搜档网
当前位置:搜档网 › 一种DNA侧翼序列分离技术——TAIL—PCR

一种DNA侧翼序列分离技术——TAIL—PCR

一种DNA侧翼序列分离技术——TAIL—PCR
一种DNA侧翼序列分离技术——TAIL—PCR

高中生物 3.1基因的分离定律导学案 苏教版必修2

高中生物 3.1基因的分离定律导学案苏教版必 修2 C 1、指导杂交育种:原理:杂合子(Aa)连续自交n次后各基因型比例杂合子(Aa ):(1/2)n 纯合子(AA+aa):1-(1/2)n (注:AA=aa)例:小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TTtt,则:(1)子一代(F1)的基因型是Tt,表现型是抗锈病。(2)子二代(F2)的表现型是抗锈病和不抗锈病,这种现象称为性状分离。(3)F2代中抗锈病的小麦的基因型是TT或Tt。其中基因型为 Tt的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。 2、指导医学实践:判断遗传病显隐性的常规方法:无中生有为隐性,有中生无为显性。例1:人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。例2:人类的多指是由显性基因D控制的一种畸形性状。如果双亲的一方是多指,其基因型可能为DD或Dd,这对夫妇后代患病概率是100%或1/2。 【典型例题】 例

1、若让某杂合子连续自交,下图中能表示自交代数与纯合子所占比例关系的是例 2、(11)小麦抗锈病基因R和不抗锈病基因r是一对等位基因,下列有关叙述正确的是 A、基因R和基因r的分离发生在减数第二次分裂中 B、基因R和基因r位于一对同源染色体的不同位置上 C、自然条件下根尖细胞中突变形成的基因r能遗传给后代 D、基因R和基因r的本质区别是核苷酸序列不同例 3、调查发现人群中夫妇双方均表现正常也能生出白化病患儿。研究表明白化病由一对等位基因控制。判断下列有关白化病遗传的叙述,错误的是 A、致病基因是隐性基因 B、如果夫妇双方都是携带者,他们生出白化病患儿的概率是1/4 C、如果夫妇一方是白化病患者,他们所生表现正常的子女一定是携带者 D、白化病患者与表现正常的人结婚,所生子女表现正常的概率是1例 4、下图是一种单基因遗传病的系谱图,对于该病而言,有关该家系成员基因型的叙述,正确的是 A、I2是杂合体 C、I4是杂合体的概率是1/3 例

全基因组扩增

全基因组扩增——微量DNA分析的金钥匙 来源:青年人(https://www.sodocs.net/doc/c211949758.html,) 更新时间:2010/3/8 19:51:27 【字体:小大】 聚合酶链反应(PCR)技术的发展和应用使得微量甚至单个细胞DNA的分析成为可能,极大地促进了法医学、古生物学、分子诊断学和分子病理学的发展。但即便是对于非常敏感的PCR技术,许多材料所能提供的DNA量也只能用于一次或几次PC R反应。为能从少量细胞中最大限度的获取信息,全基因组扩增技术应运而生。 一、全基因组扩增的概念 全基因组扩增(whole genome amplification, WGA)是一组对全部基因组序列进行非选择性扩增的技术,其目的是在没有序列倾向性的前提下大幅度增加DNA的总量。常用的方法有IRS-PCR(interspersed repeat sequence PCR)[1]、LA-PCR(linker ada ptor PCR)[2]、T-PCR(Tagged-PCR)[3]、DOP-PCR(degenerate oligonucleotide pr imed PCR)[4]、PEP-PCR(primer extension preamplification PCR)[5]等。其中最具代表性方法是DOP-PCR和PEP-PCR。 DOP-PCR和PEP-PCR的基本原理都是通过其随机引物与基因组DNA多处退火从而使大部分基因组序列得到扩增。DOP-PCR的引物是由其3′和5′端的特异核苷酸序列和中间的6个核苷酸构成的随机引物组成。其PCR程序是先在低退火温度下进行几个循环的低严谨扩增,然后再提高退火温度,进行几十个循环的严谨扩增。由于DOP-PCR的引物3′端设计的是在基因组中高频出现的序列,因此,在首轮的低严谨扩增条件下能与基因组多处退火,从而将基因组普遍扩增。然后下一轮的严谨扩增中又将低严谨扩增的产物再次放大[4]。与DOP-PCR不同的是,PEP-PCR的引物是由15个随机核苷酸组成的完全随机引物。PCR由50个循环组成,每个循环的退火温度都是由37℃连续升温至55℃,从而确保不同组成的引物与尽可能多的基因组序列退火,使整个基因组得到放大[5]。 二、全基因组扩增的质量控制 全基因组扩增的主要目的是在如实反映基因组原貌的基础上最大限度地增加DNA 量。因此,扩增效率和保真性是衡量全基因组扩增技术优劣的主要标准,此外,扩增片段的大小对于序列较长的基因片段分析来讲也是一个重要因素。 (一)扩增效率 DOP-PCR和PEP-PCR均能较大幅度地扩增模板DNA的量。据Cheung等[6]报道,DOP -PCR可将原模板扩大12至2万倍,而且,模板量越少,扩增倍数越高,这主要是由于

