高,只限于了解并会套公式而已。

化学知识在生活中的实际应用

龙源期刊网 https://www.sodocs.net/doc/cf11455994.html, 化学知识在生活中的实际应用 作者:焦小品 来源:《科技传播》2012年第09期 摘要:学习化学知识的根本目的,在于使学生能够将我们日常生活中所遇到的现象或问题进行科学、有理有据的解释与解决。实现化学知识,不仅是我们所学到的一门学科,更成为我们实际生活中的一门应用科学。 关键词:化学知识;生活;实际应用 中图分类号O6 文献标识码A 文章编号 1674-6708(2012)66-0093-02 我们日常生活的处处、方方面面都存在着化学,懂的化学的基本理论知识与原理,就能用化学的知识去分析并应用我们接触到的事物,不仅能够更好的使事物发挥其应有的作用,而且还能使其与其他事物发生联系,让事物的利用范围更加的广泛。 1 日常生活和实验室不可或缺化学品(碘化合物)——食盐 食盐,化学学名氯化钠(Nacl),人们日常生活必备的调味品之一。而从化学的角度我们会看到,它不仅仅起到的是增加食物味道的作用,它更是保证我们人体日常生理、生化和功能正常运行基本而重要的元素成分。从氯化钠的化学成分组成我们可以分析得出,Na+和Cl-在体 内会与K+ Ca2+、Mg2+等多种元素发生反应和联系,建立错综复杂的关系,起到控制细胞、组织液和血液内的电解质平衡,保持体液的正常流通和控制体内酸碱平衡的重要作用;对于机体内神经和肌肉的适度应急水平也有着辅助性作用。而NaCl和KCl对血液粘稠度的变化也起着调节的作用;消化食物的胃酸、胃液、胆汁和胰液化合物也均有血液里含有的钠盐和钾盐形成。胃里开始消化某些食物的酸和其他胃液、胰液及胆汁里的助消化的化合物,也是由血液里的钠盐和钾盐形成的。另外,Na+、K+和Cl-浓度的适当配比,对于我们眼睛中视网膜对光的生理反应也起着重要的作用。而我们日常口腔护理中,淡盐水漱口不仅对于我们的口腔健康及牙龈肿痛能起到很好的防范和治疗作用;还对咽喉肿痛有一定的防治功效,这对我们在秋冬季节易发、多发的感冒起到预防的作用。 另外,碘化钾、碘化钠、碘酸盐等含碘化合物也是医学和化学实验室必备的化学试剂;而它又是食品和医疗中重要的营养成分和药剂,对人体健康的平衡起着很好的维护平衡的作用。碘作为我们人体中甲状腺生理作用必需的微量元素,它基本均已碘化合物的形式存在于人体内,通过甲状腺形成的甲状腺激素而起到其生理作用。我们正常人体内的碘含量在 15mg~20mg,且其中70%~80%浓集在甲状腺内。如果我们人体缺碘就会使机体产生一系列的生化紊乱及生理功能异常,如,常见的甲状腺肿大,以及导致婴、幼儿生长发育停滞、智力低下等疾病。

