搜档网
当前位置:搜档网 › 有限元基础题答案

有限元基础题答案

有限元基础题答案
有限元基础题答案

1.像床单那样薄、那样宽的板用梁单元来模型化×

通常用板单元或壳单元来作模型化

2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元○

3.一般自由度多的模型分析成本高○

4.使用尽可能多种类单元的模型是一个好的模型×

单元种类的多样性与模型的好坏没有关系

5.杆单元是壳单元的一种×

6.不能把梁单元、壳单元和实体单元混合在一起作成模型×

两者混在一起可做模型化处理

7.四边形的壳单元尽可能作成接近正方形形状的单元○

8.因为实体单元是3维单元,所以即使有严重的扭曲也没关系×

9.将作用有垂直载荷的悬臂梁用多个杆单元作成×

杆单元因为不传递弯曲不适用于弯曲分析

10.将作用有垂直载荷的两端自由支持的梁用杆单元来模型化×

11.三角形单元和四边形单元不能混在一起使用×

12.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案×

13.同样形状的话,使用三角形单元和使用四边形单元解是相同的×

14.边长为10cm和边长为100cm 的正方形的板,后者的单元数如果是前者的10倍的话,才行×

划分的数量不是依形状的大小

15.为了校核连续的相同管子剖面内的应力状态,要使用平面应力单元×

这种情况使用平面应变单元??

16.对热应力问题,1维单元也好2维单元也好,所求的解都搞不清×?

17.对于热传导分析必须输入线膨胀系数×

对于热传导分析必需的是热传导率

18.热应力随结构的约束状态而变化○

19.FEM分析变形越大应力就越高×??

20.在线性分析中,即使变形变大,如果可以将这部分单元划分得多一些的话,也会保证解的适当正确×

线性分析是以微小变形的范围内为对象的

21.为了评价应力集中,在网格划分时应该把整个作成一样的单元尺寸×

22.板厚并不一致的情况下,一定要用到实体单元×

即使是板单元也可以表现厚度的变化

23.单元数相同的话,1阶单元、2阶单元的解都一样×

24.为了忠实地尽可能表现结构的形状,必须严格按装配顺序来做模型化处理×

模型化的顺序与分析结果无关

25.节点的位置依赖于形态,而并不依赖于载荷的位置×

为给出节点载荷必须要在载荷点设置节点

26.一般应力变化大的地方单元尺寸要划的小才好○

27.仅用TETRA单元的模型与仅用HEXA单元的模型相比,后者的精度要好○

28.相接的单元尺寸大小不要变化太厉害○

29.在进行特征值分析时,必须输入质量○

30.进行热应力分析时,必须输入线膨胀系数○ (比较17题)

31.壳单元表面的应力因为与表面内的应力相比精度会降低所以必须注意×

在单元的表面精度是不会变化的???

32.象船和火箭那样的结构因为漂浮在水(空)中而没被固定住,所以,FEM分析不可以使用×

33.约束条件用全固定或许加上铰固定就能表现完全×

也有半固定(例如用弹簧约束)???

34.一般在特征值分析中一定是采用节点编号连续来编的方法,所得精度要高×

连续编号精度并不觉得提高???

35.用固有振动分析求应力,应力高的部分必须要加强×

用固有振动来求的值物理量不同???

36.屈曲模态并不依赖于约束条件×

37.自由度有位移自由度和转角自由度○(3个位移成分和3个转角成分)

38.一般在FEM中使用的模型称为刚体模型×

39.对比铁更硬的部分所做模型化处理的单元称为刚体单元×

40.刚体单元和梁单元和板单元组合在一起进行分析是不可以的×

41.一般网格划分过度的话,很费分析时间○

42.对啤酒罐的压缩强度要用固有振动分析来评价×(用屈曲分析)???

43.表示自由度的坐标系有局部坐标系和整体坐标系○

44.应力集中的部分是多个载荷所加的部位×

应力与周围部分相比要高的部分称为应力集中的部分

45.在加上热载的情况下,即使是同一个模型,根据约束条件,所发生的应力有很大的不同○ (约束不同应力不同)

46.用有限元法可以对正在动的(移动)物体的结构进行分析○

47.对膜(membran)单元也可用面压载荷×(壳)

48.可对膜(membran)单元可以用集中载荷○ (47、48)

49.施加强迫位移的分析要进行静力分析○????

