搜档网
当前位置:搜档网 › 细胞信号转导

细胞信号转导

细胞信号转导
细胞信号转导

第八章细胞信号转导

名词解释

1、蛋白激酶proteinkinase

将磷酸基团转移到其他蛋白质上的酶,通常对其他蛋白质的活性具有调节作用。

2、蛋白激酶CproteinkinaseC

一类多功能的丝氨酸/苏氨酸蛋白激酶家族,可磷酸化多种不同的蛋白质底物。

3、第二信使secondmessenger

第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,钙离子等,有助于信号向胞内进行传递。

4、分子开关molecularswitch

细胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。

5、磷脂酶CphospholipidC

催化PIP2分解产生1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使分子。

6、门控通道gatedchannel

一种离子通道,通过构象改变使溶液中的离子通过或阻止通过。依据引发构象改变的机制的不同,门控通道包括电位门通道和配体门通道两类。

7、神经递质neurotransmitter

突触前端释放的一种化学物质,与突触后靶细胞结合,并改变靶细胞的膜电位。

8、神经生长因子nervesgrowthfactor,NGF

神经元存活所必需的细胞因子

9、受体receptor

任何能与特定信号分子结合的膜蛋白分子,通常导致细胞摄取反应或细胞信号转导。

10、受体介导的胞吞作用receptormediatedendocytosis

通过网格蛋白有被小泡从胞外基质摄取特定大分子的途径。被转运的大分子物质与细胞表面互补性的受体结合,形成受体-配体复合物并引发细胞质膜局部内化作用,然后小窝脱离质膜形成有被小泡而将物质吞入细胞内。

11、受体酪氨酸激酶receptortyrosinekinase,RTK

能将自身或胞质中底物上的酪氨酸残基磷酸化的细胞表面受体。主要参与细胞生长和分化的调控。

12、调节型分泌regulatedsecretion

细胞中已合成的分泌物质先储存在细胞质周边的分泌泡中,在受到适宜的信号刺激后,才与质膜融合将内容物分泌到细胞表面。

13、细胞通讯cellcommunication

信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。

14、细胞信号传递cellsignaling

通过信号分子与受体的相互作用,将外界信号经细胞质膜传递到细胞内部,通常传递至细胞核,并引发特异性生物学效应的过程。

15、信号转导signaltransduction

细胞将外部信号转变为自身应答反应的过程。

16、组成型分泌constitutivesecretion

细胞内合成的物质以连续的、不需要调节的方式向胞外进行分泌。

17、G蛋白Gprotein

GTP结合蛋白,具有GTPase活性,以分子开关的形式通过合成或水解GTP调节自身活性。有三体和单体G蛋白两大家族。

18、G蛋白耦联受体Gproteincoupledreceptor

一类在质膜上7次跨膜的受体。配体与特异性受体的结合,导致受体的构象发生改变,与G蛋白亲和力也随之增加,从而通过G蛋白的耦联向下游传递信号。

19、Na+-K+泵Na+-K+pump

又称Na+-K+ATPase,能水解ATP,使α亚基带上磷酸基团或去磷酸化,将Na+泵出细胞,而将K+泵入细胞的膜转运载体蛋白。

20、Ras蛋白Rasprotein

单体G蛋白家族成员,在信号从细胞表面受体传递到细胞核内的过程中发挥重要作用。

21、SH结构域SHdomain

是Src同源结构域的缩写,这种结构域能够与受体酪氨酸激酶磷酸化残基紧密结合,形成多蛋白的复合物进行信号转导。

22、内分泌endocrine

由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。

23、旁分泌paracrine

细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。

24、自分泌autocrine

细胞对自身分泌的物质产生反应。

25、激素hormone

激素是由内分泌细胞(如肾上腺、睾丸、卵巢、胰腺、甲状腺、甲状旁腺和垂体)合成的化学信号分子,这些信号分子被分泌到血液中后,经血液循环运送到体内各个部位作用

于靶细胞。

26、表面受体surfacereceptor

位于细胞质膜上的受体称为表面受体(surfacereceptor),细胞表面受体主要是识别周围环境中的活性物质或被相应的信号分子所识别,并与之结合,将外部信号转变成内部信号,以启动一系列反应而产生特定的生物效应。

27、细胞内受体intracellularreceptor

位于胞质溶胶、核基质中的受体称为细胞内受体。细胞内受体主要是同脂溶性的小信号分子相作用。

28、离子通道偶联受体ino-channelcoupledreceptor

具有离子通道作用的细胞质膜受体称为离子通道受体。它们多为数个亚基组成的寡聚体蛋白,除有配体结合位点外,本身就是离子通道的一部分,并借此将信号传递至细胞内。信号分子同离子通道受体结合,可改变膜的离子通透性。

29、酶联受体enzymelinkedreceptor

这种受体蛋白既是受体又是酶,一旦被配体激活即具有酶活性并将信号放大,又称催化受体。这一类受体转导的信号通常与细胞的生长、繁殖、分化、生存有关。

30、信号级联放大signalingcascade

从细胞表面受体接收外部信号到最后作出综合性应答是一个将信号逐步放大的过程,称为信号的级联放大反应。

31、受体钝化receptordesensitization

受体对信号分子失去敏感性称为受体钝化,一般是通过对受体的修饰进行钝化的。32、信号趋异divergence

是指同一种信号与受体作用后在细胞内分成几个不同的信号途径进行传递,最典型的是受体酪氨酸激酶的信号转导。

33、SOS蛋白Sosprotein

是编码鸟苷释放蛋白的基因sos的产物(sos是sonofsevenless的缩写)。Sos蛋白在Ras 信号转导途径中的作用是促进Ras释放GDP,结合GTP,使Ras蛋白由非活性状态转变为活性状态,所以,Sos蛋白是Ras激活蛋白。

34、PKA系统proteinkinaseAsystem

是G蛋白偶联系统的一种信号转导途径。信号分子作用于膜受体后,通过G蛋白激活腺苷酸环化酶,产生第二信使cAMP后,激活蛋白激酶A进行信号的放大。故将此途径称为PKA信号转导系统。如胰高血糖素和肾上腺素都是很小的水溶性的胺,它们在结构上没有相同之处,并作用于不同的膜受体,但都能通过G蛋白激活腺苷酸环化酶,最后通过蛋白激酶A进行信号放大。

35、PKC系统proteinkinaseCsystem,PKCsystem

由于该系统中的第二信使是磷脂肌醇,故此这一系统又称为磷脂肌醇信号途径在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gq蛋白(一种G 蛋白),然后由Gq蛋白激活磷酸脂酶Cβ。将膜上的脂酰肌醇4,5-二磷酸分解为两个细胞内的第二信使:二酰甘油(diacylglycerol,DAG)和1,4,5-三磷酸肌醇(IP3)。IP3动员细胞内钙库释放Ca2+到细胞质中与钙调蛋白结合,随后参与一系列的反应;而DAG在Ca2+的协同下激活蛋白激酶C(proteinkinaseC,PKC),然后通过蛋白激酶C引起级联反应,进行细胞的应答,故此将该系统称为PKC系统,或称为IP3、DAG、Ca2+信号通路。

思考题

1、试述细胞以哪些方式进行通讯,各种方式之间有何不同?