放射性核素在化学中的应用示踪原子方法原理利用

第十三章 放射性核素在化学中的应用 第一节 示踪原子方法原理 利用放射性核素容易探测这一优点,人们常用放射性同位素作为示踪来揭示体系中所研究物质变化的规律。在一些简单的示踪方法中,放射性核素仅仅附着于所研究的对象上。例如将含放射性钴的线系在昆虫身上,就可以利用γ射线来考察昆虫的活动习性和规律。用放射性浮标可以测定密闭容器中的液面高度,此时,只要在液面上加有含少许放射性物质的浮标,便可根据探测到的射线来判断液面的高度。 在另一类应用中,由于放射性示踪与研究对象混合均匀,所以可以根据示踪的浓度判断研究对象的行为。例如当油管中相继流过几中不同的油时,将可溶性的124Sb —三苯基锑加入油中,可以判断各种油流动时的交界面。将24Na 标记的盐水溶液注入病人体内,待盐水在体内均匀分布后,取样分析24Na 的浓度可求得病人体液的总量。 在化学研究中,广泛用放射性核素作为示踪原子。示踪原子方法常用于分子结构的研究;化学反应以及吸附、色层、电解、电泳等过程的动力学研究;还用于反应的平衡常数、活化能、分离系数、扩散速度、物质的比表面、溶解度、蒸气压等物理化学数据的测定;在分析化学中用于元素含量的定量测定等。 在化学中,除了将放射性同位素作为示踪原子应用以外,还可以作为辐射源应用。后一类属于辐射化学领域。本世纪初有人曾试图将RaD(210Pb)从大量珠铅中分离出来,然而实验表明,这种分离是徒劳的。 但是分离工作的失败却启示了人们,既然RaD 不能从铅中分离出来,RaD 和普通铅又发生完全相同的化学变化,那么就可以用RaD 来“标记”非放射性铅。在可以忽略同位素效应的前提下,同一元素的各种同位素的物理化学性质完全相同。因此若合成一种与所研究的化合物相同并含有放射性同位素标记化合物,则在将标记化合物均匀地加入所研究的化合物后,便可依靠对射线测量而方便地根据放射性同位素的行为来判断原来不易或不能辨认的大量稳定同位素的行为。该放射性同位素的原子常称为示踪原子。 放射性示踪原子方法的原理可以用下式表示 →)(*A xAy S M →N →…. →Y →)''(A Ay x Z →)(*A xAy S M’→N’→…. →Y’ →'Z (13--1) →)(*A xAy S M →N →…. →Y’’ → ''Z 式中)(*A xAy S 表示开始时体系中化合物S 含有x 个稳定同位素原子A 和y 个放射性同位素原子*A ,在通常情况下,x 远远比y 大得多。(13--1)式表示S 同时发生了三种化学变化,并且每一种化学变化又经过了一系列中间产物。但是因为A 和*A 的化学性质完全同,所以无论是中间产物还是最终产物中,稳定同位素原子A 和放射性同位素原子*A 的数目之比总是等于x/y 。例如对最终产物之一Z ,有y x y x =''。如果某一中间产物含有x’’个稳定同

化学在生活中的应用分析

化学在生活中的运用 作为一门基础的自然科学,化学在生活中运用非常广泛,对人类发展有着重大意义。众所周知,我们周围的事物都是由许许多多形形色色的化学元素组成的,包括我们人体不可缺少的许多元素以及衣、食、住、行,可以说化学无处不在。随着生产力的发展,科学技术的 进步,化学与人们生活的关系越来越密切。化学在人类的生产和生活中发挥了不可估量的作用。 众所周知,水是地球上所有生命赖以生存的基础。水是生命 的起源,远古时期最早的生命诞生在古老的海洋里,即使实现登陆,生命的存在仍然以水作为首要条件。即使在当今代表了最尖 端科技的航天领域,对外太空生命的探索仍然以水作为第一判断 条件,可以说没有水,一切生命创造的精彩都将不复存在。当今 世界,经济在高速发展,我们对于水需求更大,然而我们却在面 临前所未有的水危机。全世界很多国家国家中,有超过一半的国 家缺水,可见我们面临的形势有多么危急。我国水形势亦不容乐 观:中国是世界上缺水国家之一,全国全国很多城市中目前大约 一半的城市缺水,水污染的恶化更使水短缺雪上加霜:我国江河 湖泊普遍遭受污染,湖泊出现了不同程度的富营养化;城市水域 污染严重,南方城市总缺水量,水污染降低了水体的使用功能, 加剧了水资源短缺,对我国可持续发展战略的实施带来了负面影 响。我们的水资源正在遭受各种污染的侵袭,水污染严重破坏生 态环境、影响人类生存,要想实现人类社会的可持续发展,首先