50.一般所给出的载荷的总和与反力的总和相一致○

51.即使将不同的局部坐标系下定义好的节点连起来也可定义单元○

52.所谓自由度是直接翻译degrees of freedom的○

53.所谓实体单元意味着刚体单元的集合×(刚体只有自由度,没有变形)

54.杨氏率是纵弹性系数(模量)○

55.共鸣现象与固有频率有关○

56.杨氏率是评价材龄的基值×

杨氏率是表示材料的坚硬程度的常数不是表示年轻与否

57.即使是同一种材料,梁单元和板单元也要输入不同的材料性质数值×

如果相同的材料,即使单元的种类不同,也要用相同的材料

58.泊松比是在纵向加压时发生在纵向的应变和横向的应变的比率○

59.用弹性材料可表现塑性化现象×

进行塑性分析必须输入塑性材料的特性

60.一般线膨胀系数是作为材料常数之一输入○(material properties)

61.一般用FEM模型化时,大的结构求得的热变形小×

62.约束条件全都没被定义的结构不能分析×

63.X、Y、Z全部方向上的位移都是1时称为刚体变形×

64.分析结果是对称的模型,使用对称条件可以用较少的单元来进行分析○

65.所谓铰约束条件是约束位移自由度而让转角自由度自由○

66.强迫位移是一种约束条件○

67.即使所有的自由度都约束也会发生变形×(实体内每个节点的所有自由度)

68.对于设置了约束的自由度即使输入载荷也发生位移○

69.有限单元分析约束条件尽量少则精度好×(静力问题不能没约束还错)

70.所谓约束就是消去自由度○

71.所谓全约束只要将位移自由度约束住×

72.壳单元与实体单元可约束的自由度不同○(壳作面分析)

73.线性分析将同样大的载荷加在反向产生位移的绝对值不变○(前提线性分析)

74.由分析所得的最大应力受网格划分的影响○

75.载荷和应力表示同一件东西×

76.主应力并不依赖于基本坐标系○

77.在应力分析中,应力小的部位单元尺寸要小,大的部位单元尺寸要大来进行模型化处理×

78.实特征值分析是一种求最大应力的手段×(求固有频率)

79.具有切口附近的应力集中用FEM不能严密地计算○(不是可以用裂缝单元吗)

80.1阶单元是假定单元内的应力都一样的单元×(位移单元一阶插值)

81.表现材料的弹性界限是所谓的屈服应力○

82.在屈服曲面内材料表现为弹性行为○(仍视为屈服界限内)

83.位移能用6个矢量成分来表示○

84.转角是一种位移○(广义位移)

85.载荷点的位移通常最大×

86.线性应力分析也可以得到极大的变形×(位移为一阶插值函数,变形为位移的导数,变形的极大值点是位移的二阶导数值为零的拐点,线性应力无拐点)

87.与材料无关的相同变形量产生相同的应力×(材料特性)

88.给出同一载荷杨氏率越大则变形也越大×(越小)

89.对于静力分析质量是不可缺少的数据×(涉及到重力时才需要)

90.实特征值分析中必须定义集中载荷或分布载荷×(固有振动分析没必要的)

91.屈曲分析和固有振动分析是类似的特征值问题○(还是弄不懂)

92.使用同一模型时,一般特征值分析要比线弹性分析花时间○

93.一般求特征值分析所求的模态数多也好少也好,分析时间是一样的×

一般求的模态数增加,则分析时间变长??

94.在静力分析中,仅施加左右方向的载荷时,不约束上下方向也可以×

必须约束住不至于刚体运动(转动)

95.卡车通过时,玻璃窗会别别地振动,这是与玻璃的固有频率有关○

96.FEM也被用在医学上○

97.有限元法、有限体积法、有限差分法、边界元法这中间FEM是有限差分法×

98.有限元法基本的是求解联立方程式○

99.FEM理论1950年前开始就有了○

100.考虑阻尼的特征值问题成了复特征值问题○

第1章引言

1.简要论述求解工程问题的一般方法和步骤;

图1-1 工程问题的一般求解步骤

2.简要论述有限元方法求解问题的一般步骤

选择单元、划分网格、设置求解参数、求解

3.说明ANSYS中关于单位制的使用问题

第2章弹性力学问题有限元分析

4.出一道由单刚组装总刚的问题

5.为什么位移有限元得到的应力结果的精度低于位移结果?在当前计算结果的基础上如何进一步提高应力结果的精度?

