搜档网
当前位置:搜档网 › 第四章价键理论晶体场理论

第四章价键理论晶体场理论

第四章价键理论晶体场理论
第四章价键理论晶体场理论

第三章配合物的化学键理论

内容:研究中心原子和配体之间结合力的本性。

目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。

四种理论:①价键理论、②晶体场理论、③分子轨道理论、④角重叠模型

第一节价键理论(Valence bond theory)

由L.Pauling提出

要点:①配体的孤对电子可以进入中心原子的空轨道;

②中心原子用于成键的轨道是杂化轨道(用于说明构型)。

一、轨道杂化及对配合物构型的解释

能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。

对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)

指向实例

sp3、sd3杂化四面体顶点Ni(CO)4

sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-

dsp2、d2p2 杂化正方形顶点[PtCl4]2-

d2sp3杂化八面体顶点[ Fe(CN)6]4-

sp杂化直线型[AgCl2]-

二、AB n型分子的杂化轨道

1、原子轨道的变换性质

考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。

类型轨道多项式

s

p x x

p p y y

p z z

d xy xy

d xz xz

d d yz yz

d x2-y2x2-y2

d z22z2-x2-y2(简记为z2)

轨道波函数是与轨道符号下标多项式按相同的方式变换的。

*在注意到特征标表右边某列中轨道的多项式标记后,即可确定轨道的变换性质。

*s轨道总是按全对称表示变换的。

例:[HgI3]- (D3h群)平面三角形

A1′:d z2、s

E′:(p x、p y )、(d x2-y2、d xy)

A2″:p z

E″:(d xz、d yz)

2、σ轨道杂化方案(如何确定某一组杂化轨道由哪些原子轨道组成)

1)四面体分子AB4(Td)[CoCl4]2-

原子A以哪些原子轨道组成在原子A上四个σ轨道的集合,其中每个轨道的瓣指向B原子。

以四个杂化轨道的集合(或四个B原子上指向A 原子的σ轨道的集合)作为分子点群(Td)表示的基,确定该表示的特征标:

①不变(1)

对杂化轨道波函数的操作有三种情况:②改变符号(-1)

③与其他函数变换(0)

r1

r2r3

r4

恒等操作,χ(E)=4 C3操作,χ(C3)=1

对C2、S4和σd用同样方法处理,得

T d E 8C3 3C26S46σd

Γ 4 1 0 0 2

约化:

T d E 8C3 3C2 6S46σd

A1 1 1 1 1 1

A2 1 1 1 -1 - 1

E 2 -1 2 0 0 (z2, x2-y2)

T1 3 0 -1 1 -1

T2 3 0 -1 -1 1 (xy,xz,yz) (x,y,z)

a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1

a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×2]=0

a(E)= 1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]=0 a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0

a(T2)=1/24

[3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]=1

约化结果Γ=A1+T2

这说明组成杂化轨道的四个原子轨道中,必有一个是属于A1表示的原子轨道,另三个为属于T2表示的三个原子轨道。

由特征标表:

A1T2

s (p x、p y、p z)

(d xy、d xz、d yz)

可有两种组合:

sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)

* 以一组杂化轨道为基的表示的特征标的简化计算规则:

特征标等于不被操作移动的轨道数目。

2)再以[CdCI5]3-三角双锥(D3h)为例:

4

1

3

2

5

D3h E 2C33C2 σh2S3 3σv

Γ 5 2 1 3 0 3

约化:

D3h E 2C3 3C2 σh 2S3 3σv

A1′ 1 1 1 1 1 1 z2

A2′1 1 - 1 1 1 -1

E′ 2 -1 0 2 -1 0 (x,y) (x2-y2,xy)