细胞通讯:指一个细胞发出的信息通过介质(配体)传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生胞内一列生理生化变化,最终表现为细胞整体的生物学效应的过程。细胞通讯对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必需的。细胞通讯有三种方式:(1)细胞通过分泌化学信号进行细胞间相互通讯,这是多细胞生物最普遍采用的通讯方式;

(2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其他细胞,细胞间直接接触而无需信号分子的释放,通过质膜上的信号分子与靶细胞质膜上的受体分子相互作用来介导细胞通讯。

(3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。该方式没有信号的分泌及细胞间直接的接触。

2、何谓信号转导中的分子开关蛋白?举例说明其作用机制。

在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制进行精确调控。对每一个反应既要求由激活机制还要求由失活机制,负责这种正、负调控

的蛋白称为分子开关。一类是通过蛋白激酶使之磷酸化而激活,通过蛋白磷酸酯酶使之区磷酸化而失活。另一类是GTPase开关蛋白,结合GTP活化,结合GDP失活。Ras蛋白就是一个典型的分子开关蛋白,通过其他蛋白质的作用使得GTP与其结合而处于激活状态。一种GTP酶激活蛋白可促进将结合的GTP水解为GDP,Ras的工作就类似电路开关。如果Ras分子开关失去控制一直处于激活状态,下游MAPK一直活跃,使得细胞有丝分裂失去控制,从而导致癌变。

3、试分析细胞信号系统的组成及其作用。

①细胞表面受体:特异识别胞外信号;②转乘蛋白:负责信息向下传递;③信使蛋白:携带信号从一部分传递到另一部分;④接头蛋白:连接信号蛋白;⑤放大和转导蛋白:由酶和离子通道组成,介导信号级联反应;⑥传感蛋白:负责不同形式信号的转换;

⑦分歧蛋白:信号从一条途径传递到另一条途径;⑧整合蛋白:从多条通路接受信号并向下传递;⑨潜在基因调控蛋白:在表面被受体活化,迁移到细胞核刺激基因转录。

4、简要比较G蛋白耦联受体介导的信号通路有何异同。

G蛋白耦联受体是细胞表面由单条多肽经7次跨膜形成的受体,该信号通路是指配体-受体复合物与靶细胞的作用要通过与G蛋白的耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。根据产生第二信使的不同,它可分为cAMP 信号通路和磷脂酰肌醇信号通路:

(1)cAMP信号通路的主要效应是激活靶细胞和开启基因表达,这时通过蛋白激酶A 完成的。该信号途径涉及的反应链可表示为激素→G蛋白耦联受体→G蛋白→腺苷酸环化酶→cAMP→cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

(2)磷脂酰肌醇信号通路的最大特点是胞外信号被膜受体接收后,同时产生两个胞外信使,分别启动两个信号传递途径即IP3/Ca2+和DAG/PKC途径,实现细胞对外界信号的应答,因此,这一信号系统又称为“双信使系统”。可表示为:

细胞外信号分子→G-蛋白耦联型受体→G蛋白→磷脂酶C→磷脂酰肌醇(PIP2):

→IP3→胞内钙离子浓度升高→钙离子与钙调蛋白结合→钙调蛋白激酶

→DAG+Ca2+→激活PKC→靶蛋白磷酸化或促Na+/H+交换使胞内pH值升高

(3)相同:膜受体与效应酶之间的作用都是通过G蛋白耦联的。

不同:化学信号分子、膜受体结构、G蛋白组分、效应酶均不相同。前者效应酶为腺苷酸环化酶AC,后者效应酶为磷脂酶C;第二信使不同,前者为cAMP,后者为IP3和DAG。

5、概述受体酪氨酸激酶介导的信号通路的组成、特点及其主要功能。

⑴组成

受体酪氨酸激酶又称酪氨酸蛋白激酶受体,是细胞表面一大类重要受体家族,包括6个亚族。它的胞外配体是可溶性或膜结合的多肽或蛋白类激素,包括胰岛素和多种生长因子。

通路可概括为如下模式:配体→RTK→接头蛋白←GEF→Ras→Raf(MAPKKK)→MAPKK →MAPK→进入细胞核→其他激酶或基因调控蛋白(转录因子)的磷酸化修饰,对基因表达产生多种效应。

⑵特点

①激活机制为受体之间的二聚体化、自磷酸化活化自身。

②没有特定的二级信使,要求信号有特定的结构域。

③由Ras分子开关的参与。

④介导下游MAPK的激活。

⑶功能

RTK-Ras信号通路是这类受体所介导的重要信号通路,具有广泛的功能,包括调节磁暴的增殖与分化,促进细胞的存活,以及细胞代谢过程中的调节与校正。

6、试总结细胞信号的整合方式与控制机制。

⑴细胞信号的整合方式

①细胞的信号传递时多通路、多环节、多层次和高度复杂的可控过程。细胞信号传递通路具有收敛或发散的特点,根据信号的强度和持续的时间不同从而控制反应的性质。每种受体都能识别和结合各自的特异性配体,来自各种非相关受体的信号可以在细胞内收敛或激活一个共同的效应器的信号,从而引起细胞生理、生化反应和细胞行为的改变。另外,来自相同配体的信号又可发散激活各种不同的效应器,导致多样化的细胞应答②细胞的信号转导既具有专一性又有作用机制的相似性。不同的细胞中,因为转录因子组分不同,即使受体相同而其下游的通路也是不同的③形成蛋白激酶的网络整合信息。细胞内各种不同的信号通路主要提供了信号途径本身的线性特征,信号转导的最重要特征之一是构成复杂的信号网络系统,具有高度的非线性特点。因此细胞需要对各种信号进行整合和精确控制,在各信号通路之间进行交叉对话并作出适宜的应答。整合信号会聚其他信号通路的输入从而修正细胞对信号的反应。