有限元分析以有限单元数模拟实体,其自由度小于真实实体自由度,因而位移结果较小。通过细分网格可以提高位移精度。

6.弹性力学平面问题包括平面应力和平面应变两类,举例说明;

平面应力——等厚薄板受与厚度方向垂直的外力作用

平面应变——水坝或挡土墙受与长度方向垂直的外力作用

7.平面问题三角常应变有限元中形函数之和为1;

8.什么是命令流文件?编写命令流文件的方法有哪些?如何调试你编写的命令流文件?结构分析时采用命令流文件的方式有哪些好处?

第3章单元分析

9.有限元解的收敛准则是什么?进行简单的解释。

完备性要求:

协调性要求:

10.以下几条曲线,哪条对应的计算过程是收敛的?

1、2、均收敛,1较快收敛至真实值,2收敛速度较慢,3收敛至接近于真实值的一个误差值,4非单调收敛至真实值,5发散。

11.常见力学问题中,哪些属于C0问题?哪些属于C1问题?二者有什么不同?见题9

12.为什么ANSYS等商用软件中只提供最高二阶的单元,而没有更高阶的单元?

13.Serendipity单元和Lagrange矩形单元相比,其不同点在哪里?有什么优点和

缺点?

14.提高有限元计算精度的三种方法是什么?进行简要的阐述。

15. 等参变换中的Jacob 矩阵有什么物理意义?其行列式又有什么几何意义? 16. 什么是完全积分、减缩积分和选择积分?

17. 什么情况下会出现剪切自锁问题?如何解决这个问题?

18. 什么情况下会出现体积自锁问题?如何解决这个问题?

19. 为什么有时候需要采用减缩积分?减缩积分可能带来什么问题?如何解决

这个问题?

第4章 桁架结构有限元分析

20. 给定一个微分方程,如何建立其等效积分形式和等效积分弱形式?二者区别

在哪里?为什么后者在数值分析中得到更多的应用?

00()()()0()0,()()()()()0()()l l l L L l du x d EA

dx f x qA dx

du F u x E E dx A du x d EA

dx w x f x dx w x qA dx dx

du x EA w x dx σε=

+= = ====+=-??杆单元有限元求解平衡方程:

给出两节点杆单元受均布轴向载荷微分方程:边界条件:弱形式:不要求每点函数值为零,在指定域内的带权积分为零

()进一步弱化:场函数连续性要求由二阶连续降为一阶连续000()()()0()0()()()()()0()=()()()()()()0

Glerki L L l L L l L L du x dw x EA dx w x qAdx w x dx dx

dw x du x EA dx w x F w x qAdx w x dx dx

w x u x dw x dw x EA dx w x F w x qAdx w x dx dx += ==+ ==+ =??????代入边界条件:(以下部分与此题无关)刚体求解时,当取时

刚度矩阵为对称阵,传说中的n 加权残值法

21. 不同的加权余量法的区别在哪里?什么是加权余量法的伽辽金格式?

22. 自然边界条件和强制边界条件的区别是什么?为何这样命名?举例说明在

应力分析和温度场分析时自然边界条件和强制边界条件分别是什么? 23. 为什么基于最小势能原理的有限元解是下限解,即总体位移和真实值相比偏小?

24. 会手工计算简单的一维杆件结构,如:

已知p 、a 、b 、EA ,用有限元计算两端反力及杆件应力:

第5章梁结构有限元分析

25.梁问题的控制方程和边界条件是什么?

26.了解用最小势能原理或者Rayleigh-Ritz方法求解梁问题的一般步骤

27.梁单元是哪种类型的单元,C0还是C1?为什么?

28.建立梁单元的一般过程

29.什么是结构单元?什么是实体单元?举例说明?在实际使用中如何根据实

际情况合理选择单元类型?