基于PCR技术进行侧翼序列分离的方法比较

龙源期刊网 https://www.sodocs.net/doc/c211949758.html, 基于PCR技术进行侧翼序列分离的方法比较 作者:曾满谢志雄 来源:《科学与信息化》2016年第32期 摘要利用PCR分离已知序列的侧翼序列是分子生物学相关研究工作中经常用到的技术。本文综述比较了常用的热不对称交错PCR(TAIL-PCR)、反向PCR(IPCR)、接头介导的PCR(LM-PCR)等方法。评估了各自的优缺点,旨在为研究者选择合适的技术解决相关问题提供依据。 关键词侧翼序列;TAIL-PCR;反向PCR;接头介导PCR 侧翼序列是指染色体特定位点两侧的DNA序列。在现代分子生物学和微生物学研究领域,经常需要分离已知序列或位点的侧翼序列,对其进行分析或克隆,以研究基因的相关功能。因此,侧翼序列克隆技术的发展应用越来越受科学研究者的重视。目前,常用的分离侧翼序列的技术方法主要有:热不对称交错PCR(TAIL-PCR)、反向PCR(IPCR)、接头介导的PCR(LM-PCR)等。本文重点介绍这三种PCR技术中具有代表性的方法,比较其各自的优缺点,分析其不同的适用范围,为研究者针对不同研究目的和需求选取不同方法提供参考。 1 热不对称交错PCR(thermal asymmetric interlaced PCR,TAIL-PCR) 1991年Parker等提出目标步行PCR,1993年Sarkar等报道了限制位点PCR。这两种PCR 技术均是通过设计一批随机引物,在退火阶段,使它们与已知序列的特异性引物结合,继而进行PCR扩增。该方法由于操作复杂,在实际操作过程中使用很少。随后,在此基础上进行改进,产生了一些新的方法,如热不对称交错PCR(thermal asymmetric interlaced PCR)。 热不对称交错PCR技术是一种快速准确定位已知序列附近未知DNA序列的方法。该技术的原理是依据已知序列设计3个具有高退火温度的嵌套特异性引物(special primer,简称 sp1, sp2, sp3),依据蛋白质保守氨基酸序列设计一系列退火温度较低的简并引物(Arbitrary degenerate prime,简称AD),以基因组为模板,通过控制复性温度调节特异性引物和简并引物与模板之间的复性,进行3轮热不对称分级反应的PCR扩增,从而得到已知序列的侧翼序列。 2014年,本实验室利用该技术分离了Pseudomonas donghuensis HYST铁载体合成与调控 相关基因[1],目前仍在利用该技术分离P. donghuensis HYST对Caenorhabditis elegans的相关毒性基因。在实验过程中,为了提高分离效率,将原PCR方法进行改良,主要有:①调整退火温度。原TAIL-PCR方法中,高特异性退火温度为63℃,本研究中由于特异性引物的设计 模板与原方法不同,退火温度进行了相应调整,根据Primer 5.0设定并优化最终定在56℃~

基因分离定律学案(学生版)

遗传的基本规律-基因分离定律 考纲要求 命题热点预测 1.孟德尔遗传实验的科学方法Ⅱ 2.基因的分离定律Ⅱ 1.考查内容:主要考查遗传杂交实验的方法、遗传概念的辨析、性状显隐性与纯合子和杂合子的判定、分离定律的实质与应用等。 2.考查方式:以遗传实验、遗传现象及遗传图解的方式单独考查,或者与自由组合定律、伴性遗传综合考查。 3.考查题型:以选择题为主,非选择题主要涉及基因分离定律的实质及应用。 第1课时:一对相对性状杂交实验分析 知识点1:几组核心概念的理解(要求:在理解的基础上要熟记)1、交配类:杂交(×)、自交(○×)、测交(杂种一代×隐性纯合子,如Dd×dd (验证杂(纯)合子、测定基因型)P:亲本、♀:母本、♂:父本、F 1:子一代、F 2:子二代 2、性状类:相对性状、显性性状和隐性性状、性状分离(在杂种后代中,同时出现显性性状和隐性性状的现象,在遗传学上叫做性状分离。) 3、基因类 4、个体类:基因型、表现型、纯合子(如DD 、dd 、AABB 、AAbb )、杂合子(如Dd 、AaBB 、AaBb ) 注意:多对基因中只要有一对杂合,不管有多少对纯合都是杂合子。 知识点2:一对相对性状的遗传实验分析(假说-演绎法)1.杂交实验,发现问题 2.提出假说,解释现象 提醒 ①孟德 尔发现遗传定律的时代“基因”这一名词还未提出来,孟德尔用“遗传因子”表示。(基因是在1909年由约翰逊提出)②F 1配子的种类是指雌、雄配子分别有两种:D 和d,D 和d 的比例为 1∶1,而不是雌、雄配子的比例为1∶1。生物雄配子的数量一般远远多于雌配子的数量。 人工异花传粉(两性花)的一般步骤:去雄(即去除母本的雄蕊,豌豆在花蕾期进行)→套袋(防止其他花粉的干扰)→受粉→套袋(防止外来花粉的干扰);注:玉米是雌雄同株异花(单性花),进行异花传粉时不用去雄。 相同基因、等位基因、非等位基因、复等位基 因(若同源染色体上同一位置上的等位基因的 数目在两个以上,称为复等位基因。如控制人类ABO 血型的I A 、I B 、i 三个基因)