⑵细胞信号的控制机制

①细胞对外界信号适度的反应既涉及到信号的有效刺激和启动,也依赖信号通路本身的调节。②信号放大与信号终止并存③当细胞长期暴露在某种形式的刺激下时,细胞对刺激的反应将会降低。细胞以不同的方式对信号进行适应:一是逐渐降低表面受体的数目,游离受体的减少降低了对外界信号的敏感度;二是快速钝化受体;三是在受体已经被激活下,其下游信号蛋白发生变化,使通路受阻。

7、试分析信号转导的几条通路的共性与特性。

多途径、多层次的细胞信号传递通路具有收敛或发散的特点;细胞的信号转导既具有专一性又有作用机制的相似性;信号转导过程具有信号放大作用,其放大作用又必须受到适度的控制,表现为信号的放大作用和信号的终止作用并存;细胞对长期的信号刺激反应能进行自身调节。

8、G蛋白与Ras蛋白激活的反应之间有什么异同?

相同:两种激活过程都依赖于某些蛋白质;都是催化G蛋白或Ras蛋白上的GDP/GTP 交换。不同:G蛋白耦联受体可直接对G蛋白形式激活功能,而Ras蛋白的激活是在那些酶联受体被磷酸化激活后,则先将多个衔接蛋白装配为一个信号复合物,再对Ras 进行激活。

9、试述细胞信号传导中细胞表面受体的主要种类和基本特点。

(1)离子通道耦联受体是由多亚基组成的,受体-离子通道复合体,本身既有信号结合位点,又是离子通道,其跨膜信号转导中无需中间步骤。

(2)G蛋白耦联的受体是细胞表面由单条多肽经七次跨膜形成的受体,该信号通路是指配体-受体复合物与靶蛋白的作用必须通过G蛋白耦联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。

(3)与酶连接的受体,是跨膜蛋白,胞外部分有同配体结合的结构域,胞内结构域可以作为酶或同其他的一些蛋白质组成复合物后行使酶的作用。其传导反应比较慢,并且需要许多细胞内转换步骤。

(4)细胞表面整联蛋白介导的信号转导,跨膜蛋白受体为异二聚体,它是细胞外环境信号调控细胞内活性的渠道,又是介导细胞附着在胞外基质上的跨膜蛋白。

10、比较组成型胞吐途径和调节性胞吐途径的特点及其生物学意义。

胞吐作用是将细胞内的分泌泡或其他膜泡中的物质通过细胞质膜运出细胞的过程。根据其过程是否连续将其分为组成型胞吐途径和调节型胞吐途径。

①组成型胞吐途径是指细胞从高尔基体反面管网状区分泌的囊泡向质膜流动并与之融合的稳定过程。新合成的囊泡膜的蛋白和膜类脂不断供应质膜更新,确保细胞分裂前质膜的生化功能,囊泡内可溶性蛋白分泌到细胞外,有的成为质膜外周蛋白,有的形成胞外基质组分,有的作为营养成分或信号分子扩散到胞外液。

②调节型胞吐途径是指分泌细胞产生的分泌物(如激素、糖液、消化酶)储存在分泌泡内,当细胞受到胞外信号刺激时,分泌泡与质膜融合并将其内含物释放出去的过程。调节型胞吐途径存在于特殊机能的细胞中,如已知脑垂体细胞分泌肾上腺皮质激素,胰岛的β细胞分泌胰岛素,胰腺的腺泡细胞分泌胰蛋白酶原,这三种分泌产物均分布在各自细胞的可调节性分泌泡中,只有在相应信号刺激下向细胞外分泌,保证特殊生理功能的可调节性。

11、NO的产生及其细胞信使作用?

NO是可溶性的气体,NO的产生与血管内皮细胞和神经细胞相关,血管内皮细胞接受乙酰胆碱,引起细胞内Ca2+浓度升高,激活一氧化氮合成酶,该酶以精氨酸为底物,以NADPH为电子供体,生成NO和胍氨酸。细胞释放NO,通过扩散快速透过细胞膜进入平滑肌细胞内,与胞质鸟苷酸环化酶活性中心的Fe2+结合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度,引起血管平滑肌的舒张,血管扩张、血流通畅。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关。

12、磷酯酰肌醇信号通路的传导途径。

外界信号分子→识别并与膜上的与G蛋白偶联的受体结合→活化G蛋白→激活磷脂酶C→催化存在于细胞膜上的PIP2水解→IP3和DG两个第二信使→IP3可引起胞内Ca2+浓度升高,进而通过钙结合蛋白的作用引起细胞对胞外信号的应答;DG通过激活PKC,使胞内pH值升高,引起对胞外信号的应答。

13、试论述蛋白磷酸化在信号传递中的作用。

⑴蛋白磷酸化是指由蛋白激酶催化的把ATP或GTP的磷酸基团转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白磷酸酶催化的,称为蛋白质去磷酸化。⑵蛋白磷酸化通常有两种方式:一种是在蛋白激酶催化下直接连接上磷酸基团,另一种是被诱导与GTP结合,这两种方式都使得信号蛋白结合上一个或多个磷酸基团,被磷酸化的蛋白有了活性后,通常反过来引起磷酸通路中的下游蛋白磷酸化,当信号消失后,信号蛋白就会去磷酸化。⑶磷酸化通路通常是由两种主要的蛋白激酶介导的:一种是丝氨酸/苏氨酸蛋白激酶,另一种是酪氨酸蛋白激酶。⑷蛋白激酶和蛋白磷酸酶通过将一些酶类或蛋白磷酸化与去磷酸化,控制着它们的活性,使细胞对外界信号作出相应的反应。通过蛋白磷酸化,调节蛋白的活性,通过蛋白磷酸化,逐级放大信号,引起细胞反应。