第6章板壳结构有限元分析

30.板问题的控制方程和边界条件

31.板问题的近似求解方法

32.厚板和薄板的区别是什么?

33.什么时候该选择板壳单元而不是平面单元?二者有什么区别

第7章结构动力学问题有限元分析第8章特征值和稳定性问题有限元分析

34.特征值分析中的一致质量阵和集中质量阵有什么区别?

35.如何在ANSYS中实施特征值分析和稳定性分析?

第9章热分析及热应力问题有限元分析

36.温度场分析的控制方程和边界条件如何给定?

37.是否可同时在边界上给定温度和热流?

38.建立温度场分析有限元格式的一般步骤是什么?

39.考虑热应力的结构分析和不考虑热应力时主要区别在哪里?

40.热力耦合分析时强耦合和弱耦合分别是什么意思?如何实施?

41.

有限元法复习题

1、有限元法是近似求解(连续)场问题的数值方法。 2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(节点)相连。 3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。 4、以(节点位移)为基本未知量的求解方法称为位移量。 5、以(节点力)为基本未知量的求解方法称为力法。 7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。 8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。 9、进行直梁有限元分析,节点位移有(转角)、(挠度)。 10、平面刚架有限元分析,节点位移有(转角)、(挠度)、(???)。 11、在弹性和小变形下,节点力和节点位移关系是()。 12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。 13、弹性力学平面问题方程个数有(8),未知数(8)个。 15h、几何方程是研究(应变)和(位移)关系的方程。 16、物理方程描述(应力)和(应变)关系的方程。 17、平衡方程反映(应力)和(位移)关系的方程。 18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。

19、形函数在单元节点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一节点上,三个形函数之和为(1)。 20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。 21、节点编号时,同一单元相邻节点的(编号)尽量小。 25、单元刚度矩阵描述了(节点力)和(节点位移)之间的关系。矩形单元边界上位移是(线性)变化的。 从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中( C )。 力法 B、位移法 C、应变法 D、混合法 下面对有限元法特点的叙述中,哪种说法是错误的( D )。可以模拟各种几何形状负责的结构,得出其近似值。 解题步骤可以系统化,标准化。 容易处理非均匀连续介质,可以求解非线性问题。 需要适用于整个结构的插值函数。 几何方程研究的是( A )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 物理方研究的是( D )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 平衡方程研究的是( C )之间关系的方程式。

西工大-有限元试题(附答案)

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3.对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别是多大 4.下图所示,若单元是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽是多大按一右一左重新编号(即6变成3等)后,重复以上运算。

5.设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出 杆端力F 1,F 2 与杆端位移 2 1 ,u u之间的关系式,并求出杆件的单元刚度矩阵)(] [e k 6.设阶梯形杆件由两个等截面杆件○1与○2所组成,试写出三个结点1、2、3的 结点轴向力F 1,F 2 ,F 3 与结点轴向位移 3 2 1 , ,u u u之间的整体刚度矩阵[K]。 7.在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1 =P,求各结点的轴向位移和各杆的轴力。

8. 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x ,y 为总体坐标系,x 轴与x 轴的夹角为θ。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k 9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度 cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K]。

10.设上题中的桁架的支承情况和载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的力。 11.进行结点编号时,如果把所有固定端处的结点编在最后,那么在引入边界条件时是否会更简便些 12.针对下图所示的3结点三角形单元,同一网格的两种不同的编号方式,单元的带宽分别是多大

重庆大学研究生有限元复习题及答案(2013)