基于PCR技术进行侧翼序列分离的方法比较

基于PCR技术进行侧翼序列分离的方法比较 摘要利用PCR分离已知序列的侧翼序列是分子生物学相关研究工作中经常用到的技术。本文综述比较了常用的热不对称交错PCR(TAIL-PCR)、反向PCR(IPCR)、接头介导的PCR(LM-PCR)等方法。评估了各自的优缺点,旨在为研究者选择合适的技术解决相关问题提供依据。 关键词侧翼序列;TAIL-PCR;反向PCR;接头介导PCR 侧翼序列是指染色体特定位点两侧的DNA序列。在现代分子生物学和微生物学研究领域,经常需要分离已知序列或位点的侧翼序列,对其进行分析或克隆,以研究基因的相关功能。因此,侧翼序列克隆技术的发展应用越来越受科学研究者的重视。目前,常用的分离侧翼序列的技术方法主要有:热不对称交错PCR (TAIL-PCR)、反向PCR(IPCR)、接头介导的PCR(LM-PCR)等。本文重点介绍这三种PCR技术中具有代表性的方法,比较其各自的优缺点,分析其不同的适用范围,为研究者针对不同研究目的和需求选取不同方法提供参考。 1 热不对称交错PCR(thermal asymmetric interlaced PCR,TAIL-PCR) 1991年Parker等提出目标步行PCR,1993年Sarkar等报道了限制位点PCR。这两种PCR技术均是通过设计一批随机引物,在退火阶段,使它们与已知序列的特异性引物结合,继而进行PCR扩增。该方法由于操作复杂,在实际操作过程中使用很少。随后,在此基础上进行改进,产生了一些新的方法,如热不对称交错PCR(thermal asymmetric interlaced PCR)。 热不对称交错PCR技术是一种快速准确定位已知序列附近未知DNA序列的方法。该技术的原理是依据已知序列设计3个具有高退火温度的嵌套特异性引物(special primer,简称sp1,sp2,sp3),依据蛋白质保守氨基酸序列设计一系列退火温度较低的简并引物(Arbitrary degenerate prime,简称AD),以基因组为模板,通过控制复性温度调节特异性引物和简并引物与模板之间的复性,进行3轮热不对称分级反应的PCR扩增,从而得到已知序列的侧翼序列。 2014年,本实验室利用该技术分离了Pseudomonas donghuensis HYST铁载体合成与调控相关基因[1],目前仍在利用该技术分离P. donghuensis HYST对Caenorhabditis elegans的相关毒性基因。在实验过程中,为了提高分离效率,将原PCR方法进行改良,主要有:①调整退火温度。原TAIL-PCR方法中,高特异性退火温度为63℃,本研究中由于特异性引物的设计模板与原方法不同,退火温度进行了相应调整,根据Primer 5.0设定并优化最终定在56℃~58℃范围内。 ②提高循环次数。在实验过程中,为了大量积累目的片段,将原方法中超级循环次数进行相应增加,第一轮的12次超级循环提高至15次,第二轮的10次超级循环提高至12次。③提高模板浓度。原TAIL-PCR中利用前一轮产物的1000倍稀释物为模板进行后一轮PCR;本研究中则将前一轮产物的50倍稀释物作为模板,旨在提供高浓度的目的片段,有助于最后PCR产物回收时得到足够浓度的

孟德尔豌豆杂交实验(一)基因的分离定律[]精品

【关键字】化学、生物、方案、情况、条件、问题、难点、合理、良好、优良、健康、保持、发现、研究、规律、位置、稳定、需要、环境、能力、方式、作用、办法、速度、关系、分析、说服、形成、推广、保证、确保、促进、适应、提高 孟德尔豌豆杂交实验(一)基因的分离定律 一、教学内容及考纲要求: 二、重要的结Array论性语句: 1.生物个体基因型和表现型的关系是:基因型是性状表现的内在因素,而表现型则是基因型的表现形式。生物个体的表现型不仅要受到内在基因的控制,也要受到环境条件的影响,表现型是基因型和环境相互作用的结果。2.在杂种体内,等位基因虽然共同存在于一个细胞中,但是它们分别位于一对同源染色体上,随着同源染色体的分离而分离,具有一定的独立性。在进行减数分裂的时候,等位基因随着配子遗传给后代,这就是基因的分离规律。 3.由显性基因控制的遗传病的发病率是很高的,一般表现为代代遗传。 4.在近亲结婚的情况下,他们有可能从共同的祖先那里继承相同的隐性致病基因,而使其后代出现病症的机会大大增加,因此,禁止近亲结婚。 三、重、难点知识归类、整理 1.相对性状、显性性状、隐性性状、性状分离的概念 相对性状——同种生物同一性状的不同表现类型。 显性性状——杂种F1中显现 ..出来的亲本的性状。 隐性性状——杂种F1中未显现 ...出来的亲本性状。 性状分离——杂种后代显现不同性状的现象。 2.等位基因、纯合体、杂合体、基因型、表现型的概念 等位基因——在一对同源染色体的同一位置上的、控制相对性状的基因。 纯合体——含有相同基因的配子结合成的合子发育而成的个体。 DD、dd、AABBCC、ddeerr 杂合体——含有不同基因的配子结合成的合子发育而成的个体。 eg:Dd、AaBB、Ddeerr 基因型——与表现型有关的基因组成。 表现型——生物个体所表现出来的性状。 3.分离规律的解释 A、在F1(Dd)的体细胞中,控制相对性状的一对等位基因D和d 位于一对同源染色体上。 B、F1进行减数分裂时,同源染色体上的等位基因D和d彼此分离, 各进入一个配子。 C、F1形成含有基因D和含有基因d两种类型比值相等的雌、雄配子。 D、两种类型的雌配子与两种类型的雄配子结合的机会相等。 所以F2出现DD、Dd、dd三种基因型,比值为1∶2∶1,出现高茎和矮茎两种表现型,比值为3∶1。 4.基因型相同,表现型不一定相同;表现型相同,基因型也不一定相同。 5.基因分离规律在生产实践中的应用 A、在杂交育种工作中:

高中生物第三章遗传和染色体第6课时基因的分离定律学案苏教版

第6课时基因的分离定律(Ⅲ) 学习目标 1.掌握分离定律的解题方法及其概率计算。2.运用基因的分离定律解释或预测一些遗传现象。 |基础知识| 一、解决基因的分离定律问题的重要工具 1.“六把钥匙” 亲本基因型子代基因型及比例子代表现型及比例 ①AA×AA AA 全为显性 ②AA×Aa AA∶Aa=1∶1全为显性 ③AA×aa Aa 全为显性 ④Aa×Aa AA∶Aa∶aa=1∶2∶1显性∶隐性=3∶1_ ⑤Aa×aa Aa∶aa=1∶1显性∶隐性=1∶1 ⑥aa×aa aa 全为隐性 2. (1)乘法定理当两个事件互不影响,各自独立,那么这两个事件同时或相继出现的概率是它们各自出现时概率的乘积。 (2)加法定理当一个事件出现时,另一个事件就被排除,这样的事件叫做互斥事件。互斥事件出现的概率是它们各自概率之和。 二、基因的分离定律的应用 1.在育种实践中,可以应用基因的分离定律设计育种过程。 2.在医学实践中,对遗传病的基因型和发病概率做出科学的推断。 |自查自纠| (1)若亲本之一是显性纯合子,则子代均表现显性性状( ) (2)若子代出现隐性性状,则亲本一定均含有隐性基因( ) (3)杂合紫花豌豆自交,所得的紫花后代中杂合子占二分之一( ) (4)杂合子(Aa)连续自交,子代中纯合子概率逐渐增大( ) (5)人类多指患者的基因型不确定,而先天性聋哑的基因型确定( ) 答案(1)√(2)√(3)×(4)√(5)√

