搜档网
当前位置:搜档网 › 中南大学化工原理仿真实验报告样本

中南大学化工原理仿真实验报告样本

中南大学化工原理仿真实验报告样本
中南大学化工原理仿真实验报告样本

中南大学化学化工学院《化工原理》仿真实验报告

目录

实验一:离心泵特性的测定 (1)

实验二:管路阻力的测定 (6)

实验五:液体流动形态的观测 (9)

实验六:伯努利方程实验 (13)

实验一:离心泵特性的测定

一. 实验目的:

1. 了解离心泵的特性.。

2. 学习离心泵特性曲线的测定方法。

3. 熟悉离心泵操作方法。

二. 实验方法:

1. 测定离心泵的特性曲线。

2. 观察气蚀现象。

三. 操作过程:

1. 关闭进口阀V2,打开出口阀V3,灌水阀V1.

2. 关闭出口阀V3,灌水阀V1.

3. 启动水泵.

4. 打开进口阀V2至100%.

5. 逐步打开进口阀V3.

6. 调整天平砝码,使天平平衡.

7. 记录数据.

8. 重复5~7项记录10组左右数据.

9. 调整出口阀V3,使该显示位在100左右.

10.逐步关小进口阀V2,打开出口阀V3,且保持该显示位在100左右,直至发生气蚀现象.

11.关闭出口阀V3.

12.停泵.

13.退出.

四、数据记录与处理

五、问题讨论

1,离心泵启动时,应关闭出口阀,此时电机功率最低,降低了启动电流,有利于保护电机;关闭离心泵时,也应关闭出口阀,避免管路中液体倒流。2,不同转速的相同类型的泵,其特性曲线不同。

3,随着流量的增大,进口真空表读数逐渐增大,出口压力表读数逐渐减小,功率表读数也逐渐增大。

4,离心泵启动以前,应先注满水,然后关紧出口阀,再打开启动电源。如果不灌满水,会产生气缚现象,如此,离心泵就无法从水槽中将水吸入泵内。

实验二:管路阻力的测定

一.实验目的:

1.学习管路阻力损失(hf),管路摩擦系数(λ), 管材阻力系数(ξ)的测定方法, 并通过实验了解它们的变化规律, 巩固对流体阻力基本理论的认识.

2.学习液压计及流量计的用法.

二.实验任务:

1.测定流体流经直管时的摩擦系数(λ).与雷诺准数Re的关系.

2.测定90°标准弯头的阻力系数.

三.操作过程:

1.关闭进口阀V2,打开出口阀V3,灌水阀V1.

2.关闭出口阀V3,灌水阀V1.

3.启动水泵.

4.打开进口阀.

5.打开出口阀.

6.打开V4阀,打开V5阀.

7.关闭V5阀.

8.打开V6,V7阀.

9.关闭V7阀.

10.逐步打开出口阀V3,并记录数据(10组左右)

11.关闭出口阀V3.

12.停泵.

13.退出.

四、数据记录与处理

五、问题讨论

1,为什么测定数据前首先要赶尽设备和测压管中的空气?怎样赶走?

如果设备或测压管中留有空气,则会引起U形管读书产生误差。

2,在进行测试系统的排气工作时,是否要关闭系统的出口阀?为什么?

要关闭出口阀,这样才能通过U形压差计的液面是否变化判断系统的排气是否完全。

3,U形压差计上装设平衡阀有何作用?什么时候开着?什么时候关闭?

平衡U形压差计中两边的气压;当实验结束时打开,当排除压差计中的气泡时以及实验过程中关闭。

实验五:液体流动形态的观测

一.实验目的:

1.建立"层流和湍流两种流动形态和层流时导管中流速分布"的感性知识

2.确立"层流与湍流与R e之间有一定联系"的概念

二.操作过程:

1.打开自来水阀V1

2.待高位槽水满了以后打开黑水阀V2

3.逐步调大流量调节阀V3 并观察黑水的形状, 并按R 或W 键记

4.关闭黑水阀

5.关闭自来水

6.退出

三、数据记录与处理

五、实验讨论

1,流速小时,管中心的蓝色液体在管内沿轴线方向成一条轮廓清晰的细直线,平稳地流过整根玻璃管,与旁侧的水丝毫不相混合,其Re<=2000.

2,流速逐渐增大到一定数值时,呈直线流动的蓝色细流开始出现波动而成波浪形细线,并且不规则地波动,其2000

3,流速继续增大,细线波动加剧,然后被冲断而向四周散开,最后使整个玻璃管中的水呈现均匀的颜色,其Re>4000.