A1″1 1 1 -1 -1 -1

A2″ 1 1 -1 -1 -1 1 z

E″ 2 -1 0 -2 1 0 (xz,yz)

a(A1′) = 1/

[1×5+2×1×2+3×1×1+1×3+2×1×0+3×1×3]=2

12

a(A2′) = 1/12 [1×5+2×1×2+3×(-1)×1+1×3+2×1×0+3×(-1)×3]=0

a(E′) = 1/12 [2×5+2×(-1)×2+3×0×1+2×3+2×(-1)×0+3×0×3]=1 a(A1″) = 1/12 [1×5+2×1×2+3×1×1+(-1)×3+2×(-1)×0+3×(-1)×3]=0 a(A2″) = 1/12 [1×5+2×1×2+3×(-1)×1+(-1)×3+2×(-1)×0+3×1×3]=1 a(E″) = 1/12 [2×5+2×(-1)×2+3×0×1+(-2)×3+2×1×0+3×0×3]=0

结果:Γ=2A1′+A2〞+E′

A1′A2〞E′

s p z (p x、p y)

d z2(d xy、d x2-y2)

两种可能的组合:(s、d z2、p z 、p x、p y)

( s、d z2、p z、d xy、d x2-y2)

3)[HgI3]- ( D3h)

1

2

3

D3h E 2C3 3C2 σh2S33σv

Γ 3 0 1 3 0 1

约化得:Γ=A1′+E′

A1′E′

s (p x、p y)

d z2(d xy、d x2-y2)

可能的组合有:(s、p x、p y)、(s、d xy、d x2-y2)、

(d z2、p x、p y)、(d z2、d xy、d x2-y2) 4)平面AB4型分子(D4h)例:[PtCl4]2-

C2′

C2″

D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σd

Γ 4 0 0 2 0 0 0 4 2 0

约化得:Γ=A1g+B1g+E u

A1g B1g E u

s d x2-y2(p x、p y)

d z2

两种类型:

dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+

r1

r2

r5

r3

r4

r6

O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σd

Γ 6 0 0 2 2 0 0 0 4 2

约化得:Γ=A1g+E g+T1u

A1g E g T1u

s (d z2、d x2-y2) (p x、p y、p z)

只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)

3、π成键杂化方案

σ与π的区别:σ键定义:没有包含键轴的节面的轨道

π键定义:有一个包含键轴的节面的轨道。

在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。这两者应为分子对称群的同一表示的基。

再者,B原子上的各个π原子轨道,可以用垂直于A-B连线并指向于波函数正值方向的一个向量来表示。每个B原子上有两个这样成直角的向量。

1)以AB3(D3h)为例:

在平面分子的情况下,为方便起见,令B原子上一个向量垂直于分子平面,则另一向量必在分子平面内。

1 4 5

3

2

6

(垂直)(平行)

任何操作中,垂直于平面的向量不与平面内向量交换。

这说明每一组各自独立地得到一个表示:

D3h E 2C33C2σh2S3 3σv

Γ(⊥) 3 0 -1 -3 0 1

Γ(‖) 3 0 -1 3 0 -1

Γ(⊥)=A2″+E″

Γ(‖)=A2′+E′

为使A原子与每一个B原子形成一个垂直于分子平面的π键,它必须由属于A2″的一个原子轨道和两个属于E″的简并轨道构成杂化轨道。

由D3h特征标表,得:

A2″E″

p z(d xz,d yz)

因此可由(p z、d xz、d yz)组成一组等价的杂化轨道。

再考虑π(‖) 键:

A2′E′

没有(p x、p y)

(d x2-y2、d xy)

由于没有A2′对称性原子轨道,因此不能形成一组三个等价的π(‖)键,但并不表示不能形成π(‖)键,也不表示只有两个B原子可以形成π(‖)键。它仅表示两个π(‖)键平均分配在三个B原子间。

若σ成键和π成键属于相同的表示,而属于该表示的有两个(或两组)轨道,则σ和π成键均可得到满足。但单纯在对称性基础上,对于哪一组属于σ成键或π成键的问题不能明确回答。

2)再考虑AB6(O h)分子

给每个B原子附上两个向量,并考虑对称操作的影响。

可以注意到,对称操作会使每一个向量和其他向量交换,这说明所有十二个π键属于同一个集合。

x y x

C2C4

y x y

O h E 8C36C26C43C2(=C42) i 6S4

8S6 3σh6σd

Γ 12 0 0 0 -4 0 0 0 0 0

约化得:Γ=T1g+T2g+T1u+T2u

由O h特征标表:

T1g T2g T1u

T2u

没有(d xy、d xz、d yz) (p x、p y、p z)

没有

因此存在十二个A-Bπ键的完整组合是不可能的。

* 若σ成键和π成键所要求的轨道属于相同的表

示,而属于该表示的只有一个(或一组)轨道,通常

假定优先形成σ键。

因此T1u轨道(p x、p y、p z)已用于形成一组σ键,不

能再用来形成π键,只有三个T2g轨道(d xy、d xz、d yz)

可用于π成键。

即三个π键平均分配在六个A-B原子之间,在效果

上每一个A-B之间获得1/2个π键

3)考虑AB4(D4h) 分子

1 2 5

3 4 6 7

8

8个可能的π键分为两组,四个垂直于分子平面,

而另外四个在分子平面内:

D4h E 2C4C22C2′2C2″i 2S4

σh2σv2σd

Γ(⊥) 4 0 0 -2 0 0 0 -4 2 0

Γ(‖) 4 0 0 -2 0 0 0

4 -2 0

约化: Γ(⊥)=A2u+ B2u+ E gΓ(‖)=A2g+B2g+E u

由D4h特征标表:

A2u B2u E g A2g B2g E u

p z无(d xz、d yz ) 无d xy ( p x、p y)

两组π键均不完整。

由于p z、d xz、d yz未参与σ键,因此有3个垂直的π键分配在四个A-B之间。

由于p x、p y已用于σ成键,只有d xy轨道形成一个在平面内的π键,平均分配在四个A-B之间。

4)AB4(T d)分子

在每个B原子上指定一对向量,使它们的取向和要形成的A-Bπ键具有相同的变换性质,从而也在原子A上要求的轨道具有相同的交换性质。(这些向量属于同一集合)。

y y

β

α

x x

θβ

θ+β= 2α+β= 90°-cos60°+ (-cos60°) = -1

θ= 2α

cos2α+ (-cosθ) = 0

以这些向量作为基的表示的特征标:

T d E 8C33C26S46σd

Γ8 -1 0 0 0

约化:Γ=E+T1+T2

由T d群特征标表,得:

E T1 T2

(d x2-y2、d z2) 无(p x、p y、p z)

(d xy、d xz、d yz)

即在A-B间只能形成5个π键。只有一组T2轨

道可以应用(另一组已用于σ键)。它可以是(p x、p y、p z),也可以是(d xy、d xz、d yz),或是这两组极限轨道构成的三个p-d混合轨道的集合。

4、杂化轨道作为原子轨道的线性组合

1)分析

现在已知为了构筑一组与相邻原子成σ键和(或)π键的杂化轨道。要求中心原子哪些原子轨道参与。现说明如何写出每个轨道的表达式。

以AB4(D4h) 为例:设杂化轨道由(s、d x2-y2、p x、p y)组成

φ1=c11s + c12d x2-y2+ c13p x + c14p y

φ2=c21s + c22d x2-y2+ c23p x + c24p y

φ3=c31s + c32d x2-y2+ c33p x + c34p y

φ4=c41s + c42d x2-y2+ c43p x + c44p y

写成矩阵形式:c11c12c13c14 s φ1

c21 c22c23c24 d x2-y2= φ2

c31c32c33c34 p x φ3

c41c42c43c44 p y

4

显然可进行相反的变换

d11d12d13d14 φ1s

d21d22 d23d24φ 2 = d x2-y2

d31d32d33d34 φ3 p x

d41d42d43d44φ4 p y

矩阵D是矩阵C的逆矩阵。因此若能找出D,则可解决问题。

*D矩阵描述了将4个为一组的等价函数转换成一组具有原子轨道对称性的线性组合的变换关系。

已知:投影算符可以做出这种符合对称性的线性组合,它的系数就是D矩阵的矩阵元。

即:如果用投影算符将一组等价的σ轨道(中心原子的杂化轨道φ1、φ2、φ3、φ4)或是(相邻原子上的σ轨道σ1、σ2、σ3、σ4)(*它们具有完全相同的变换性质)变换成SALC(对称性匹配的线性组合),即可得到一组D矩阵.