细胞信号转导

细胞信号转导 李婧 2015212351 一、名词解释 内分泌 接触依赖性通讯 受体 G蛋白 第二信使 二、单项选择题 1、下列不属于信号分子的是 A.K+ B.cAMP C. cGMP D.Ca2+ 2、下列那个不是信号转导系统的主要特性 A.特异性 B.放大效应 C.整合作用 D.传递作用 3、()是细胞表面受体中最大的多样性家族 A.G蛋白偶联受体 B.RTK C.Notch D.细胞因子 4、G蛋白偶联受体中()是分子开关蛋白 A.G α B.Gβ C.GΘ D.Gγ 5、G蛋白偶联的光敏感受体的活化诱发()的关闭 A.cAMP–PKA信号通路 B.Notch信号通路 C.JAK-STAT信号通路 D. cGMP门控阳离子通道 6、()信号对细胞内糖原代谢起关键调控作用 -Ca2+ B.DAG-PKC C. cAMP–PKA D.RTK-Ras A.IP 3 7、()的主要功能是引发贮存在内质网中的Ca2+转移到细胞质基质中,使 胞质中游离Ca2+浓度提高 B.PIP2 C.DAG D.PKC A. IP 3 8、()主要功能是控制细胞生长、分化,而不是调控细胞中间代谢 A.RTK B. PKC C.PKB D.Wnt 9、Hedgehog信号通路控制 A.糖原代谢 B.细胞凋亡 C.细胞分化 D.氨基酸代谢 10、细胞通过配体依赖性的受体介导的()减少细胞表面可利用受体数目。 A. 抑制性蛋白产生 B.内吞作用 C.敏感性下调 D.消化降解 三、多项选择题 1、细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为 A.内分泌 B.旁分泌 C.通过化学突出传递神经信号 D.外分泌 2、下列()是糖脂 A.霍乱毒素受体 B.百日咳的毒素受体 C.甲状腺受体 D.胰岛素受体 3、下面关于受体酪氨酸激酶的说法正确的是 A.是一种生长因子类受体 B.受体蛋白只有一次跨膜 C.与配体结合后两个受体相互靠近,相互激活 D.具有SH2结构域

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试 (一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用 E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:

A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质 E. 受体只存在于细胞膜上 10. 下列哪种受体是催化型受体: A. 胰岛素受体 B. 甲状腺激素受体 C. 糖皮质激素受体 受体 D. 肾上腺素能受体 E. 活性维生素D 3 11. 酪氨酸蛋白激酶的作用是: A. 使蛋白质结合上酪氨酸 B. 使含有酪氨酸的蛋白质激活 C. 使蛋白质中的酪氨酸激活 D. 使效应蛋白中的酪氨酸残基磷酸化 E. 使蛋白质中的酪氨酸分解 12. 下列哪种激素的受体属于胞内转录因子型: A. 肾上腺素 B. 甲状腺激素 C. 胰岛素 D. 促甲状腺素 E. 胰高血糖素

细胞信号转导练习题集

细胞信号转导练习题 选择题:正确答案可能不止一个 1. NO直接作用于(B) A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道D.PKC 2.以下哪一类细胞可释放NO( B) A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3.硝酸甘油作为治疗心绞痛的药物是因为它( C) A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4.胞内受体(A B) A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5.受体酪氨酸激酶RPTK( A B C D) A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于(B) A.接头蛋白(adaptor protein) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP)D:胞内受体 7.以下哪些不属于G蛋白(C)

A.Ras B.微管蛋白β亚基 C.视蛋白 D. Rho 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面(B) A.镁离子 B.钙离子 C.钾离子 D.钠离子 9.Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用(A) A.IP3 B.IP2 C.DAG D.cAMP 10.在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使(A B) A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11.在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是(B) A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C D. 鸟苷酸环化酶 12.蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合?(B) A.催化亚基 B.调节亚基 13.在cAMP信号途径中,环腺苷酸磷酸二酯酶(PDE)的作用是 (C) A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14.在cAMP信号途径中,G蛋白的直接效应酶是(B)

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

(完整版)第十一章细胞的信号转导习题集及参考答案

第十一章细胞的信号转导 一、名词解释 1、细胞通讯 2、受体 3、第一信使 4、第二信使 5、G 蛋白 6、蛋白激酶A 二、填空题 1、细胞膜表面受体主要有三类即、、和。 2、在细胞的信号转导中,第二信使主要有、、、和。 3、硝酸甘油之所以能治疗心绞痛是因为它在体内能转化为,引起血管,从而减轻的负荷和的需氧量。 三、选择题 1、能与胞外信号特异识别和结合,介导胞内信使生成,引起细胞产生效应的是( )。 A、载体蛋白 B、通道蛋白 C、受体 D、配体 2、下列不属于第二信使的是()。 A、cAMP B、cGMP C、DG D、CO 3、下列关于信号分子的描述中,不正确的一项是()。 A、本身不参与催化反应 B、本身不具有酶的活性 C、能够传递信息 D、可作为酶作用的底物 4、生长因子是细胞内的()。 A、结构物质 B、能源物质 C、信息分子 D、酶 5、肾上腺素可诱导一些酶将储藏在肝细胞和肌细胞中的糖原水解,第一个被激活的酶是()。 A、蛋白激酶A B、糖原合成酶 C、糖原磷酸化酶 D、腺苷酸环化酶 6、()不是细胞表面受体。 A、离子通道 B、酶连受体 C、G蛋白偶联受体 D、核受体 7、动物细胞中cAMP的主要生物学功能是活化()。 A、蛋白激酶C B、蛋白激酶A C、蛋白激酶K D、Ca2+激酶 8、在G蛋白中,α亚基的活性状态是()。 A、与GTP结合,与βγ分离 B、与GTP结合,与βγ聚合 C、与GDP结合,与βγ分离 D、与GDP结合,与βγ聚合