1.结点的位置依赖于形态,而并不依赖于载荷的位置(×) 2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元。√ 3.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×) 4.用有限元法不可以对运动的物体的结构进行静力分析(×) 5.一般应力变化大的地方单元尺寸要划的小才好(√) 6.四结点四边形等参单元的位移插值函数是坐标x、y的一次函数√ 7.在三角形单元中其面积坐标的值与三结点三角形单元的结点形函数值相等。√ 8.等参单元中Jacobi行列式的值不能等于零。√ 9.四边形单元的Jacobi行列式是常数。× 10.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。√ 11.有限元位移模式中,广义坐标的个数应与单元结点自由度数相等√ 12.为了保证有限单元法解答的收敛性,位移函数应具备的条件是位移函数必须能反映单元的刚体位移和常量应变以及尽可能反映单元间的位移连续性。√ 13.在平面三结点三角形单元中,位移、应变和应力具有位移呈线形变化,应力和应变为常量特征。√ 1.梁单元和杆单元的区别?(自己分析:自由度不同)杆单元只能承受拉压荷载,梁单元则可以承受拉压弯扭荷载。具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承担的,通常用于网架、桁架的分析;而梁单元则基本上适用于各种情况(除了楼板之类),且经过适当的处理(如释放自由度、耦合等),梁单元也可以当作杆单元使用。 2.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。 3.有限单元法的收敛性准则?完备性要求,协调性要求。位移模式要满足以下三个条件包含单元的刚体位移。当结点位移由体位移引起时,弹性体内不会产生应变。包含单元的常应变。与位置坐标无关的应变。位移模式在单元内要连续,在相邻单元之间的位移必须协调。当选择多项式来构成位移模式时,单元的连续性总得到满足,单元的协调性就是要求单元之间既不会出现开裂也不会出现重叠的现象。。 4.任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题?轴对称问题?空

有限元试题及答案

有限元试题及答案

一判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内; 后者受力特点是:垂直于板面的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量:σx,σy,τxy ,三个独立的应变分量:εx,εy,γxy,但对应的弹性体几何形状前者为薄板,后者为长柱体。3.位移模式需反映刚体位移,反映常变形,满足单元边界上位移连续。 4.单元刚度矩阵的特点有:对称性,奇异性,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为二维问题处理。6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是节点位移,单元应力可由它求得,其计算公式为。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u,v,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

《有限元基础教程》_【MATLAB算例】3.3.7(2)__三梁平面框架结构的有限元分析(Beam2D2Node)

【MA TLAB 算例】3.3.7(2) 三梁平面框架结构的有限元分析 (Beam2D2Node) 如图3-19所示的框架结构,其顶端受均布力作用,结构中各个 截面的参数都为:113.010Pa E =?,746.510I m -=?,426.810A m -=?。试基 于MA TLAB 平台求解该结构的节点位移以及支反力。 图3-19 框架结构受一均布力作用 解答:对该问题进行有限元分析的过程如下。 (1) 结构的离散化与编号 将该结构离散为3个单元,节点位移及单元编号如图3-20所示, 有关节点和单元的信息见表3-5。 (a ) 节点位移及单元编号

(b)等效在节点上的外力 图3-20 单元划分、节点位移及节点上的外载 (2)各个单元的描述 首先在MA TLAB环境下,输入弹性模量E、横截面积A、惯性矩I和长度L,然后针对单元1,单元2和单元3,分别二次调用函数Beam2D2Node_ElementStiffness,就可以得到单元的刚度矩阵k1(6×6)和k2(6×6),且单元2和单元3的刚度矩阵相同。 >> E=3E11; >> I=6.5E-7; >> A=6.8E-4; >> L1=1.44; >> L2=0.96; >> k1=Beam2D2Node_Stiffness(E,I,A,L1); >> k2=Beam2D2Node_Stiffness(E,I,A,L2); (3)建立整体刚度方程 将单元2和单元3的刚度矩阵转换成整体坐标下的形式。由于该结构共有4个节点,则总共的自由度数为12,因此,结构总的刚度矩阵为KK(12×12),对KK清零,然后两次调用函数Beam2D2Node_Assemble进行刚度矩阵的组装。 >> T=[0,1,0,0,0,0;-1,0,0,0,0,0;0,0,1,0,0,0;0,0,0,0,1,0;0,0,0,-1,0,0;0,0,0,0,0,1] ; >> k3=T'*k2*T; >> KK=zeros(12,12); >> KK=Beam2D2Node_Assemble(KK,k1,1,2);

西工大有限元试题附答案68872

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别就是多大? 4、下图所示,若单元就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6、设阶梯形杆件由两个等截面杆件\o \a c(○,1)与错误!所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P,求各结点的轴向位移与各杆的轴力。 8、 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为 。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k

9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K ] 。 10. 设上题中的桁架的支承情况与载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