4,开自进水阀时,要控制在保持少量溢流即可,不可过大,否则水箱液

面剧烈的波动会影响测试数据的准确性.

实验六:伯努利方程实验

一.实验目的:

熟悉流动流体中各种能量和压头的概念及相互转换关系, 在此基础上掌握柏努利方程。

二、实验过程记录

五、实验讨论

1,对于无粘性的理想流体,则流体质点之间无摩擦和碰撞就无机械能的损失。2,对于实际流体而言,因为有粘性存在内摩擦,流动过程中消耗部分机械能,此机械能转化为热能而不可恢复。对实际流体的两个截面上的机械能总是不相等,两者差额就是这部分转化为热能的机械能,因此进行机械能衡算时,就必须将这部分消失的机械能加到第二个截面上去。

3,静压测量管与水流方向垂直,测量管内液位高度(从测量管算起)即为静压头它反映测压点处液体静压强的大小。测量管处液体的位压头则由测量管的几何高度决定。

4,任意两个截面上,位压头、动压头、静压头、三者总和之差即为损失压头,,即表示流体流经这两个截面之间时机械能的消耗。

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)]/()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

金属腐蚀与防护的实验报告中南大学粉冶院

实验一恒电位法测定阳极极化曲线 一、目的 1.了解金属活化、钝化转变过程及金属钝化在研究腐蚀与防护中的作用。 2.熟悉恒电位测定极化曲线的方法。 3.通过阳极极化曲线的测定,学会选取阳极保护的技术参数。 二、实验基本原理 测量腐蚀体系的极化曲线,实际就是测量在外加电流作用下,金属在腐蚀介质中的电极电位与外加电流密度(以下简称电密)之间的关系。 测量极化曲线的方法可以采用恒电位和恒电流两种不同方法。以电密为自变量测量极化曲线的方法叫恒电流法,以电位为自变量的测量方法叫恒电位法。 一般情况下,若电极电位是电密的单值函数时,恒电流法和恒电位法测得的结果是一致的。但是如果某种金属在阳极极化过程中,电极表面壮态发生变化,具有活化/钝化变化,那么该金属的阳极过程只能用恒电位法才能将其历程全部揭示出来,这时若采用恒电流法,则阳极过程某些部分将被掩盖,而得不到完整的阳极极化曲线。 在许多情况下,一条完整的极化曲线中与一个电密相对应可以有几个电极电位。例如,对于具有活化/钝化行为的金属在腐蚀体系中的阳极极化曲线是很典型的。由阳极极化曲线可知,在一定的电位范围内,金属存在活化区、钝化过渡区、钝化区和过钝化区,还可知金属的自腐蚀电位(稳定电位)、致钝电密、维钝电密和维钝电位范围。 用恒电流法测量时,由自腐蚀电位点开始逐渐增加电密,当达到致钝电密点时金属开始钝化,由于人为控制电密恒定,故电极电位突然增加到很正的数值(到达过钝化区),跳过钝化区,当再增加电密时,所测得的曲线在过钝化区。因此,用恒电流法测不出金属进入钝化区的真实情况,而是从活化区跃入过钝化区。 图1 恒电位极化曲线测量装置

三、实验仪器及药品 电化学工作站CHI660D、铂电极、饱和甘汞电极、碳钢、天平、量筒、烧杯、 电炉、水砂纸、U型管 蒸馏水、碳酸氢铵、浓氨水、浓硫酸、琼脂、氯化钠、氯化钾、无水乙醇、棉花 四、实验步骤 1.琼脂-饱和氯化钾盐桥的制备 烧杯中加入3g琼脂和97ml蒸馏水,使用水浴加热法将琼脂加热至完全溶解。然后加入30克KCl充分搅拌,KCl完全溶解后趁热用滴管或虹吸将此溶液加入已事先弯好的玻璃管中,静置待琼脂凝结后便可使用。 2.溶液的配制 (a) H2SO4溶液(0.5 M)的配制:烧杯内放入475 mL去离子水,加入 浓硫酸25 mL,搅拌均匀待用; (b) NH4HCO3-NH4OH溶液的配制:烧杯中放入700 mL去离子水,加 入160 g NH4HCO3,65 mL浓氨水,搅拌均匀。 (c) 饱和氯化钠溶液的配制。 3.操作步骤 (1)用水砂纸打磨工作电极表面,并用无水乙醇棉擦试干净待用。 (2)将辅助电极和研究电极放入极化池中,甘汞电极浸入饱和KCl溶液 中,用盐桥连接二者,盐桥鲁金毛细管尖端距离研究电极1~2mm左右。 按图1连接好线路并进行测量。 (3)测碳钢在H2SO4溶液和NH4HCO3-NH4OH溶液中的开路电压,稳定 5min。 (4)在-0.9 V和1.2 V (相对饱和甘汞电极:SCE),以0.05,0.01和0.005 Vs-1的扫描速度测定碳钢在H2SO4溶液和NH4HCO3-NH4OH溶液中阳极极 化曲线。 (5)存储数据,转化为TXT文本,用ORIGIN软件做图。 五、实验结果及数据处理 1.绘制碳钢在H2SO4溶液和NH4HCO3-NH4OH溶液中阳极极化曲线;