|图解图说| ★如果患病的双亲生出无病的孩子,即“有中生无”,则该病肯定是显性遗传病 ________________________________________________________________________ ________________________________________________________________________ ★如果正常的双亲生出患病的孩子,即“无中生有”,则该病一定是隐性遗传病 ________________________________________________________________________ ________________________________________________________________________ 如何区分抗锈病小麦与易感锈病小麦? 提示:给小麦接种锈菌,观察小麦是否出现锈病。 探究点一相关基因型、表现型的推断 【典例1】人类的单眼皮和双眼皮是由一对等位基因B和b决定的。某男孩的双亲都是双眼皮,而他却是单眼皮,分析回答: (1)父母的基因型分别是______、________。 (2)该男孩与一个父亲是单眼皮的双眼皮女孩结婚,后代的表现型可能是__________。 ◆解法展示 首先需确定显隐性:据“双眼皮×双眼皮→单眼皮”推知双眼皮是显性性状,单眼皮是隐性性状;然后逐小题解答。 (1)单眼皮男孩的基因型是bb,其中一个基因来自父方,一个基因来自母方,所以双亲都含有b基因;又因为双亲均表现双眼皮,必然均含有B基因,所以双亲基因型均是Bb。 (2)单眼皮父亲的基因型是bb,其中一个b基因一定传给其女儿,又双眼皮女孩必含有B基因,所以女孩的基因型是Bb。男孩的基因型是bb,女孩的基因型是Bb,根据“bb×Bb→Bb、bb”推知后代的表现型可能是双眼皮或单眼皮。 答案(1)Bb Bb (2)双眼皮或单眼皮

高中生物第三章第一节基因的分离定律课时作业2苏教版必修2

第一节基因的分离定律 【目标导航】 1.结合教材图解,概述测交实验的过程,说出基因的分离定律及其实质。2.结合教材资料,简述孟德尔获得成功的原因。 一、基因的分离定律 1.对分离现象解释的验证 (1)方法:测交,即让F1与隐性纯合子杂交。 (2)测交实验图解: (3)结论:测交后代分离比接近1∶1,符合预期的设想,从而证实F1是杂合子,产生A和a 两种配子,这两种配子的比例是1∶1,F1在形成配子时,成对的等位基因发生了分离。2.基因分离定律 当细胞进行减数分裂时,等位基因会随着同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。 3.基因型与表现型 (1)表现型:生物个体实际表现出来的性状即表现型。 (2)基因型:与表现型有关的基因组成即基因型。 (3)二者的关系:生物个体的表现型在很大程度上取决于生物个体的基因型,但也受到环境的影响。 4.纯合子与杂合子 (1)纯合子:基因组成相同的个体,如AA和aa。 (2)杂合子:基因组成不同的个体,如Aa。 二、孟德尔获得成功的原因 1.正确选择实验材料是成功的首要原因,选用豌豆做实验材料,其优点是: (1)闭花受粉,避免了外来花粉的干扰,自然状态下一般为纯种,保证杂交实验的准确性。 (2)具有稳定的、容易区分的相对性状,使获得的实验结果易于分析。 2.采用单因子到多因子的研究方法。

3.应用统计学方法分析处理实验结果。 4.科学地设计了实验程序。 判断正误 (1)受精作用中雌雄配子结合的机会均等,等位基因随配子遗传给子代。( ) (2)符合基因分离定律并不一定出现3∶1的性状分离比。( ) (3)孟德尔巧妙设计的测交方法只能用于检测F1的基因型。( ) (4)在生物的体细胞中,控制同一性状的等位基因成对存在,不相融合。( ) (5)分离定律发生在配子形成过程中。 ( ) (6)采用单因子到多因子的研究方法是孟德尔获得成功的重要原因。( ) 答案(1)√(2)√(3)×(4)√(5)√(6)√ 填空: 在“性状分离比的模拟”实验中: 1.两个小罐分别代表雌、雄生殖器官。 2.小球代表配子,红球代表含基因A的配子,绿球代表含基因a的配子。两种颜色小球的数目相等,代表雌雄个体各产生数目相等的两种配子。 一、“性状分离比的模拟”实验 1.实验原理 (1)有性杂交的亲本,在形成配子时,等位基因会发生分离。 (2)受精时雌雄配子随机结合成合子。 2.目的要求 (1)通过模拟实验理解基因的分离和随机结合与生物性状及其比例之间的关系。 (2)为理解基因的分离定律的实质打下一定的基础。 3.方法步骤 (1)在1号、2号两个小罐中放入红色玻璃球和绿色玻璃球各50个。 (2)摇动两个小罐,使小罐中的玻璃球充分混合。 (3)分别从两个小罐中随机抓取—个小球放在一起表示雌雄配子随机结合成的合子类型,记录小球的颜色;每次记录之后,将抓取的小球放回原来的小罐重复50~100次,然后统计结果。 (4)将所得的结果记录下来。 1.实验中,甲、乙两个小罐内的玻璃球数量都是50个,这符合自然界的实际情况吗? 答案不符合。自然界中,一般雄配子的数量远远多于雌配子的数量。