* 既可选用原子A上的杂化轨道(φ1、φ2、φ3、φ4

),也可选用B原子上的σ轨道(σ1、σ2、σ3、σ4),因为其对称性相同。为了与分子轨道理论一致,选用(σ1、σ2、σ3、σ4)。

y x y

x

杂化轨道B原子的等价原子轨道

(φ1,φ2,φ3,φ4)(σ1,σ2,σ3,σ4)

2)杂化轨道构筑方法

①以B原子上等价原子轨道集合为基,写出相应的表示,并分解为不可约表示;

②用等价原子轨道(σi)通过投影算符构筑出对应于上一步所求出的不可约表示的SALC(对称性匹配的线性组合——群轨道);

③写出SALC系数的矩阵,并求出其逆矩阵(即转置矩阵);

④将所得的矩阵应用于原子轨道的列向量(按它们所属表示的正确次序)以产生杂化轨道。

第二章 价键理论、晶体场理论

第二章配合物的化学键 理论 内容:研究中心原子和配体之间结合力的本性。 目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。 三种理论:①价键理论、②晶体场理论、③分子轨道理论 第一节价键理论(Valence bond theory) 由L.Pauling提出 一、理论要点: ①配体的孤对电子可以进入中心原

子的空轨道;中心原子总是用空轨道杂化,然后用杂化轨道接收配体提供的孤对电子。 ②中心原子用于成键的轨道是杂化轨道(用于说明构型)。中心原子的价层电子结构与配体的种类和数目共同决定杂化类型。 ③杂化类型决定配合物的空间构型,磁距和相对稳定性。 二、轨道杂化及对配合物构型的解释 能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。 对构型的解释(依据电子云最大

重叠原理:杂化轨道极大值应指向配体) 指向实例 sp3、sd3杂化四面体顶点Ni(CO)4 sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2- dsp2、d2p2 杂化正方形顶点[PtCl4]2- d2sp3杂化八面体顶点[ Fe(CN)6]4- sp杂化直线型[AgCl2]-

三、内轨型和外轨型 若要形成ML6型配合物(L为单齿配体),则需要6个空杂化轨道接收6个L提供的孤电子对,满足该条件的杂化类型有d2sp3和sp3 d2。尽管这两种杂化都导致八面体型配合物,但前者是次外层(n-1)d轨道,而后者是最外层nd轨道,因此与这两种杂化相应的配合物分别称内轨型和外轨型配合物。 中心原子的价层电子数和配体的性质都是影响配合物内轨型和外轨型的因素。当d电子数≤3时,该层空d轨道≥2,总是生成内轨型配合物。

1第二章 晶体的结合答案(共90道题)

目录 第二章晶体的结合题目(共90道题) (2) 一、名词解释(共12道题) (2) 二、简答题:(共33道题) (3) 三、作图题(共2道题) (12) 四、证明题(共8道题) (13) 五、计算题(共35道题) (22)

第二章晶体的结合题目(共90道题) 一、名词解释(共12道题) 1.晶体的结合能 答:一块晶体处于稳定状态时,它的总能量(动能和势能)比组成此晶体的N个原子在自由状态时的总能量低,两者之差就是晶体的结合能。 2.电离能 答:一个中性原子失去一个电子所需要的能量。 3.电子的亲和能 答:指一中性原子获得一个电子成为负离子时所放出的能量。 4.电负性 答:描述化合物分子中组成原子吸引电子倾向强弱的物理量。 5.离子键 答:两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.共价键 答:量子力学表明,当两个原子各自给出的两个电子方向相反时,能使系统总能量下降,从而使两个原子结合在一起,由此形成的原子键 合称为共价键(原子晶体靠此种键相互结合)。 7.范德瓦尔斯键 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用称为范德瓦耳斯力。 8.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 9.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子