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

中南大学制造系统自动化技术实验报告整理

制造系统自动化技术 实验报告 学院:机电工程学院 班级:机制**** 姓名:张** 学号: *********** 指导教师:李** 时间: 2018-11-12 实验一柔性自动化制造系统运行实验 1.实验目的 (1)通过操作MES终端软件,实现对柔性制造系统的任务下达和控制加工,让学生

了解智能制造的特征及优势。 (2)通过创意性的实验让学生了解自动化系统总体方案的构思。 (3)通过总体方案的构思让学生了解该系统的工作原理,并学会绘制控制系统流程图,掌握物料流、信息流、能量流的流动路径。 (4)通过总体方案的构思让学生掌握各机械零部件、传感器、控制元器件的工作原理及性能。 (5)通过实验系统运行让学生了解运行的可靠性、安全性是采用何种元器件来实现的,促进学生进行深层次的思考和实践。 2.实验内容 (1)仔细观察柔性自动化制造系统的实现,了解柔性自动化制造系统的各个模块,熟悉各个模块的机械结构。 (2)了解各种典型传动机构的组装、工作原理、以及如何实现运动方向和速度的改变; (3)学习多种传感器的工作原理、性能和使用方法; (4)了解典型驱动装置的工作原理、驱动方式和性能; (5)理解柔性制造系统的工作原理,完成柔性制造系统的设计、组装; (6)实现对柔性制造系统的控制与检测,完成工件抓取、传输和加工。

3.实验步骤 (1)柔性制造系统的总体方案设计; (2)进行检测单元的设计; (3)进行控制系统的设计; (4)上下料机构的组装与检测控制; (5)物料传输机构的组装与实现; (6)柔性制造系统各组成模块的连接与控制; (7)柔性制造系统各组成单元的状态与工件状态位置的检测; (8)对机器人手动操作,实现对工件的抓取、传输。 4. 实验报告 ①该柔性自动化制造系统由哪几个主要的部分组成; 主要由:总控室工作站、AGV小车输送物料机构、安川机器人上下料工作站、法那科机器人上下料工作站、ABB机器人组装工作站、视觉检测及传送工作站、激光打标工作站、堆垛机及立体仓储工作站。 ②画出该柔性自动化制造系统的物料传输系统结构简图;

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

化工原理吸收实验报告

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系

2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式: m p X A x V a K G ???= m p A x X /V G a K ?=? 2 211ln ) 22()11(e e e e m x x x x x x x x x --?---= )x -L(x G 21A = Ω?=Z V p 相关的填料层高度的基本计算式为: OL OL x x e x N H x x dx a K L Z ?=-Ω=?12 OL OL N Z H = 其中, m x x e OL x x x x x dx N ?-= -=?2 11 2 Ω=a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=0.1m,吸收塔径φ=0.032m ,填料层高度0.8m (陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和0.83m (金属θ环)。