9、下面关于受体酪氨酸激酶的说法哪一个是错误的 A、是一种生长因子类受体 B、受体蛋白只有一次跨膜 C、与配体结合后两个受体相互靠近,相互激活 D、具有SH2结构域 10、在与配体结合后直接行使酶功能的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 11、硝酸甘油治疗心脏病的原理在于 A、激活腺苷酸环化酶,生成cAMP B、激活细胞膜上的GC,生成cGMP C、分解生成NO,生成cGMP D、激活PLC,生成DAG 12、霍乱杆菌引起急性腹泻是由于 A、G蛋白持续激活 B、G蛋白不能被激活 C、受体封闭 D、蛋白激酶PKC功能异常 13下面由cAMP激活的酶是 A、PTK B、PKA C、PKC D、PKG 14下列物质是第二信使的是 A、G蛋白 B、NO C、GTP D、PKC 15下面关于钙调蛋白(CaM)的说法错误的是 A、是Ca2+信号系统中起重要作用 B、必须与Ca2+结合才能发挥作用 C、能使蛋白磷酸化 D、CaM激酶是它的靶酶之一16间接激活或抑制细胞膜表面结合的酶或离子通道的受体是 A、生长因子受体 B、配体闸门离子通道 C、G蛋白偶联受体 D、细胞核受体 17重症肌无力是由于 A、G蛋白功能下降

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波

学号:2015050509

目录 1、细胞受体类型及特点 (4) 1.1离子通道型受体 (4) 1.2 G蛋白耦联型受体 (4) 1.3 酶耦联型受体 (5) 2、重要的细胞信号转导途径 (5) 2.1细胞内受体介导的信号传递 (5) 2.2 G蛋白偶联受体介导的信号转导 (6) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (7) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (7) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通 路 (8) 2.2 酶联受体介导的信号转导 (9) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (10) 2.2.2 P13K-PKB(Akt)信号通路 (10) 2.2.3 TGF-p—Smad信号通 (11) 2.2.4 JAK—STAT信号通路 (12)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白,位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP 水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内

第八章 细胞信号转导

第八章细胞信号转导 名词解释 1、蛋白激酶protein kinase 将磷酸基团转移到其他蛋白质上的酶,通常对其他蛋白质的活性具有调节作用。 2、蛋白激酶C protein kinase C 一类多功能的丝氨酸/苏氨酸蛋白激酶家族,可磷酸化多种不同的蛋白质底物。 3、第二信使second messenger 第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP,IP3,钙离子等,有助于信号向胞内进行传递。 4、分子开关molecular switch 细胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。 5、磷脂酶C phospholipid C 催化PIP2分解产生1,4,5-肌醇三磷酸(IP3)和二酰甘油(DAG)两个第二信使分子。 6、门控通道gated channel 一种离子通道,通过构象改变使溶液中的离子通过或阻止通过。依据引发构象改变的机制的不同,门控通道包括电位门通道和配体门通道两类。 7、神经递质neurotransmitter 突触前端释放的一种化学物质,与突触后靶细胞结合,并改变靶细胞的膜电位。 8、神经生长因子nerves growth factor,NGF 神经元存活所必需的细胞因子 9、受体receptor 任何能与特定信号分子结合的膜蛋白分子,通常导致细胞摄取反应或细胞信号转导。10、受体介导的胞吞作用receptor mediated endocytosis 通过网格蛋白有被小泡从胞外基质摄取特定大分子的途径。被转运的大分子物质与细胞表面互补性的受体结合,形成受体-配体复合物并引发细胞质膜局部内化作用,然后小窝脱离质膜形成有被小泡而将物质吞入细胞内。 11、受体酪氨酸激酶receptor tyrosine kinase,RTK 能将自身或胞质中底物上的酪氨酸残基磷酸化的细胞表面受体。主要参与细胞生长和分化的调控。 12、调节型分泌regulated secretion 细胞中已合成的分泌物质先储存在细胞质周边的分泌泡中,在受到适宜的信号刺激后,才与质膜融合将内容物分泌到细胞表面。 13、细胞通讯cell communication 信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。 14、细胞信号传递cell signaling 通过信号分子与受体的相互作用,将外界信号经细胞质膜传递到细胞内部,通常传递至细胞核,并引发特异性生物学效应的过程。 15、信号转导signal transduction 细胞将外部信号转变为自身应答反应的过程。 16、组成型分泌constitutivesecretion

细胞信号转导练习进步题四套题

细胞信号转导 第一套 一、选择题(共10题,每题1分) 1、Ca2+在细胞信号通路中是() A. 胞外信号分子 C. 第二信使 B. 第一信使 D. 第三信使 2、动员细胞内源性Ca2+释放的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 3、细胞通讯是通过()进行的。 A. 分泌化学信号分子 C. 间隙连接或胞间连丝 B. 与质膜相结合的信号分子 D. 三种都包括在内 4、Ras蛋白由活化态转变为失活态需要( )的帮助。 A. GTP酶活化蛋白(GAP) C. 生长因子受体结合蛋白2(GRB2) B. 鸟苷酸交换因子(GEF) D. 磷脂酶C-γ(PLCγ) 5、PKC在没有被激活时,游离于细胞质中,一旦被激活就成为膜结合蛋白,这种变化依赖于()。 A. 磷脂和Ca2+ C. DAG和 Ca2+ B. IP3和 Ca2+ D. DAG和磷脂 6、鸟苷酸交换因子(GEF)的作用是()。 A. 抑制Ras蛋白 C. 抑制G蛋白 B. 激活Ras蛋白 D. 激活G蛋白 7、cAMP依赖的蛋白激酶是()。 A. 蛋白激酶G(PKG) C. 蛋白激酶C(PKC) B. 蛋白激酶A(PKA) D. MAPK 8、NO信号分子进行的信号转导通路中的第二信使分子是()。 A. cAMP C. IP3 B. DAG D. cGMP 9、在下列蛋白激酶中,受第二信使DAG激活的是()。 A. PKA C. MAPK B. PKC D. 受体酪氨酸激酶 10、在RTK-Ras蛋白信号通路中,磷酸化的()残基可被细胞内的含有SH2结构域的信号蛋 白所识别并与之结合。 A. Tyr C. Ser B. Thr D. Pro 二、判断题(共10题,每题1分) 11、生成NO的细胞是血管平滑肌细胞。() 12、上皮生长因子(EGF)受体分子具酪氨酸激酶活性位点。()