要解决水污染问题。 由有害化学物质造成水的使用价值降低或丧失称之为水污 染。水的污染有两类:一类是自然污染;另一类是人为污染。而 后者是主要的。水污染可根据污染杂质的不同而主要分为化学性 污染、物理性污染和生物性污染三大类。化学性污染物又可分为:无机污染物、无机有毒物、有机有毒物、需氧污染物、植物营养物、油类物质等;物理性污染又可分为:悬浮物污染、放射性污染、热污染;生物污染主要指造成疾病的病原体对水体的污染。 历史上著名的全球十大环境公害中竟有三件是水污染,它们是水俣病事件、骨痛病事件和剧毒物质污染莱茵河事件。造成的危害是巨大而长久的,给人类带来了无比的伤痛。近些年来发生的水污染事件依旧触目惊心:淮河水污染事件:淮河上游的河南境内突降暴雨,颍上水库水位急骤上涨超过防洪警戒线,因此开闸泄洪将积蓄于上游一个冬春的2亿立方米水放了下来。水经之处河水泛浊,河面上泡沫密布,顿时鱼虾丧失。下游一些地方居 民饮用了虽经自来水厂处理,但未能达到饮用标准的河水后,出现恶心、腹泻、呕吐等症状。经取样检验证实上游来水水质恶化,沿河各自来水厂被迫停止供水很久,百万淮河民众饮水告急,不少地方花高价远途取水饮用,有些地方出现居民抢购矿泉水的场面,这就是震惊中外的"淮河水污染事件。金矿事件:罗马尼亚 境内一处金矿污水沉淀池,因积水暴涨发生温漫坝,含有大量氰化物、铜和铅等重金属的污水冲泄到多瑙河支流蒂萨河,并顺流

化学教学中模型的应用

化学教学中模型的应用 摘要:模型是帮助学生理解和掌握一些抽象概念和理论的重要方法。模型方法的应用也可以促进学生思维能力的发展。文章论述了化学模型的定义和分类,并探讨将模型运用于化学教学中。 关键词:模型;化学模型;化学教学 文章编号:1008-0546(2016)05-0040-03 中图分类号:G633.8 文献标识码:B doi:10.3969/j.issn.1008-0546.2016.05.016 素质教育认为通过学习学生不仅要掌握知识,更要掌握科学方法。模型方法源自科学研究,是人类认识事物的重要方法,因此也是学习的重要工具,它可以帮助我们认识一些抽象的现象,也有助于我们理解一些概念和理论。化学是研究物质组成、性质和结构的一门学科,因此在研究和学习过程中普遍运用了模型方法 一、化学模型的定义及分类 化学模型是在已获得大量感性认识的基础上,以理想化的思维方法,对化学事实进行近似、形象和整体的描述,进而揭示其本质和规律。[1]化学中最重要的思想模型是分子模型(反映分子的组成、结构和性质的静态模型)和反应系统

模型(反映分子转化过程即化学反应的动态模型)。化学中 的其他思想模型,如官能团模型、化学键模型、反应速度理论模型、溶液模型等,都与这两类基本的化学模型有密切的联系。 按照模型代表和反映原型的方式是较为普遍使用的一 种分类标准,可分为物质模型和思想模型。见表1。 二、化学教学中模型的应用 化学模型方法广泛应用于中学化学不同内容的教学中,如化学基本概念教学、基础理论教学、化学反应教学、化学体系教学,本文将从这几个方面以及数学模型在教学中应用加以讨论。 1.模型运用于化学概念教学中 化学概念是人类在认识过程中,把所感知的客观事物的本质特点抽象出来,加以概括。因此,概念具有抽象性、高度概括性。在概念的学习中可以运用模型方法,将概念和熟悉的事物联系起来,从而帮助学生理解相关概念(见表2)。 解析:在气体摩尔体积这一个概念的教学中,将微观世界宏观化,运用一系列分子模型图片展示1mol 物质的体积 大小,让学生有感性的认识。利用学生熟悉的实物模拟物质的组成,采取类比方法,来解释说明影响气体、液体和固体体积的因素,使学生更易理解和掌握气体摩尔体积这一概念。 化学上还有很多抽象的概念,比如物质的量、质量守恒