孟德尔基因分离定律的探究过程

孟德尔基因分离定律的探究过程 【摘要】遗传学是高中生物课的重中之重,遗传规律又是遗传学中的核心内容,学习遗传规律对高中学生来说就是重点理解孟德尔的豌豆杂交试验的探究过程,孟德尔通过豌豆的一对相对性状的杂交试验的统计观察提出问题,进行假设、演绎推理解决问题,最后设计验证,得出了基因分离定律。 【关键词】豌豆杂交实验假设解释验证定理 高中生物遗传学的遗传规律部分主要学习的是孟德尔遗传基本规律——基因分离定律和基因自由组合定律。孟德尔是通过豌豆的杂交试验的观察思考、分析、假设、推理、演绎得出了这两个定律。现在笔者就孟德尔探究探究基因分离定律的过程,结合现代遗传学进行整理,分析、予以再现。孟德尔是通过豌豆的一对相对性状(由一对遗传因子控制)的杂交试验的探究,提出了基因分离规律。 1 实验过程及提出问题 1.1 实验过程。 P♀×P♂(正交反交任意) 杂交方法:①P♀在开花前彻底去雄,但不能影响雌蕊,并套袋。②收受P♂的花粉。③人工授粉再套袋。 F1 实验结果①:观察统计F1的表现型及比例 自交方法:豌豆的自然授粉就是自交。 F2 实验结果②:观察统计F2的表现型及比例 1.2 观察分析实验提出问题:孟德尔多次选取了不同对的相对性状进行了豌豆的一对相对性状的杂交试验(每次只观察一对相对性状)发现结果①和结果②都一致,即结果①F1总是100%的表现为一对相对性状中的一种表现,(孟德尔将其定义为显性,没有表现出的另一性状定义为隐性)结果②:F2总是出现接近3:1的性状分离比例(3显性:1隐性)。 所以孟德尔认为这组实验结果不是偶然的,而是有一定的必然性,于是他提出了问题,豌豆的一对相对性状的杂交实验结果F1为什么总是100%的表现一种性状(显性)而F2为什么总是出现接近3:1的性状分离比例(3为显性:1隐性) 2 孟德尔自己提出理论假设,通过推理,解释以上提出的问题

高中生物第三章遗传和染色体第4课时基因的分离定律学案苏教版

第4课时基因的分离定律(Ⅰ) 学习目标 1.概述孟德尔1对相对性状的杂交实验过程。2.阐明孟德尔对分离现象的解释。3.通过性状分离比的模拟实验加深对分离现象解释的理解。 |基础知识| 一、1对相对性状杂交实验 1.实验材料——豌豆的特点 (1)豌豆是严格的自花受粉植物,在自然情况下一般都是纯种。 (2)豌豆具有多对差异明显的相对性状。 2.1对相对性状杂交实验 实验过程说明 P(亲本) 紫花×白花↓ F1(子一代) 紫花 ↓? F2(子二代) 紫花白花比例接近_3∶1(1)P具有相对性状 (2)F1全部表现显性性状 (3)F2出现性状分离现象,分离比为显性性状∶隐性性状≈3∶1 (4)实验结果与正交、反交无关 1.理论解释 (1)生物性状由遗传因子控制。 (2)遗传因子在体细胞中成对存在。F1中显性遗传因子(A)对隐性遗传因子(a)具有显性作用,且彼此保持独立。 (3)F1(Aa)产生数量相等的A型和a型花粉,数量相等的A型和a型卵细胞。 (4)F1自花传粉时,不同类型的两性配子间结合的概率相等,从而F2的遗传因子组合及比例是AA∶Aa∶aa=1∶2∶1,性状表现及比例是紫花:白花=3∶1。 2.遗传图解

雄配子 1/2A 1/2a 雌配子 1/2A 1/4AA紫花1/4Aa紫花 1/2a 1/4Aa紫花1/4aa白花 3. (1)模拟内容 用具或操作模拟对象或过程 1号罐、2号罐雌、雄生殖器官 罐中的彩球雌、雄配子 不同彩球的随机组合雌、雄配子的随机结合 (2) 小罐编号→分装彩球→抓取→记录→放回→重复→统计 (3)分析结果得出结论 ①彩球组合类型及数量比:AA∶Aa∶aa≈1∶2∶1。 ②彩球组合代表的显、隐性性状数量比:显性∶隐性≈3∶1。 |自查自纠| (1)豌豆一般都是纯种,原因是豌豆为严格的自花受粉植物( ) (2)欲实现紫花豌豆与白花豌豆的杂交,只需将二者间行种植即可( ) (3)若高茎豌豆与矮茎豌豆杂交,子一代只表现高茎性状,则高茎是显性性状,矮茎是隐性性状( ) (4)生物体能表现出来的性状就是显性性状( ) (5)杂种F1(Aa)中紫花因子A对白花a因子表现完全显性作用,从而杂种F1只表现出A 所控制的性状( ) (6)为了使得每次抓取时两种小球被抓的概率相同,抓取过的小球要放回小桶( ) 答案(1)√(2)×(3)√(4)×(5)√(6)√ |图解图说|