浙江大学化工原理考研大纲

太原科技大学全国硕士研究生招生考试 业务课考试大纲(初试) 科目代码:837 科目名称:化工原理 1.前言 化工原理课程研究生入学考试主要测试考生化工单元操作的掌握情况。测试分两个方面:一是化工单元过程原理,测试考生基本概念,过程计算和熟悉程度;二是综合应用化工单元过程原理能力,从而对考生有较全面的评价。 2.题型说明 化工原理考试采用闭卷考试,试卷由以下三部分构成: (1)基本概念题:由选择题、填空题和解答题构成。 (2)计算题:包括过程计算、公式推导。 (3)实验题:包括实验设计、实验原理和实验现象解释。 3.考试内容 3.1绪论 (1)化学工程及其发展。 (2)化工原理课程的性质、内容和任务。 (3)四个基本关系:物料衡算、热量衡算、平衡关系及速率关系。 3.2流体流动 (1)流体静力学方程及其应用。 (2)流量与流速、定态与非定态流动、连续性方程式、能量衡算式、柏努利方程式的应用。 (3)牛顿粘性定律与流体的粘度、非牛顿型流体的概念、流动类型与雷诺准数、滞流与湍流、边界层的概念。 (4)流体在直管中的流动阻力、摩擦系数、因次分析、管路上的局部阻力、管路系统中的总能量损失。 (5)并联管路与分支管路。 (6)测速管、孔板与文丘里流量计和转子流量计。 3.3流体输送设备 (1)离心泵的工作原理和主要部件、离心泵的基本方程式、离心泵的性能参数与特性曲线、离心泵的性能改变和换算、离心泵的气蚀现象与允许吸上高度、离心泵的工作点与调节、离心泵的联用、离心泵的类型与选用。其它类型泵,如往复泵、旋转泵、漩涡泵的工作原理和适用范围。 (2)离心通风机的结构、性能参数和选择,离心鼓风机和压缩机、旋转鼓风机、真空泵。 3.4非均相物系的分离 (1)沉降速度、降沉室、沉降槽。 (2)过滤操作的基本概念、过滤基本方程式、恒压过滤、恒速过滤与先恒速后恒压过滤、过滤常数的测定、过滤设备、滤饼的洗涤、过滤机的生产能力。

中南大学液压传动试验报告书

液压传动与控制实验指导书 2018.9 实验一液压流体力学实验 实验二液压传动基础实验 实验三液压系统节流调速和差动回路实验 实验一液压流体力学实验 液压流体力学实验实验设备: 实验台参数: 潜水泵:型号HQB-2500;最大扬程:2.5m;最大流量:2000L/h; 额定功率:55W;电源:单相~220V。 恒压水箱:长×宽×高=280×420×400; 实验管A:管径Φ14,长约1.2 (m),沿程损失计算长度L=0.85 (m); 雷诺数实验水位:H=250~280(可调); 实验管B:小管内径Φ13.6,大管内径Φ20.2,轴线高度差140,总长约1.2 (m); 伯努利方程实验水位:H=370(可调); 实验台总尺寸:长×宽×高=1730×540×1470。 实验管道中液流循环如下(见图1) : ⑴.实验台由泵7供水到恒压水箱22,水箱内液体分别由实验管A(雷诺实验)和实验管B(伯努利方程实验)流入辅助水箱14,再返回到供水水箱8中循环使用。 ⑵.雷诺实验:颜色水容器1的颜色水径调节阀2调节,进入实验管A,随A管内的流动水一起运动,显示有色的流线;经节流阀9流出的微染色水,在辅助水箱14中与消色剂储器注入的消色剂混合,使有色水变清。 ⑶.实验中基准水平面的选取。 用本实验装置做以上各项实验时,其基准水平面一律选择为工作台面板的上平面。 ⑷.本实验指导书中各项实验所涉及的运算,均采用国际单位制。

1 雷诺实验 雷诺数是区别流体流动状态的无量纲数。对圆管流动,其下临界雷诺数 Re为2300 ~ c 2320。小于该临界雷诺数的流体为层流流动状态,大于该临界雷诺数则为紊流流动状态。工程上,在计算流体流动损失时,不同的Re范围,采用不同的计算公式。因此观察流体流动的流态,测定临界雷诺数,是《流体力学》课程实验的重要内容。 (一)、实验目的要求: ①.观察层流、紊流的流态及其转换特性; ②.测定临界雷诺数,掌握圆管流态判别准则;

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ?