细胞信号转导

细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜 上的磷脂激酶C,使质膜上的PIP 2分解成IP 3 和DAG两个第二信使,将胞外信号转导为胞内信号, 两个第二信使分别激活两种不同的信号通路,即IP 3 -Ca2+和DAG-PKC途径,实现对胞外信号的应 答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。 受体酪氨酸激酶(RTK):能将自身或者胞质中底物上的酪氨酸残基磷酸化的细胞表面受体,主要参与细胞生长和分化的调控。 细胞膜表面受体主要有三类,即离子通道偶联受体、G蛋白偶联受体和酶联受体。 信号分子也统称为配体,可分为疏水性信号分子、亲水性信号分子和气体性信号分子。 由G蛋白介导的信号通路主要包括 cAMP-PKA信号通路和磷脂酰肌醇信号通路。 Ras蛋白在RTK介导的信号通路中起着关键作用,具有GTPase活性,当结合GTP时为活化状态,当结合GDP时为失活状态。(GTP酶活性) G蛋白由三个亚基组成,β和γ亚基以异二聚体的形式存在,G α 亚基本身具有GTPase活性,是 分子开关蛋白。当配体与受体结合,三聚体G蛋白解离,并发生GDP与GTP交换,游离的G α - GTP处于活化的开启状态,当G α-GTP水解形成G α -GDP时,则处于失活的关闭状态。 细胞转导系统的的主要特性:特异性、放大效应、网络化与反馈调节、整合作用。

细胞信号转导综述

细胞信号转导及与相关疾病的关系 姓名:赵亦天 摘要:多细胞生物体中的每一个细胞都在一定的条件下执行各自的功能,而这些功能大多具有某种关联,为了使细胞的各种功能活动能够有序的完成,则完善的细胞间的信号传导是必不可少的。 关键词:信号转导,受体 一.信号转导的概念: 细胞外的信号物质(激素,递质和细胞因子等)作用于细胞表面或细胞内受体,将细胞外信号分子所携带的信号转到细胞内的过程。信号分子作用于细胞时,不进入细胞,也不影响细胞内的过程,而是作用于细胞(核)膜的特殊蛋白分子(受体),将外界环境变化信息以新的信号形式(第二信使)传到细胞内,再引发一系列反应,调控细胞功能活动。 二.与信号转导作用有关物质的概念与性质 (1)配体:与受体发生特异性结合的活性物质。如:A.体外刺激信号(物理性:光、声、电、温度;化学性:空气、环境中的各种化学物质)B. 体内刺激信号(激素、神经递质、细胞因子、生长因子、气体分子(NO、CO、H2S)等) (2)受体:存在于细胞表面或亚细胞组分中的天然分子,具有特异性,饱和性,高亲和力等特征,在细胞内放大,传递信号,启动一系列生化反应,最终导致特定的细胞反应。 1)G蛋白藕联受体:G蛋白的结合部位在胞浆侧,与配体结合后激

活G蛋白,其本身不具备通道结构,也无酶活性,是通过与脂质双层中以及膜内侧存在的包括G蛋白等一系列信号蛋白分子之间级联式的复杂的相互作用来完成信号跨膜转导的(也称促代谢型受体)2)酶耦联受体:与G蛋白耦联受体完全不同的分子结构和特性,这一跨膜信号转导过程不需要G蛋白的参与,也没有第二信使的产生。酶耦联受体分子的胞质一侧自身具有酶的活性,或者可直接结合并激活胞质中的酶,并由此实现细胞外信号对细胞功能的调节。分为酪氨酸蛋白激酶受体,受体丝氨酸/苏氨酸激酶,受体酪氨酸磷酸酯酶,受体鸟甘酸环化酶,酪氨酸蛋白激酶结合型受体。酪氨酸蛋白激酶受体(RTK)是细胞表面一大类重要的受体家族。RTK即是受体又是酶,能够与配体结合,并把靶蛋白的酪氨酸残基磷酸化,其对应的配体为可溶性的或膜结合的多肽和蛋白类激素,包括胰岛素和各种生长因子。RTK的主要功能是控制细胞生长、分化而不是调控细胞的中间代谢;酪氨酸蛋白激酶联系的受体本身不具有酶活性,但是可以结合非受体酪氨酸蛋白激酶。受体与配体结合以后通过与之联系的非受体酪氨酸蛋白激酶的活化,磷酸化各种靶细胞的酪氨酸残基,实现信号传导;鸟苷酸环化酶是一次性跨膜蛋白受体,胞外段是配体结合部分,胞内段为鸟苷酸环化酶催化结构域。受体的配体是心房肌肉细胞分泌的一组肽类激素,心房排钠肽和脑排钠肽。特点:受体本身就是鸟苷酸环化酶,其细胞外的部分有与信号分子结合的位点,细胞内的部分有一个鸟苷酸环化酶的催化结构域,可催化GTP生成cCMP。 3)离子通道型受体:是一种同时具有受体和离子通道功能的蛋白质

细胞生物学总结(复习重点)——8.细胞信号转导

4、细胞通讯:一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。包括分泌化学信号(内、旁、自、化学突触)、细胞间接触、和相邻细胞间间隙连接。 5、细胞识别:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 20、信号分子:生物体内的某些化学分子,如激素、神经递质、生长因子、气体分子等,在细胞间和细胞内传递信息,特称为信号分子。 21、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 22、受体:一种能够识别和选择性地结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转导作用将胞外信号转导为胞内化学或物理的信号,以启动一系列过程,最终表现 偶联型受体和酶偶联的受体。 23、第一信使:一般将胞外信号分子称为第一信使。 24、第二信使:细胞表面受体接受胞外信号后最早在胞内产生的信号分子。细胞内重要的第二信使有:cAMP、cGMP、DAG、IP3等。第二信使在细胞信号转导中起重要作用,能够激活级联系统中酶的活性以及非酶蛋白的活性,也控制着细胞的增殖、分化和生存,并参与基因转录的调节。 10、IP3IP2IP4。DG通过两种途径终止 其信使作用:一是被 水解成单脂酰甘油。 13、分子开关:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制精确调控,也即对每一步反应既要求有激活机制,又必然要求有相应的失活机制,使细胞内一系列信号传递的级联反应能在正、负反馈两个方面得到精确控制的蛋白质分子称为分子开关。 25、G—蛋白:由GTP控制活性的蛋白,当与GTP结合时具有活性,当与GDP结合时没有活性。既有单体形式(ras蛋白),也有三聚体形式(Gs活Gi抑)。在信号转导过程中起着分子开关的作用。 28、蛋白激酶A:称为依赖于cAMP的蛋白激酶A,是由四个亚基组成的复合物,其中两个是调节亚基,两个是催化亚基;PKA的功能是将ATP上的磷酸基团转移到特定蛋白质的丝氨酸或苏氨酸残基上,使蛋白质被磷酸化,被磷酸化的蛋白质可以调节下游靶蛋白的活性。29、双信使系统:胞外信号分子与细胞表面G蛋白偶联的受体结合后,激活质膜上的磷脂酶C(PLC),使质膜上的二磷酸磷脂酰肌醇分解成三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激动两个信号传递途径即IP3—Ca+和DG—PKC途径,实现对胞外信号的应答,因此将这一信号系统称为“双信使系统”。 12、目前已知的这类受体都 是跨膜蛋白,当胞外配体与受体结合即激活受体胞内段的酶活性。 个氨基酸残基组成,分布于质膜胞质侧,结合GTP 时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