化学知识在生活中有哪些应用

化学知识在生活中有哪些应用 随着生产力的发展,科学技术的进步,化学与人们生活越来越密切。众所周知,周围的事物都是由许许多多的化学元素组成的,包括人体不可缺少的许多元素。化学与人类生活的息息相关,无论是衣、食、住、行、工、农业生产、医疗卫生,还是环境保护等与化学有着广泛的关系。因此,生活中有着许多化学知识需要去认识。下面小编就给大家分享一些化学知识在日常生活中的应用,欢迎阅读。 ?化学在生活中的应用1.烧水的壶用久了,壶的里层往往有一层白色的水碱.使用的时间越久,积存得就越多.有人叫它“水锈”,也有叫它“锅垢”的.这究竟是那 里来的呢?这是水里夹带着不容易溶解的物质,如硫酸钙CaSO4等,沉淀下来的.硫酸钙在水中的溶解度很小,由于水的温度增高,会更降低它的溶解度,因此它 就沉淀在壶底了.还有水里夹带着一些溶解的物质,如酸性碳酸钙Ca(HCO3)2 酸性碳酸镁Mg(HCO3)2等,这些物质受热就会分解,生成碳酸钙CaCO3和碳 酸镁MgCO3等不溶解于水的物质,就沉淀在壶底.硫酸钙、碳酸钙和碳酸镁等都是白色的沉淀物,混和在一起,就是水碱.化学在生活中的应用2.水有软硬吗?水有软水和硬水的区别,凡是含有钙、镁等盐类的,就叫做硬水.不含钙、镁等 盐类的,就叫做软水.硬水里所含的钙、镁等盐类,如果是酸性碳酸盐,如酸性碳酸钙、酸性碳酸镁等,就叫做暂时硬水,因为酸性碳酸钙和酸性碳酸镁受热后, 就变成碳酸钙和碳酸镁沉淀下来,经过过滤后,就成软水了.硬水里所含的钙、 镁等盐类,如果是硫酸盐,如硫酸钙、硫酸镁等,就叫做永久硬水.因为这样的水虽然经过煮沸后,也不能把他们全部去掉,因为硫酸镁是可以溶解于水的,在 20oc的时候每100公分的水中可以溶解72公分.如果水中既含有钙、镁的硫酸盐,那就叫做两性硬水.化学在生活中的应用3.怎样防煤气?煤气是煤在隔绝

群论在化学中的应用

4.5.4 群论在化学中的应用实例 增加如下内容: 4. 构成对称性匹配的分子轨道 我们知道,原子轨道构成分子轨道的前提是对称性匹配。在简单情况下,这很容易看出来,但在复杂情况下,要使原子轨道构成对称性匹配的分子轨道(亦称对称性匹配的线性组合,SALC),就需要借助于系统的群论方法。下面以环丙烯基C3H3为例来说明:假设该分子为D3h群,垂直于分子平面的碳原子p轨道φ1、φ2、φ3如何构成对称性匹配的π型分子轨道。 (1)首先以φ1、φ2、φ3为基,记录它们在D3h群各种对称操作下的特征标,得到可约表示: E2C33C2σh2S33σv D 3h φ1 1 0 -1 -1 0 1 φ2 1 0 0 -1 0 0 φ3 1 0 0 -1 0 0 Γ 3 0 -1 -3 0 1 需要注意的是,3C2这个类的可约表示特征标是(-1)而不是(-3),这是因为,我们可以从这个类的3个对称操作C2中任选1个作为代表,对基集合φ1、φ2、φ3进行操作,结果是只有1个φ被改变符号而其余两个φ被改变位置,从而得到可约表示特征标为(-1)。但是,不能用该类中3个不同的C2分别作用来得到(-3)。根据同样的理由,3σv这个类的可约表示特征标是1而不是3。

(2)利用D 3h 的特征标表 将可约表示约化为如下不可约表示: (3)构成这些具有确定对称性的分子轨道,必须采用投影算符。投影算符有不同的形式,最便于使用的形式是只利用特征标的投影算符: 其中l j 是第j 个不可约表示的维数, 代表对称操作, 是第j 个不可约表示的特征标。注意:投影算符中的求和必须对所有对称操作进行,而不能像约化公式中那样改为乘以类的阶后对于类求和,这是因为:尽管同一类中各个对称操作的特征标相同,但各个对称操作的操作效果却不同。 接下来的做法是:从3个p 轨道φ1、φ2、φ3的集合中任意取1个,例如φ1,将第j 个不可约表示的投影算符作用于它,就会得出属于这个不可约表示的对称性匹配分子轨道(SALC )的基本形式,然后加以归一化即可。对于一维不可约表示A 2”, 这是非常简单的事,因为它只需要构成1 个 2"" A E Γ=⊕????()j j j R l P R R h χ=∑?()j R χ?R