计算力学复习题答案

计算力学试题答案 1. 有限单元法和经典Ritz 法的主要区别是什么? 答:经典Ritz 法是在整个区域内假设未知函数,适用于边界几何形状简单的情形;有限单元法是将整个区域离散,分散成若干个单元,在单元上假设未知函数。有限单元法是单元一级的Ritz 法。 2、单元刚度矩阵和整体刚度矩阵各有什么特征?刚度矩阵[K ]奇异有何物理意义?在求解问题时如何消除奇异性? 答:单元刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷平面图形相似、弹性矩阵D 、厚度t 相同的单元,e K 相同⑸e K 的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两列,其位置与结点位置对应。 整体刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷稀疏性⑸非零元素呈带状分布。 []K 的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。 为消除[]K 的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 4. 何为等参数单元?为什么要引入等参数单元? 答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参数单元。 借助于等参数单元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分求解方便(积分限标准化);便于编制通用化程序。 5、对于平面4节点(线性)和8节点(二次)矩形单元,为了得到精确的刚度矩阵,需要多少个Gauss 积分点?说明理由。 答:对于平面4节点(线性)矩形单元: (,)i N ξη∝1,,,ξηξη T B DB 221,,,,,ξηξηξη∝ =J 常数 所以2m = 因而积分点数为:22?矩阵 对于平面8节点(二次)矩形单元: (,)i N ξη∝22221,,,,,,ξηξηξηξη T B DB 221341,,,,,,ξηξηξηη∝ =J 常数 所以4m = 因而积分点数为:33?矩阵 ⑴矩形、正方形、平行四边形=J 常数 2、总刚度矩阵[K]的任一元素k ij 的物理意义是什么?如何解释总刚度矩阵的奇异性和带状稀疏性? 答:K 中元素的ij K 物理意义:当结构的第j 个结点位移方向上发生单位位移,而其它结点位移方向上位移为零时,需在第i 个结点位移方向上施加的结点力大小。 奇异性:K =0,力学意义是对任意给定结点位移所得到结构结点力总体上是满足力和力矩的平衡。 反之,给定任意满足力和力矩平衡结点载荷P ,由于K 的奇异性却不能解得结构的位移a ,因而结构仍可能发生任意的刚体位移。为消除[]K 的奇异性,结构至少需给出能限制刚体位移的约束条件。 带状稀疏性:由于连续体离散为有限个单元体时,每个结点的相关单元只是围绕在该结点周围为数甚少的几个,一个结点通过相关单元与之发生关系的相关结点也只是它周围的少数几个,因此虽然总体单元数和结点数很多,结构刚度矩阵的阶数很高,但刚度系数中非零系数却很少,即为总刚度矩阵的稀疏性。另外,只要结点编号是合理的,这些稀疏的非零元素将集中在以主对角线为中心的1 1.52 m n +≥=141 2.522 m n ++≥==

《有限元基础教程》_【ANSYS算例】4.7.1(3) 基于3节点三角形单元的矩形薄板分析(GUI)及命令流

【ANSYS 算例】4.7.1(3) 基于3节点三角形单元的矩形薄板分析 如图4-20所示为一矩形薄平板,在右端部受集中力100 000N F =作用,材料常数为:弹性模量7110Pa E =?、泊松比1/3μ=,板的厚度为0.1m t =,在ANSYS 平台上,按平面应力问题完成相应的力学分析。 (a) 问题描述 (a) 有限元分析模型 图4–20 右端部受集中力作用的平面问题(高深梁) 解答 在ANSYS 平台上,完成的分析如下。 1. 基于图形界面的交互式操作(step by step) (1) 进入ANSYS(设定工作目录和工作文件) 程序 → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): 2D3Node →Run → OK (2) 设置计算类型 ANSYS Main Menu : Preferences… → Structural → OK (3) 选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Solid :Quad 4node 42 →OK (返回到Element Types 窗口) → Options… →K3: Plane Strs w/thk(带厚度的平面应力问题) →OK →Close (4) 定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:1.0e7 (弹性模量),PRXY: 0.33333333 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口 (5) 定义实常数以确定平面问题的厚度 ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), THK: 0.1 (平面问题的厚度) →OK →Close (6) 生成单元模型 生成4个节点 ANSYS Main Menu: Preprocessor →Modeling → Create → Nodes → On Working Plane →输入节点1的x,y,z 坐标(2,1,0),回车→输入节点2的x,y,z 坐标(2,0,0),回车→输入节点3的x,y,z 坐标(0,1,0),回车→输入节点4的x,y,z 坐标(0,0,0),回车→OK 定义单元属性 ANSYS Main Menu: Preprocessor →Modeling → Create → Elements → Elem Attributes →Element type number:1 →Material number:1→Real constant set number:1 →OK 生成单元 ANSYS Main Menu: Preprocessor →Modeling → Create → Elements → User Numbered → Thru Nodes →Number to assign to element:1→Pick nodes:2,3,4→OK →Number to assign to element:2→Pick nodes:3,2,1→OK (7) 模型施加约束和外载 左边两个节点施加X,Y 方向的位移约束 ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Displacement → On