化工原理实验仿真软件简介

化工原理实验仿真软件简介 在教育领域中,计算机不仅是一门学科,而且正逐渐成为有效的教学媒体和教育管理的有力工具。计算机辅助教学是以计算机为媒介,通过学生——计算机之间的交互活动达到教学目的的一种手段。 1. 化工原理实验模拟的发展 实验模拟(Experiment Imitation)是利用计算机的高级图形功能模拟真实的实验环境,通过计算机与操作者之间的交互活动,达到辅助实验教学的目的。实验模拟既是计算机辅助教学的一个重要组成部分,也可以自成体系,这种现代化的新方法,有助于培养学生分析问题、处理问题、解决问题的能力。 化工原理实验模拟系统为辅助化工原理实验教学而设计的软件包。近年来,国内许多高校在化工原理实验模拟方面做了大量的工作,因为化工原理实验模拟必须依托实际的实验装置,而各高校的化工原理实验装置不尽相同,再加上实验模拟投资小、运行费用低、安全、高效等特点,因而受到了高度的重视。北京化工大学早在1985年就开发了一套多功能的单元操作实验模拟软件系统,该系统具有动态画面、音响效果、启发教学、错误处理、自动评分等功能特点。由于开发时间较早,其最大的缺陷是不能独立于西文DOS系统运行,而需要CCDOS 中文汉字系统支撑。华南理工大学开发的化工原理实验模拟系统则较先进,该系统自带中文字库,可以脱离中文汉字系统运行,并且具有窗口式中文界面提示、画面清晰、动画与声响结合。此外,浙江大学开发的化工原理实验模拟系统软件的特点是以该校的实际装置为依托,图像具有3D立体效果。从以上的开发成果可以看出,化工原理实验模拟软件从最初的非中文界面,发展到依托中文操作系统,再发展到自带中文字库脱离汉字操作系统,最后发展到充分利用多媒体技术和3D图像技术,而且界面日趋友好,功能日渐增多。 2. 化工原理实验模拟的特点 化工原理实验模拟通过计算机模拟真实的实验操作,使学生能快速地掌握如何操作化工单元过程,熟练地测定、整理实验数据,而且可以提高学生对化工原理理论课程的学习兴趣。它具有如下特点: (1) 实验模拟可以模拟传统实验过程,形象生动、简明易懂,既有科学性又富有趣味性,有利于增强教学效果,可在较短的时间内使学生了解化工原理实验单元操作的方法和技巧。 (2) 实验模拟可以快速完成耗费时间很长的实验,并可不断地重复各个实验过程,有利于提高实验教学效果,降低实验运行费用。 (3) 实验模拟可以按实验者的意图任意改变“实验条件”,模拟许多非正常的操作,有利于改善学生在实验装置上操作的安全性。 (4) 实验模拟可以清晰地观察实验的变化规律,使学生获得更多的感性认识,有利于培养学生理论联系实际的能力。 3. 化工原理实验模拟系统的组成 开发化工原理实验模拟系统的目的在于将先进的模拟技术与传统的实验教学相结合,改进实验教学的效果,提高实验教学水平。该模拟系统以基于Windows

化工原理氧解吸实验报告

北京化工大学 化原实验报告 学院:化学工程学院 姓名:娄铮 学号: 2013011345 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15

实验名称: 氧 解 吸 实 验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压 降与空塔气速的关系,利用双对数坐标画出关系。其次做传质实验求取传质单元高度,利用 K x a =G A /( V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----=?X G A =L (x 2-x 1)求出 H OL = Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓 l g △p

化工原理实验报告

实验一伯努利实验 、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利 方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能一一位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒 的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨 擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 2 2 gz 1 -pι We = gz 2 l h f 1 2 2 式中: 乙、Z2 —各截面间距基准面的距离(m U1、U2 ――各截面中心点处的平均速度(可通过流量与其截面积求得)(m∕s) R、P2——各截面中心点处的静压力(可由U型压差计的液位差可知)(Pa) 对于没有能量损失且无外加功的理想流体,上式可简化为 2 2 gz 1 ? u「?也=gz 2 ? 4 ?卫丄测出通过管路的流量,即可计 2 P 2 P V2 算出截面平均流速V及动压2g ,从而可得到各截面测管水头和总水头。 三、实验流程图

5 8 7 6 泵额定流量为10L∕min,扬程为8m,输入功率为80W.实验管:内径15mm 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2 、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测 压管水 面是否齐平,若不平则进行排气调平(开关几次)。 3 、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头 之间的相 互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方 向的液 位差△ h ι???A h4。要注意其变化情况。继续开大流量调节阀,测压孔正对 水流方向,观察并记录各测压管中液位差△ h ι???A h4。 5、实验完毕停泵,将原始数据整理。 实验二离心泵性能曲线测定 、实验目的 1. 了解离心泵的构造和操作方法 2.学习和掌握离心泵特性曲线的测定方法 实验原理 离心泵的主要 功率N 和效率η 泵的扬程用下 性能参数有流量 Q (也叫送液能力)、扬程H (也叫压头)、轴 。 离心泵的特性曲线是 Q-H 、Q-N 及Q- η之间的关系曲线。 式计算: 2 2 He=H 压力表+H 真空表+H o +(u 岀-U 入)∕2g