激光在化学中的应用

激光在化学中的应用 激光(LASER)是上纪60年代发明的一种光源,是一种崭新的光源,是由激光器产生的“种光”,激光有很多特性:首先,激光是单色的,或者说是单频的,有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的;其次,激光是相干光的特征,其所有的光波都是同步的,整束光就好像一个“波列”;再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象,它的亮度最高,具有相当大的能量。近年来激光在化学中的应用也越来越广泛,随着各类激光器的研制与发展,激光化学的基础与应用研究正在向实用化纵深发展。接下来就从以下几个方面介绍激光在化学中的一些应用。 一、激光化学气相沉积法 激光化学气相沉积法(Laser Chemical V apour Deposition)(LCVD)是在真空室内放置基体,通入反应原料气体,在激光束作用下与基体表面及其附近的气体发生化学反应,在基体表面形成沉积薄膜。他具有以下几个优点:1、沉积温度低对于大多数材料可在500℃以下,甚至室温即可沉积成膜。对温度敏感的基体材料,如聚合物、陶瓷、化合物半导体等,若用常规CVD可能发生熔化、开裂或分解。激光化学气相沉积由于基体温度低,减少了因温升引起的变形、应力、开裂、扩散和夹杂等弊病,在不高的沉积温度下,就可得到高质量的薄膜和较高的沉积速度;2、局部选区精细定域沉积聚焦激光束在计算机控制下能准确选区定域沉积,获得直径在微米级的点和宽度在微米

级的线沉积,适宜于在微电子和微机械制造中应用;3、不需掩膜沉积此种沉积方式提高了激光能量利用率,可以采用直写方式沉积出设计的图案,凡激光光斑扫描过的轨迹上都形成沉积薄膜。该工艺适应性强,方便样机快速改型,制造形状不规则的零件,以及微电子器件的维修等;4、膜层纯度高,夹杂少,质量高。5、可用作成膜的材料范围广,几乎任何材料都可进行沉积。 二、激光热处理 激光热处理是20世纪7O年代以后迅速发展起来的一种高新技术,它是利用激光高能量密度的特点,把激光束作为热源对材料表面进行局部快速加热,实现相变硬化、表面改性处理等的理想工具。已有报道将激光用于高温陶瓷等的制备。由于激光与坯体无接触,没有外来污染,能瞬间达到高温,适合对高熔点的材料进行合成。同时,在烧结合成过程中,激光束能量密度高,合成速度快,有可能产生与一般加热处理不同的效果。然而激光热处理在催化剂的制备方面的应用却是一个新的研究方向。在催化剂制备中激光热处理方法可以代替高温焙烧处理催化剂前驱体,制备时间大大缩短,且干扰因素很少,是一种有一定优势的处理方法。但激光处理过大的功率、过慢的扫描速度会使催化剂晶粒增大、晶型过于完整,对催化剂活性不利。如果条件掌握适宜,与高温焙烧催化剂相比,激光处理得到的催化剂晶粒更小,晶相中易保留出现夹杂相,产生更多晶格缺陷,有利于活性的提高。 三、激光诱导腐蚀

最新电化学在生活中的应用

电化学在生活中的应用 电化学是研究电和化学相互关系的科学。它主要通过原电池和电解池来时现,原电池为化学能转化为电能的反应,电解池为电能转化为化学能转化为电能的反应。 电化学与我们的生活息息相关,小的方面看,我们的日常生命活动离不开电化学,航空航天各个领域都离不开电化学。下面将详细进行介绍: 原电池是由电极和电解质溶液构成的一个整体,它主要包含以下两种类型。 (类型一) (类型二) 它们两个在构成上的主要差别为是否有盐桥,在反应速度上类型一更加快速,在相同的时间内能够提供更多的电能。构成原电池需要以下条件:1.存在电子的转移2.构成闭合回路3.存在合适的电解质溶液。在原电池中存在电子的定向移动而形成的电流,点在在外电路中是由负极流向正极的,因此电流是从正极流向负极的,而在内电路中恰恰相反是由正极流向负极的。当我们在外电路上接入用电器时它就能对外供电了,但是每种原电池的电动势都是由其自身所决定的,其电动势为E=EΘ- RTlnJa/ZF。一般情况下原电池的电动势都比较小(例如,普通电池的电动势为1.5V)