基因组步行法扩增3'及5'侧翼序列

一.原理 基因组步行技术是一种新发展的利用已知序列(cDNA或基因组DNA)从基因组中获得基因的上游(如启动子) 或下游序列的方法。 其原理如下:首先利用不同的具有平末端的 DNA 限制性内切酶消化基因组 DNA,然后将预先设计好的 DNA 接头连接在 DNA 的两端, 这样的一组两端带有接头的 DNA 片段就称为所谓的无载体的 DNA 文库;根据接头和目的基因的序列设计两组引物,以上述的DNA为模板,先以外侧的一组引物进行第一轮 TD-PCR ( touchdownPCR ) 扩增,然后以内侧的一组引物进行巢式 TD-PCR 扩增,扩增产物即为所需的DNA片段。在接头中,由于2条链中较短的一链的3’末端被 2NH2 封闭,使得引物 AP1 在第一次 PCR 之前没有结合位点,在 PCR 的第一循环过程中只能从 GSP1 延伸,没有 AP1 的延伸产物。而GSP1 的延伸产物产生了 AP1 的结合位点,在第二循环就开始从两端进行延伸反应。这样,就减少了非特异性扩增,从而提高了 PCR 的特异性.基因组步行由 2 轮 TD-PCR 反应组成。在 TD-PCR 的初始循环中,所采用的退火和延伸温度比引物的 Tm 值略高,在这种情况下引物退火的效率会下降,但是特异性将增加;另外,在极少数情况下接头的 2NH2 也会延伸,补平接头,这样也产生了 AP1 的结合位点,从而增加了非特异性扩增,但在高温下,接头的自我退火比引物与接头退火的效率高,就提高了针对于 AP1 的 PCR 抑制效应,减少非特异性扩增。在随后的循环中,退火和延伸温度比 Tm 值略低,有利于特异性产物的指数增长。基因组步行技术主要应用于一些只知部分 cDNA 序列的基因的启动子或其他上游调控序列的快速克隆,该技术也可用于确定内元/外元的连接以及从任何序列标签位点(Sequence2tagged site, STS) 或 EST 两端进行扩增获得相应的序列。尽管一次步行获得的片段长度短于 6 kb,但可通过多次反应获得更长的片段。该方法对于填补基因组中的一些间隙,特别是当这些缺失的克隆通过常规的筛选文库很难得到时非常有 一、高质量基因组DNA 的提取 1 材料 实验鱼,尾静脉取血100 μl(含抗凝剂) 2 试剂 QIAGEN Genomic 20/G;Tip Holders;Buffer C1;Buffer QBT;Buffer QF 抗凝剂 : 0.48%柠檬酸,1.32%柠檬酸钠,1.47%葡萄糖 3. 方法 1)样品的处理和裂解 (1) 将100μl鱼血用PBS稀释至1ml (2) 加入1倍体积冰冷的Buffer C1,3倍体积(3ml)的ddH O 。 2 (3) 翻转数次至悬冷液成半透明 (4) 冰浴10min。 (5) 4℃,1300g离心15min,弃上清液。 (6) 加入250μl冰冷的Buffer C1,750μl冰冷的ddH2O。 (7) 轻弹,溶解沉淀。 (8) 4℃,1300g离心15min,弃上清液(如沉淀不是白色,重复洗涤步骤)。 (9) 加入1ml Buffer G2,最大速漩涡10-30s,充分重悬核酸沉淀物(时间要控

2020高考生物一轮复习第15讲基因的分离定律培优学案

【2019最新】精选高考生物一轮复习第15讲基因的分离定律培优学 案 [考纲明细] 1.孟德尔遗传实验的科学方法(Ⅱ) 2.基因的分离定律(Ⅱ) 板块一知识·自主梳理 一、遗传的基本概念 1.性状类 (1)相对性状:同种生物的同一种性状的不同表现类型。 (2)显性性状:具有一对相对性状的两纯合亲本杂交,F1表现出来的性状叫做显 性性状。 (3)隐性性状:具有一对相对性状的两纯合亲本杂交,F1未表现出来的性状叫做 隐性性状。 (4)性状分离:杂种后代中同时出现显性性状和隐性性状的现象。 2.基因类(1)相同基因:同源染色体相同位置上控制同一性状的基因。如图中A和A就为 相同基因。 (2)等位基因:同源染色体的相同位置上,控制着相对性状的基因。如图中B和 b、C和 c、D和d就是等位基因。 (3)非等位基因:非等位基因有三种,一种是位于非同源染色体上的基因,符合 自由组合定律,如图中A和D等;一种是位于一对同源染色体上的非等位基因,如图中C和d等;还有一种是位于一条染色体上的非等位基因,如图中c和d等。 3.个体类(1)纯合子:遗传因子组成相同的个体。纯合子能够稳定遗传,自交后代不会发 生性状分离。 (2)杂合子:遗传因子组成不同的个体。杂合子不能稳定遗传,自交后代会发生 性状分离。 (3)基因型:与表现型有关的基因组成。基因型是决定性状表现的内在因素。 (4)表现型:生物个体表现出来的性状。表现型是基因型的表现形式,是基因型 和环境共同作用的结果。 二、孟德尔的科学研究方法 1.豌豆作为实验材料的优点 (1)豌豆是自花传粉、闭花受粉植物,在自然状态下一般是纯种。

(2)豌豆具有许多易于区分的相对性状。 (3)豌豆花大,便于进行异花传粉操作。 2.豌豆杂交实验的过程:去雄→套袋→人工传粉→再套袋。 3.假说—演绎法:提出问题→提出假说→演绎推理→得出结论。 三、一对相对性状的杂交实验——发现问题 1.实验过程及现象 2.提出问题 由F1、F2的现象分析,提出了是什么原因导致遗传性状在杂种后代中按一定的 比例分离等问题。 四、对分离现象的解释——提出假说 五、对分离现象解释的验证——演绎推理 1.演绎推理过程 (1)方法:测交实验,即让F1与隐性纯合子杂交。 (2)画出测交实验的遗传图解: 预期:测交后代高茎和矮茎的比例为1∶1。 2.测交实验结果:测交后代的高茎和矮茎比接近1∶1。3.结论:实验数据与理论分析相符,证明对分离现象的理论解释是正确的。 六、分离定律——得出结论 1.内容 (1)研究对象:控制同一性状的遗传因子。 (2)时间:形成配子时。 (3)行为:成对的遗传因子发生分离。 (4)结果:分离后的遗传因子分别进入不同配子中,随配子遗传给后代。 2.实质:等位基因随同源染色体的分开而分离。 3.适用范围 (1)一对相对性状的遗传。 (2)细胞核内染色体上的基因。 (3)进行有性生殖的真核生物。 七、性状分离比的模拟实验1.实验原理:甲、乙两个小桶分别代表雌雄生殖器官,甲、乙内的彩球分别代表雌雄配子,用不同彩球随机组合模拟生物在生殖过程中雌雄配子的随机结合。