化工原理实验报告吸收实验要点

姓名 院 专业 班 年 月 日 实验内容 指导教师 一、 实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数K Y a . 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速o u [m/s]为横坐标,单位填料层压降Z P ?[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量L 0=0时,可知 Z P ?~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,Z P ?~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。每条折线分为三个区段, Z P ?值较小时为恒持液区,Z P ?~o u 关系曲线斜率与干塔的相同。Z P ?值为中间时叫截液区,Z P ?~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。 Z P ?值较大时叫液泛区,吸收实验

姓名 院 专业 班 年 月 日 实验内容 指导教师 Z P ?~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。在液泛区塔已无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的Z P ?~o u 关系图 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收

离子交换树脂实验报告

中南大学化学化工学院化工专业实验 T11.离子交换实验(分离工程,指导教师:蒋崇文) 一、实验目的与要求 1. 学习采用离子交换树脂分离柠檬酸的基本原理。 2. 掌握离子交换法的基本操作技术。 3. 掌握离子交换法穿透曲线的测定方法 二、实验原理 待分离组分柠檬酸(HA表示)的溶液,在与强碱性树脂(HOR表示)进行离子交换时,3交换组分之间遵守如下化学计量关系: HA?3HOR?3AR?3HO233离子交换柱操作过程,可用流出曲线表征,称为穿透曲线,图11-1示。横坐标为流出液体的体积,纵坐标为流出液中离子浓度。流出曲线反映了恒定流速时,不同时刻流出液中离子浓度的变化规律。流出曲线中的a和b段,离子交换树脂未饱和,流出液中不含被交换离子,随着离子交换树脂开始饱和,流出液中开始出现被交换离子,流出液浓度为0.05C 时0称为穿透点c,流出曲线中的d段,离子交换树脂进一步被饱和,流出液中被交换离子继续增加,流出曲线到达e点时,树脂被完全饱和,流出液中离子浓度达到进料液中水平0.95C0成为饱和点。此时流出的体积为饱和体积。离子交换的实验装置图11-2示。 离子交换的穿透曲线11.1图 中南大学化学化工学院化工专业实验

原料热水出阴离子交换树热水进图4-2 离子交换实验装置图11.2 离子交换的装置图 三、试剂与材料 强碱型树脂,2mol/L盐酸溶液;2mol/L氢氧化钠溶液,0.1mol/L氢氧化钠溶液,1%酚酞指示剂。 四、器材 50cm×1cm交换柱,碱式滴定管,收集试管,烧杯,150ml锥形瓶。 五、实验步骤 1. 树脂的处理 将干的强碱型树脂用蒸馏水浸泡过夜,使之充分溶胀。用2倍体积的2mol/L的氢氧化钠浸泡1小时,倾去清液,洗至中性。再用2mol/L的盐酸处理,做法同上。如此重复2次,每次酸碱用量为树脂体积的2倍。最后一次处理用2mol/L的NaOH溶液进行,放尽碱液,用清水淋洗至中性待用。 2. 装柱 取直径1cm,长度50cm的交换柱,用脱脂棉塞住玻璃柱的下部。将柱垂直置于铁架上。自顶部注入上述经处理的树脂悬浮液,关闭层析柱出口,待树脂沉降后,放出过量溶液,再加入一些树脂,至树脂沉降至25cm的高度。 3.柠檬酸水溶液的滴定 用配置好的0.2mol/L的NaOH溶液滴定2ml配置好的柠檬酸水溶液中酸的浓度,以1%酚酞溶液作指示剂,共消耗NaOH溶液22.12ml。 4.柠檬酸的离子交换 用步骤3中的柠檬酸水溶液过柱,调节流速为0.5~1mL/min(1滴/秒),同时用试管开始滴定收集液中酸的NaOH标准0.1mol/L管。用15~20,共收集约5ml收集流出液,每管收集. 中南大学化学化工学院化工专业实验 浓度。用收集液酸浓度C对收集流出液体积V作图,得到柠檬酸离子交换的穿透曲线。 六、数据处理 C=0.2mol/L 柠檬酸的浓度约0.35mol/L NaOH 表11.1 柠檬酸水溶液的滴定数据:

相关主题