不能直接用于生活生产,只有某些小型的耗电设备能利用,并且需要串联使用,因此开发较大电动势的原电池是我们需要努力的方向。 原电池的组成用图示表达,过于麻烦。为书写简便,原电池的装置常用方便而科学的符号来表示。其写法习惯上遵循如下几点规定: 1. 一般把负极写在电池符号表示式的左边,正极写在电池符号表示式的右边。 2. 以化学式表示电池中各物质的组成,溶液要标上活度或浓度(mol/L),若为气体物质应注明其分压(Pa),还应标明当时的温度。如不写出,则温度为298.15K,气体分压为101.325kPa,溶液浓度为1mol/L。 3. 以符号“∣”表示不同物相之间的接界,用“‖”表示盐桥。同一相中的不同物质之间用“,”隔开。 4. 非金属或气体不导电,因此非金属元素在不同氧化值时构成的氧化还原电对作半电池时,需外加惰性导体(如原电池铂或石墨等)做电极导体。其中,惰性导体不参与电极反应,只起导电(输送或接送电子)的作用,故称为“惰性”电极。 按上述规定,Cu-Zn原电池可用如下电池符号表示: (-)Zn(s)∣Zn2+ (C)‖Cu2+ (C)∣ Cu(s) (+)① 从反应的机理来看构成原电池需要有电子的转移,由此来看需要为氧化还原反应,但是实际上并不是所有的原电池都是由氧化还原反应构成的,还存在一种浓差电池。 浓差电池是由于电池中存在浓度差而产生的,并且浓差电池也可分为两种:1.电解质浓度不同而形成的浓差电池2.电极不同而形成的浓差电池。标准的浓差电池的电动势为E=0. 另外浓差电池也可分为单液浓差电池和双液浓差电池两大类,其区别方法为:组成电池的两个电极液种类或活度相同,而两个电极的活度或逸度不同(如汞齐电极、气体电极)而组成的电池,称为单液浓差电池;电极相同,电极反应相同,只是电极液的浓度(或活度)不同,称为双液浓差电池。 另外腐蚀可分为两种:析氢腐蚀和吸氧腐蚀。其中析氢腐蚀时会释放出氢气,而吸氧腐蚀会吸收如部分氧气。从危害来讲析氢腐蚀的危害更加严重,它是原电池的一种反应,反应速度较快,对设备的危害最大,尤其是在酸雨频发的地区,另外对于炼油厂以及化工厂的危害也尤其巨大。 根据原电池的原理人们设计了很多很实用的设备,例如手机电池在放电时就是一个原电池,并且它可以进行充电,只不过在其充电时是一个电解池。另外原电池的