细胞信号转导总结

第十五章 细胞信号转导 教材精要与重点解析 一、 信息物质的定义与分类 细胞间信息物质:凡由细胞分泌的调节靶细胞生命活动的化学物质,又称为第一信使 细胞内信息分子:细胞内传递细胞调控信号的化学物质 第二信使:Ca ++ 、cAMP 、cGMP 、DAG 、IP 3、Cer 、花生四烯酸及其代谢产物等小分子化合物 第三信使:负责细胞核内外信息传递的物质,又称为DNA 结合蛋白 二、 受体的定义、分类、作用特点及调节 受体:细胞膜上或细胞内能识别生物活性分子并与之结合的成分,能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。本质是蛋白质,个别是糖脂 配体:能与受体呈特异性结合的生物活性分子,细胞间信息物质就是最常见的配体 膜受体 ? 环状受体:配体依赖性离子通道 ? G 蛋白偶联受体(GPCRs ):又称七个跨膜螺旋受体 ? 信息转导:激素→受体→G 蛋白→酶(腺苷酸环化酶AC 或磷脂酶C )→第二信使→ 蛋白激酶→ 酶或功能蛋白→生物学效应 ? G 蛋白:鸟苷酸结合蛋白,和GTP 或GDP 结合的位于细胞膜胞液面的外周蛋白,由三个亚基组成。 活化型为α亚基与GTP 结合并导致βγ二聚体脱落时 ? 单个跨膜α螺旋受体:三型 ? 酪氨酸蛋白激酶受体型

?非酪氨酸蛋白激酶受体型 ?转化生长因子β(TGFβ)受体 ?具有鸟苷酸环化酶(GC)活性的受体 ?膜受体:配体包括心钠素和鸟苷蛋白 ?可溶性受体:配体为NO和CO 胞内受体: ?多为反式作用因子 ?配体为类固醇激素、甲状腺素和维甲酸 ?四个结构区域:高度可变区、DNA结合区、铰链区、激素结合区 表15-3 膜受体与胞内受体的比较 受体作用的特点 ①高度专一性②高度亲和力③可饱和性④可逆性⑤特定的作用模式 受体活性的调节机制有: ①磷酸化与去磷酸化②膜磷脂代谢的影响③酶促水解作用④G蛋白调节 三、膜受体介导的信息转导 cAMP-蛋白激酶途径 ?激素调节物质代谢的主要途径 ?PKA是四聚体组成的别构酶,共有四个cAMP结合位点 ?配体为:胰高血糖素、肾上腺素和促肾上腺皮质激素 ?作用机制:受体+配体→腺苷酸环化酶AC激活→cAMP浓度升高→激活PKA(蛋白激酶A)→使 许多蛋白质的特定的组氨酸残基或苏氨酸残基磷酸化,调节细胞内代谢 Ca++-依赖性蛋白激酶途径 ?以靶细胞内Ca++-浓度变化为特征,激活PKC(蛋白激酶C) ?PKC有12种同工酶 ?配体为:促甲状腺素释放激素、去甲肾上腺素和抗利尿激素 ?作用机制:受体+配体→激活磷脂酰肌醇特异性磷脂酶C(PI-PLC)→DAG+IP3→激活PKC(蛋白 激酶C)→引起一系列靶蛋白的组氨酸残基或苏氨酸残基磷酸化,调节细胞内代谢 cGMP-蛋白激酶系统 ?配体是:心钠素(ANP)、NO、CO ?PKG是单体酶,分子中有一个cGMP结合位点 ?作用机制:受体+配体→激活鸟苷酸环化酶→cGMP浓度升高→激活PKG(蛋白激酶G)→特定蛋 白的丝氨酸或苏氨酸残基磷酸化,产生生物学效应 酪氨酸蛋白激酶体系 ?没有第二信使的参与,但都涉及TPK(酪氨酸蛋白激酶)的激活 ?质膜上的受体型TPK,如胰岛素受体、表皮生长因子受体及某些原癌基因(erb-B、kit、fms等)编码的受体,属催化型受体。产生受体型TPK-Ras-MAPK途径

细胞信号转导

第十九章细胞信息转导得分子机制一、A型选择题 1.不作用于质膜受体得信息物质就是 A。乙酰胆碱D。甲状腺素 2.能激活PKG得就是 A。cAMP A.脂类质 4.下列哪种物质能使蛋白质得酪氨酸残基发生磷酸化A。PKAB。PKC C.生长激素受体 D。类固醇激素受体 A。1个 A。1个 E.糖皮质激素受体 C.3个 C。3个D.4个 D.4个 E.5个 E。5个 E.失活 B。cGMP B.糖类C.Ca2+ D。DAG D。多肽E。GTP E。蛋白 3.细胞膜受体得本质就是C。核酸 B.谷氨酸 E.神经酰胺C.表皮生长因子 5。PKA中得每个调节亚基可结合cAMP得分子数为B.2个 B。2个

6。PKA所含得亚基数为 7。蛋白激酶得作用就是使蛋白质或酶 A。磷酸化 B。脱磷酸化 C.水解 8。通过膜受体起调节作用得激素就是 A.性激素 B.糖皮质激素C。甲状腺素 9。下列关于GTP结合蛋白(G蛋白)得叙述,错误得就是 (2007年全国硕士研究生入学考试西医综合科目试题) A.膜受体通过G蛋白与腺苷酸环化酶偶联 B.可催化GTP水解为GDP C。霍乱毒素可使其失活 D.有三种亚基α、β、γ D.激活 D。肾上腺素 E.活性维生素 E。G蛋白具有内源GTP酶活性 10.下列哪种酶激活后会直接引起cAMP浓度降低 (2006年全国硕士研究生入学考试西医综合科目试题) A.蛋白激酶A B。蛋白激酶C D.磷脂酶C E.蛋白激酶G11。cAMP能别构激活下列哪种酶(2005年全国硕士研究生入学考试西医综合科目试题) A.磷脂酶AB。蛋白激酶A D。蛋白激酶G E。酪氨酸蛋白激酶 12。细胞膜内外正常Na+与K+浓度差得形成与维持就是由于 (2004年全国硕士研究生入学考试西医综合科目试题) A。膜安静时K+通透性大 C.Na+易化扩散得结果C。磷酸二酯酶 C.蛋白激酶C B.膜兴奋时Na+通透性增加 D。膜上Na+泵得作用E.膜上Ca2+泵得作用