全基因组扩增技术

全基因组扩增(whole gemome amplification,WGA)是一组对全部基因组序列进行非选择性扩增 的技术,其目的是在没有序列倾向性的前提下大幅度增加DNA的总量。其基本原理为:采用 的多重置换扩增(MDA)技术,能对基因组DNA进行稳定的扩增。利用随机六碱基引物在多 个位点与模板DNA退火,接下来在高扩增效率和保真性的Phi29 DNA聚合酶在DNA的多个位 点同时起始复制,它沿着DNA模板合成DNA,同时取代模板的互补链。被置换的互补链又成为 新的模板来进行扩增,因此最终我们可以获得大量高分子量的DNA。 全基因扩增中使用独特的Phi 29 DNA聚合酶,该酶对于模板有很强的模板结合能力,能连续扩增100Kb的DNA模板而不从模板上解离。同时这种酶具有3’—5’外切酶活性,可以保证扩增的高保真性。目前市场上普遍采用Qiagen公司的Repli-g Mini Kit 系列全基因组试剂盒。本试剂盒的开发对国内用于全基因扩增领域有着广泛的应用前景。 可以从少量样本中稳定扩增全基因组DNA。该试剂盒的开发过程包括分离和扩增DNA的试剂,适用的样本广泛,包括已纯化的基因组DNA、全血、组织培养细胞、显微切割得到的细胞、速冻的组织切片、血浆血清中的细胞、口腔细胞、血斑。具有以下特点: 1.产物应用途径广阔 PCR(包括多重PCR、长片段PCR以及定量PCR)、克隆、文库构建、单倍型确定、测序、基 因芯片、遗传分析(片段差异、微卫星差异、单碱基差异、SNP、STR等)。 2、高产量 10ng基因组DNA经扩增后可产生〉15ug(20ul反应体系)的DNA反应产物,扩增倍数可达上 万倍。 3、扩增产物长度以及覆盖率有保证 这是我们公司全基因组扩增技术(多重置换扩增技术),这不是一个PCR过程。目前这个 技术比较流行,之前的技术已经有些过时。我们试剂盒里的BUFFER已经包含了引物,客 户无需另外购买。

人教版高中生物必修二[知识点整理及重点题型梳理]基因的分离定律(一)孟德尔的杂交实验

。 。 ( 精品文档 用心整理 人教版高中生物必修二 知识点梳理 重点题型(常考知识点 )巩固练习 基因的分离定律(一)孟德尔的杂交实验 【学习目标】 1、(重点)掌握孟德尔杂交实验成功的原因。 2、理解相关概念:自交、杂交、父本、母本、正交、反交、性状、相对性状、显性性状、隐性性状、性状分离、 遗传因子等。 3、(难点)分析孟德尔遗传实验的科学方法。 4、(难点)对分离现象的解释。 【要点梳理】 要点一:孟德尔遗传实验的科学方法 1、与豌豆有关的基础知识 (1)两性花和单性花 同一朵花中既有雄蕊又有雌蕊,这样的花称为两性花。一朵花中只有雄蕊或者只有雌蕊,这样的花成为单 性花,玉米、黄瓜的花都是单性花。 (2)自花传粉和异花传粉 两性花的花粉,落到同一朵花的雌蕊柱头上的过程叫做自花传粉,如豌豆。一朵花的花粉传到同一植株的 另一朵花的柱头上,或一朵花的花粉传到不同植株的另一朵花的柱头上叫做异花传粉。 (3)闭花受粉 豌豆花的雄蕊和雌蕊都被花瓣紧紧地包裹着,在花瓣展开之前,雄蕊花药中的花粉就传到了雌蕊柱头上, 这种受粉方式称为闭花受粉。 (4)雄蕊和雌蕊 雄蕊包括花药和花丝两部分,花药中有花粉。花药成熟后,花粉散发出来。雌蕊由柱头、花柱、子房三部 分组成。子房发育成果实,子房中的胚珠发育成种子,胚珠中的受精卵发育成胚,受精的极核发育成胚乳。 (5)父本和母本 不同植株的花进行异花传粉时,供应花粉的植株叫做父本,接收花粉的植株叫做母本。 (6)去雄 将作为母本的植株在杂交前先去掉为成熟花的全部雄蕊,叫做去雄。 (7)人工异花传粉 将母本去雄后,套上纸袋,待花成熟时,再采集另一植株的花粉,撒到已去雄的雌蕊柱头上,再套上纸袋。 2、豌豆做遗传实验材料的优点 【基因的分离定律(一)孟德尔的杂交实验 364174 豌豆做遗传实验材料的优点 】 (1)豌豆是闭花受粉、自花传粉的两性花。 自然情况下豌豆是纯种。 (2)豌豆花大,便于去雄和实施人工异花授粉(杂交) (3)豌豆成熟后籽粒都留在豆荚中,便于观察和计数(统计) (4)豌豆具有多个稳定的、易于区分的性状。 相对性状)