有限元复习计划题答案.docx

1、何为有限元法其基本思想是什么 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法 以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似 函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤 结构离散化、单元分析、整体分析 5、有限元方法分几种本课程讲授的是哪一种 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么何为几何方程、物理方程及虚功方程弹性矩阵的特点 弹性力学变量 : 外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分 量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹 性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题 平面应力问题:在结构上满足 a 几何条件:研究对象是等厚度薄板。 b 载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作 用。 平面应变问题:满足 a 几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。 b 载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵 向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化离散化的目的何为有限元模型 ①离散化 : 把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元 计算模型③通常把由节点 , 单元及相应的节点载荷和节点约束构成的模型称为有限元模 型

最新有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件: 作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

有限元考试试题及答案

一、 简答题(共40分,每题10分) 1. 论述单元划分应遵循的原则。 2. 说明形函数应满足的条件。 3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。 4. 阐述边界元法的主要优缺点。 二、 计算题(共60分,每题20分) 1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已 知:杆件材料的杨氏模量2 721/100.3in lbf E E ?==,截面积2125.5in A =, 2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点 和C 点位移。备注:(1)1 lbf (磅力,libra force ) = N 。(2)杨氏模量、弹性 模量、Young 氏弹性模量具有相同含义(10分) 2. 如图2 所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷 F=20KN/m ,设泊松比μ=0,材料的弹性模量为E ,试求它的应力分布。(15分) 学院 专业 学号 姓名 y 图1

图2 3. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。 图3

一、简答题 1. 答: 1)合理安排单元网格的疏密分布 2)为突出重要部位的单元二次划分 3)划分单元的个数 4)单元形状的合理性 5)不同材料界面处及荷载突变点、支承点的单元划分 6)曲线边界的处理,应尽可能减小几何误差 7)充分利用结构及载荷的对称性,以减少计算量 2. 答: 形函数应满足的三个条件: a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由 其它单元形变所引起的位移。 b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所 有点都具有相同的应变。当单元尺寸取小时,则单元中各点的应变趋于相 等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。 c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元 位移协调。 3. 答: 含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。 意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。 4. 答: 有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。有限单元法中所利用的主要是伽辽金(Galerkin)法。它可以用于已经知道问题的微分方程和

(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa , 则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

有限元复习题及答案讲课稿

1.两种平面问题的基本概念和基本方程; 答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。平面问题分为平面应力问题和平面应变问题。 平面应力问题 设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。 由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分 量未知。 平面应变问题 设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。平面问题的基本方程为: 平衡方程 几何方程 物理方程(弹性力学平面问题的物理方程由广义虎克定律得到) ?平面应力问题的物理方程 平面应力问题有 ?平面应变问题的物理方程 平面应变问题有 在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变

问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。 2弹性力学中的基本物理量和基本方程; 答:基本物理量有: 空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。其中包括6个应力分量,6个应变分量,3个位移分量。 平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。 基本方程有: 1.平衡方程及应力边界条件: 平衡方程: 边界条件: 2.几何方程及位移边界条件: 几何方程: 边界条件: 3.物理方程: 3.有限元中使用的虚功方程。 对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。 对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为 ,作用在微元体上的平衡力系有(X,Y,Z)和面力。外力的总虚功为实际的体力和面力在虚位移上所做的功,即: 在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

相关主题