细胞信号转导

1基本概念 信号转导signal transduction——细胞内外的信号,通过细胞的转导系统转换,引起细胞生理反应的过程。 化学信号chemical signals——细胞感受刺激后合成并传递到作用部位引起生理反应的化学物质。 物理信号physical signal——细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。 G蛋白G protein——全称为GTP结合调节蛋白(GTP binding regulatory protein),此类蛋白由于其生理活性有赖于三磷酸鸟苷(GTP)的结合以及具有GTP水解酶的活性而得名。在受体接受胞间信号分子到产生胞内信号分子之间往往要进行信号转换,通常认为是通过G蛋白偶联起来,故G蛋白又称为偶联蛋白或信号转换蛋白。 第二信使second messenger——能被胞外刺激信号激活或抑制的、具有生理调节活性的细胞内因子。第二信使亦称细胞信号传导过程中的次级信号。在植物细胞中的第二信使系统主要是钙信号系统、肌醇磷脂信号系统和环核苷酸信号系统等。 动作电波action potential,AP——也叫动作电位,指细胞和组织中发生的相对于空间和时间的快速变化的一类生物电位,它是植物的一种物理信号,可通过输导组织传递。 钙调素calmodulin,CaM——是最重要的多功能Ca2+信号受体,为单链的小分子酸性蛋白。当外界信号刺激引起胞内Ca2+浓度上升到一定阈值后,Ca2+与CaM结合,引起CaM构象改变。而活化的CaM又与靶酶结合,使其活化而引起生理反应。 磷脂酰肌醇phosphatidylinositol,PI——亦称肌醇磷脂(lipositol),即其肌醇分子六碳环上的羟基被不同数目的磷酸酯化,PI为磷脂酰肌醇;PIP为磷脂酰肌醇-4-磷酸;PIP2为磷脂酰肌醇-4,5-二磷酸。肌醇磷脂参与细胞胞内的信号转导。 肌醇-1,4,5-三磷酸inositol-1,4,5-triphosphate,IP3——植物细胞内信号分子,通过调节Ca2+浓度来传递信息。 二酰甘油diacylglycerol,DG——或DAG,植物细胞内信号分子,通过激活蛋白激酶C(PKC)来传递信息。 磷酸脂酶C phospholip C PLC——存在于质膜中催化水解PIP2生成肌醇-1,4,5-三磷酸(IP3)和二酰甘油(diacylglycerol,DG,DAG)两种信号分子。 蛋白激酶protein kinase,PK——此酶的催化作用是将A TP或GTP的磷酸基团转移到底物蛋白质的氨基酸的残基上,从而引起相应的生理反应,以完成信号转导过程。 蛋白磷酸酯酶protein phosphatase,PP——或称蛋白磷酸酶,催化底物蛋白质的氨基酸的残基上的脱磷酸化作用,从而引起相应的生理反应,以完成信号转导过程。 蛋白激酶Cprotein kinase C,PKC——DAG的受体,当质膜上的DAG与PKC分子相结合并使之激活,激活的PKC进一步使其他激酶磷酸化,导致细胞产生相应的反应。

细胞受体类型、特点及重要的细胞信号转导途径

请归纳总结细胞受体类型、特点及重要的细胞信 号转导途径 受体是一类能够识别和选择性结合某种配体(信号分子)的大分子,大多数受体是蛋白质且多为糖蛋白,少数是糖脂,有的则是以上两者则是以上两者组成的复合物。受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,它能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。 在细胞通讯中,由信号传导细胞送出的信号分子必须被靶细胞接收才能触发靶细胞的应答,接收信息的分子称为受体,此时的信号分子被称为配体。在细胞通讯中受体通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。 一丶受体类型 根据靶细胞上受体存在的部位,可以将受体分为细胞内受体和细胞表面受体。细胞内受体存在于细胞质基质或核基质中,主要识别和结合小的脂溶性信号分子。细胞表面受体主要识别和结合亲水性信号分子。根据受体存在的标准,受体可大致分为三类:1.细胞膜受体:位于靶细胞膜上,如胆碱受体、肾上腺素受体、多巴胺受体、阿片受体等。 2.胞浆受体:位于靶细胞的胞浆内,如肾上腺皮质激素受体、性激素受体。 3.胞核受体:位于靶细胞的细胞核内,如甲状腺素受体。

另外也可根据受体的蛋白结构、信息转导过程、效应性质、受体位置等特点将受体分为四类: 1.离子通道偶联受体:如N-型乙酰胆碱受体含钠离子通道。 2.G蛋白偶联受体:M-乙酰胆碱受体、肾上腺素受体等。 3.酶联受体:如胰岛素受体,甾体激素受体、甲状腺激素受体等。 有些受体具有亚型,各种受体都有特定的分布部位核特定的功能,有些细胞也有多种受体。 二丶受体特点 1.受体与配体结合的特异性 特异性现为在同一细胞或不同类型的细胞中,同一配体可能有两种或两种以上的不同受体;同一配体与不同类型受体结合会产生不同的细胞反应,例如肾上腺素作用于皮肤粘膜血管上的α受体使血管平滑肌收缩,作用于支气管平滑肌上的β受体则使其舒张。 2.配体与受体结合的饱和性 受体可以被配体饱和。特别是胞浆受体,数量较少,少量激素就可以达到饱和结合。如在对甾体激素敏感的细胞中胞浆受体的数目最高每个细胞含量为10万个,雌激素受体,每个细胞中含量只有 1000~50000个。故在一定浓度的激素作用下可以被饱和,而非特异性结合则不能被饱和。 3.功能上的有效性

相关主题