孟德尔的分离定律学案

【○学】 【学习内容】 孟德尔的豌豆杂交实验 【学法指导】 1.先通读教材,明确孟德尔的一对相对性状的杂交实验及分离定律的主要内容。再完成教材助读设置的问题,依据发现的问题,最后读教材或查资料,解决问题。 2.完成时间45分钟 【知识链接】 一、必须掌握的基本概念: 1 性状:生物体所表现出的形态特征和生理特性的总称。例如豌豆的高茎,矮茎;人的色觉正常,色盲。 2 相对性状:一种生物的__________不同表现类型。例如:_____________________ 3 显隐性性状:具有相对性状的两纯种亲本杂交,________表现出来的性状叫显性性状;_______未表现出来的性状叫隐性性状。 4 性状分离:杂交后代中同时出现_______和_______的现象。 5 性状分离比:1)杂交实验中,F2中出现___ :___ = ___ :___ 2)测交实验中,测交后代中出现___ :___ = ___ :___ 6 显性基因:又叫显性遗传因子,控制_________的基因,用大写字母(如D)表示。 7 隐性基因:又叫隐性遗传因子,控制_________的基因,用小写字母(如d)表示。 8 等位基因:位于一对同源染色体的相同位置上,控制一对相对性状的两种基因。如D与d是一对等 位基因。9 基因型:与表现型有关的基因组成,如Dd 10 表现型:生物个体表现出来的性状。如高茎,矮茎 11 纯合子:遗传因子组成_____的个体。如____ _____ 12 杂合子:遗传因子组成_____的个体。如_____ 13 杂交:基因型不同的生物个体间相互交配。如高茎豌豆与矮茎豌豆进行交配 14 自交:两个基因型相同的个体相交 15 测交:子一代与隐形纯合子杂交,从而测定子一代的基因组成。 16 正交与反交: 相对而言,正交中的父本和母本分别是反交中的母本和父本。 二、必须掌握的符号 教材助读: 一、一对相对性状的杂交实验 1、选用豌豆作为实验材料的优点 ⑴豌豆是严格_____________植物,而且是__________受粉,自然状态下不受外来花粉的干扰。 ⑵豌豆的品种间具有易于区分的__________,且能稳定地遗传给后代。 3、实验步骤:_________→套袋→传粉→____________。 4、实验结果:高茎豌豆在杂交中无论是做母本(正交)还是做父本(反交),F1都是高茎,F2出现_______________________的性状分离比。 二、对分离现象的解释 1、生物的性状是由___________________决定的。 2、体细胞中遗传因子是________存在。 3、形成配子时,______________________彼此分离,分别进 入_________的配子中。 4、受精时,雌雄配子的结合是____________。 5、遗传图解(见右图):即F2遗传因子组成及比例为: ______________________________, F2性状表现及比例为:________________________________。

生物《基因的分离定律》教案(苏教版必修)

第一节基因的分离定律 【本讲教育信息】 一. 教学内容: 第三章遗传和染色体 第一节基因的分离定律(一) 二. 学习内容: 基因的分离定律 孟德尔遗传实验的科学方法 基因的分离定律的应用 环境影响基因的表达 三. 学习目标 举例说明基因与性状的关系 阐明基因的分离定律 分析孟德尔遗传实验的科学方法 四. 学习重点: 深刻领会分离定律的实质。通过具体事例的遗传分析,学会运用遗传图解的方法分析与基因分离定律相关的遗传性状问题 五. 学习难点:分离定律在杂交育种和医学实践等方面的应用 六. 学习过程 1. 基因的分离定律 遗传:“种瓜得瓜,种豆得豆”,这种子代与亲代个体之间相似的现象称为遗传。亲代通过遗传物质把生物信息传递给子代,子代按照遗传信息生长、发育,因而子代总是具有与亲代相同或相似的性状。 变异:亲代与子代之间,以及子代的不同个体之间会出现差异,这种现象称为变异。生物的各种性状都具有一定的遗传基础,是遗传与环境相互作用的结果。 (1)1对相对性状的遗传实验 豌豆是严格自花传粉的植物,自然状态下的豌豆都是纯种;豌豆具有多对容易区分的相对性状。孟德尔选择豌豆为实验材料作1对相对性状的杂交实验 ① 实验过程 ② 豌豆的7对相对性状的杂交实验

③实验显示具有一对相对性状的亲本杂交,子一代(F1)都表现显性亲本的性状,F1自交,子二代(F2)都发生性状分离,分离比等于3︰1 ④ 相关术语 杂交:指两个遗传结构不同的个体之间的交配,如紫花豌豆与白花豌豆的交配属于杂交。 相对性状:指同一性状的不同表现类型。如豌豆花的紫花、白花;高茎、矮茎等。 显性性状:两个纯种亲本杂交,F1显现出来的那个亲本的性状叫显性性状,如紫花性状隐性性状:纯种亲本杂交,F1没有显现出来的那个亲本的性状叫隐性性状,如白花性状性状分离:在杂种后代中出现不同亲本性状的现象,称为性状分离。如紫花性状的F1自交,F2出现紫花和白花的现象是性状分离。 孟德尔认真地研究了7组实验数据,发现F2中表现显性性状的植株与表现隐性性状的植株相比,比值总是基本接近于3:1。 ⑤ 解释: Ⅰ 遗传因子及表示方法在卵细胞和花粉细胞中存在着控制性状的遗传因子。用大写字母代表显性因子(如A代表紫花因子),用小写字母代表隐性因子(如a代表白花因子)。紫花亲本产生A型花粉和A型卵细胞,白花亲本产生a型花粉和a型卵细胞。 Ⅱ 遗传因子在亲本体细胞中成对存在并保持独立状态紫花亲本(AA)和白花亲本(aa)杂交产生的F1,含有1对遗传因子(Aa),由于A为显性遗传因子,a为隐性遗传因子,所以F1表现出由显性遗传因子控制的紫花性状。又由于杂种F1体细胞内的遗传因子A 和a各自独立,互不混杂,彼此保持独立的状态。 Ⅲ F l可以产生数量相等的A型和a型花粉,以及数量相等的A型和a型卵细胞。 Ⅳ 在F1自交时,两种雌配子和两种雄配子之间结合的概率相等,产生3种遗传组合

相关主题