高吸水性树脂在日用化学工业中的应用

高吸水性树脂在日用化学工业中的应用 作者:齐葳芊 摘要:高吸水性树脂是一种新型的高分子材料,这种材料有很强的吸水性和保水性,它的吸水能力是可以达到自身重量的百倍以上的,而且是一种无毒无害无污染的材料。以前人们在使用高吸水性树脂的时候主要是在医疗用品和儿童的玩具上,但是随着科学技术手段的不断发展,这种高分子材料在使用的时候范围更加的广阔,已经不断应用到了日用化学工业中,例如日用化妆品的生产、除臭剂的生产和留香材料的生产。在日用化工中应用高吸水性树脂是非常有前景的,在应用的过程中要不断进行分析,使其发挥最佳的效果。 关键词:高吸水性树脂;日用化学工业;分析 高吸水性树脂因为自身的特点,它的发展速度是非常快的,而且在种类上也是非常多的,而且在原料商也是非常丰富的。科学技术的不断进步,人们对高吸水性树脂的研究也在不断的深入,这样就使得这种材料在很多的领域都得到了应用,其中在日用化学工业中的应用就是很有成果的。在日用化学工业中,应用这种材料主要是因为这种材料在吸水性方面是非常的突出,而且这种材料是无害的,在生产和使用中不会对人体带来影响。日用化学工业中,这种材料主要进行日用化妆品的生产、医疗用品的生产、杀菌剂的生产和儿童玩具的生产。在日用化学工业中,应用这种材料也是要进行一定的研究的,在进行生产的时候对出现的问题要及时进行解决,避免出现不必要的问题。 1 高吸水性树脂在日用化学工业中应用特点 在日用化学工业中应用高吸水性树脂进行生产可以达到不一样的效果,在进行化妆品的生产时,应用这种材料可以使化妆品在使用的时候感觉更加的湿润,而且在使用的时候可以更加的凉快。在进行化妆品生产的时候,经常会使用到水溶性凝胶,这种材料在空气中非常容易受到空气干燥环境的影响,出现无润滑性的凝胶。而在进行化妆品的生产时,使用高吸水性树脂就不会出现这种情况,而且在生产出来的产品中,它还可以起到油性物质的作用。高吸水性树脂在应用的过程中和其他的物质在相容方面是非常好的,这样的效果可以对化妆品的增稠效果进行提高。在应用高吸水性树脂进行医用水溶性润滑剂生产的时候,这种材料可以代替油性润滑脂,在使用的时候,避免出现油脂的污垢,影响使用效果。使用高吸水性树脂进行生产,生产出来的产品在储藏的时候,安全性更高,而且不容易出现变质的情况。 2 高吸水性树脂在日用化学工业上的应用 2.1 在化妆品生产中的应用 在化妆品生产中,高吸水性树脂可以作为化妆品的添加剂来进行应用。在制造化妆品的时候,一定要加入一些添加剂,使得化妆品的效果更好,同时对皮肤起到保湿的效果。在进行花露水的生产时,一定要加入人工香料,同时还要加入酒精溶液,这样是为了更好的使花露水达到清凉消毒的作用。但是在花露水生产

化学知识在日常生活中的运用

内蒙古科技大学 结课论文 科目:化学的今天与明天 题目:生活中无所不在的化学 学院:材料与冶金学院 班级:成型2011—1 姓名:王乐 学号:1176806510

生活中无所不在的化学 摘要:化学(chemistry)是研究物质的组成、结构、 化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志 Chemical is the study of material composition, structure,properties,and the change law of science. The world consists of matter,chemical is human to understand and change the world one of the ways and means,it is a long history and rich vigor discipline, its achievement is the important sign of social civilization 关键词:化学Chemical 生活 Life 运用Application 反应Reaction 化学知识在日常生活中的运用 (一)水果为什么可以解酒 饮酒过量常为醉酒,醉酒多有先兆,语言渐多,舌头不灵,面颊

发热发麻,头晕站立不稳……都是醉酒的先兆,这时需要解酒。不少人知道,吃水果或饮服1--2两干净的食醋可以解酒。什么道理呢?这是因为,水果里含有机酸,例如,苹果里含有苹果酸,柑橘里含有柠檬酸,葡萄里含有酒石酸等,而酒里的主要成分是乙醇,有机酸能与乙醇相互作用而形成酯类物质从而达到解酒的目的。同样道理,食醋也能解酒是因为食醋里含有3--5%的乙酸,乙酸能跟乙醇发生酯化反应生成乙酸乙酯。 尽管带酸味的水果和食醋都能使过量乙醇的麻醉作用得以缓解,但由于上述酯化反应杂体内进行时受到多种因素的干扰,效果并不十分理想。因此,防醉酒的最佳方法是不贪杯。 (二)油条与化学 油条是我国传统的大众化食品之一,它不仅价格低廉,而且香脆可口,老少皆宜。 油条的历史非常悠久。我国古代的油条叫做“寒具”。唐朝诗人刘禹锡在一首关于寒具的诗中是这样描写油条的形状和制作过程的:“纤手搓来玉数寻,碧油煎出嫩黄深;夜来春睡无轻重,压匾佳人缠臂金”。这首诗把油条描绘得何等形象化啊!可当你们吃到香脆可口的油条时,是否想到油条制作过程中的化学知识呢? 先来看看油条的制作过程:首先是发面,即用鲜酵母或老面(酵面)与面粉一起加水揉和,使面团发酵到一定程度后,再加

从方程论到群论

从方程论到群论 南京航空航天大学 二О一三年四月十四日 摘要:群论深刻而优美,却又因为过于深奥很难被全面把握。本文尽量使用通俗性语言,从新角度针对群论进行历史的、具体的剖析。为群论理论普及服务。整个故事从方程论开始。从17世纪开始,对方程论的研究就一直没有中断,这个课题在数学中是基础性课题。方程论的核心任务是,寻求一般方程的系数根式解。从得出一元一次方程、一元二次方程的解法开始,经过多年知识积累人们先后又得出了一元三次、一元四次方程解法,但是在寻求解一般五次方程时人们遇到了无法逾越的障碍。就此,人们开始对之前个方程的解法进行归纳统一,以期能找到解一般五次方程的蛛丝马迹,其中的代表人物是范德蒙、拉格朗日,但是也失败了。这就迫使人们转而研究方程的解的存在问题。1832年挪威天才数学家阿贝尔在21岁时综合欧拉、高斯等人的研究成果,用反证法证明了一般五次方程无根式解。这是方程论的一次巨大飞跃。之后伽罗瓦发展了范德蒙、拉格朗日思想,结合阿贝尔的成果,综合自己多年研究,引进了群、域、扩域等概念,创造性地将群论、方程论结合起来,终于系统地完成了方程论的研究,创立了伽罗瓦理论。 关键词:范德蒙思想、拉格朗日思想、群、域、预解式、伽罗瓦群、系数扩展。 引言 1832年5月30日,一声枪响划破巴黎郊区清晨的寂静,一位年轻人倒在了血泊中,不久即结束了不到21岁的生命,他就是伽罗瓦,数学史上唯一具有浪漫色彩的数学家,因感情纠纷死于与他人决斗。在决斗前夜,他通宵达旦写下了自己几年来在数学领域的研究成果,在离去前为人类留下了一份宝贵的珍品--伽罗瓦理论。 1

伽罗瓦理论完全而又彻底的解决了几百年来困扰无数数学家的多项式方程求解问题,宣告了方程论的结束,新的理论——群论的开始。伽罗瓦思想大大超越了时代,其及其深奥以致当时最优秀的数学家都得要花几个月时间才能彻底掌握。伽罗瓦开辟了新的时代,从群论开始,经历代数学家们的大力发展,一门崭新是学科——近世代数诞生了。现在,群论已经成为数学、物理、化学、晶体学、密码学等学科中不可或缺的重要工具。 1.一元一次、一元二次方程 人们在应用数学求解实际问题时,为简化运算,常常把所要求的量用一个符号代替,这就是代数这一概念的由来。例如问题1,我和朋友共同买10个苹果,分配我去买3个,那么应该分配给朋友去买几个呢?用小学老师教过的方法去算,当然是10-3=7个了。然而,历史的发展并不着眼于此简单的问题,从另一角度、另一方法去分析问题,往往获得质的提升。在分析更复杂,更多变问题的时候,这种方式显得尤为重要。对以上简单问题,换另一角度。假设我不知道朋友应该去买多少个,我用一个符号去代替,用X吧。X是多少我也不知道,他可能是0,可能是1,也可能是2、3、4、5、6、7、8、9、10···但是我知道,一个关系必须成立,这个关系是 X+3=10 这就是一个代数方程,最简单的代数方程,一元一次方程。这个方程有自己的运算法则,有自己的性质,是由3+7=0这类等式性质抽象分析得出的。对等式移项得 X-7=0 为一般化分析奠定良好基础,统一方程为这种形式,即:含未知量的式子放等号左边,0放等号右边。对一元一次方程,以上的方程化分析如此繁琐,但是,这里所代表的意义,所蕴含的思想,是具有划时代意义的--人类开始摆脱对感观感受的依赖,迈入理性分析的大门。对更加复杂问题的分析,这时感官感觉效能将发现自己是多么吃力。例如问题2,象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.

相关主题