的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 10.葛生力 答:葛生力是极性分子的永久偶极矩间的静电相互作用。 11.德拜力 答:德拜力是非极性分子被极性分子电场极化而产生的诱导偶极矩间的相互作用。 12.伦敦力 答:伦敦力:非极性分子的瞬时偶极矩间的相互作用。 二、简答题:(共33道题) 1.试解释一个中性原子吸收一个电子一定要放出能量的现象. 答:当一个中性原子吸收一个电子变成负离子, 这个电子能稳定的进入原子的壳层中, 这个电子与原子核的库仑吸引能的绝对值一定大于它与其它电子的排斥能. 但这个电子与原子核的库仑吸引能是一负值. 也就是说, 当中性原子吸收一个电子变成负离子后, 这个离子的能量要低于中性原子原子的能量. 因此, 一个中性原子吸收一个电子一定要放出能量。 2.何理解电负性可用电离能加亲和能来表征? 答:使原子失去一个电子所需要的能量称为原子的电离能, 电离能的大小可用来度量原子对价电子的束缚强弱. 一个中性原子获得一个电子成为负离子所释放出来的能量称为电子亲和能. 放出来的能量越多, 这个负离子的能量越低, 说明中性原子与这个电子的结合越稳定. 也就是说, 亲和能的大小也可用来度量原子对电子的束缚强弱. 原子的电负性大小是原子吸引电子的能力大小的度量. 用电离能加亲和能来表征原子的电负性是符合电负性的定义的。

关于培养晶体一些理论

1 对于分子量比较大的物质(比如说普通配体),一般用极性相 差较大的,比如三氯甲烷和乙醇;对于分子量较大的如杯芳烃,一般用极性相差较小的,比如三氯甲烷和甲苯 2 选择的比例一般是惰性溶剂:良性溶剂=2:1 晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。 晶体生成的一般过程是先生成晶核,而后再逐渐长大。一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段; ②成核阶段;②生长阶段。 在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶。体系内各处首先出现瞬时的微细结晶粒子。这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上。这种形成结晶微粒子的作用称之为成核作用介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作 用。在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用。均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核。非

均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核。因之在过冷却度很小时亦能局部地成核在单位时间内,单位体积中所形成的核的数目称成核速度。它决定于物质的过饱和度或过冷却度。过饱和度和过冷却度越高,成核速度越大。成核速度还与介质的粘度有关,轮度大会阻碍物质的扩散,降低成核速度晶核形成后,将进一步成长。下面介绍关于晶体生长的两种主要的理论。 一、层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位臵是具有三面凹入角的位臵。质点在此位臵上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位臵是能量上最有利的位臵,即结合成键时应该是成键数目最多,释放出能量最大的位臵。质点在生长中的晶体表面上所可能有的各种生长位臵: k为曲折面,具有三面凹人角,是最有利的生长位臵;其次是S阶梯面,具有二面凹入角的位臵;最不利的生长位臵是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的

2021年固体物理 第二章 晶体的结合

第二章晶体的结合 一、 欧阳光明(2021.03.07) 二、填空体 1. 晶体的结合类型为:共价结合、离子结合、分子结合、金属结合和氢键结合。 2. 共价结合的特点方向性和饱和性。 3. 晶体中原子的相互作用力可分为两类吸引力和排斥力。 4. 一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。 5. 金属具有延展性的微观根源是金属原子容易相对滑动。 6. 石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。 7. GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。 二、基本概念 1. 电离能 始原子失去一个电子所需要的能量。 2.电子的亲和能 电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。 3.电负性 描述化合物分子中组成原子吸引电子倾向强弱的物理量。

4.共价键 原子间通过共享电子所形成的化学键。 5.离子键 两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.范德瓦尔斯力 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。 7.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 8.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 三、简答题 1.共价结合为什么有“饱和性”和“方向性”? 答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这

晶体场理论

§3-2 晶体场理论 ㈠ 晶体场模型 晶体场理论的基本观点:络合物的中心原子(或离子)和周围配体之间的相互作用是纯粹的静电作用。 ? 这种化学键类似于离子晶体中正、负离子间的静电作用,不具有共价键的性质。 在自由的过渡金属离子中,5个d 轨道是能量简并的,但在空间的取向不同。下面的角度分布图画出了各个d 轨道的空间取向, x y d x y x z d x z y z d y z x y d x 2 -y 2 x z d z 2 在电场的作用下,原子轨道的能量升高。 ① 在球形对称的电场中,各个d 轨道能量升高的幅度一致。 能量自由原子中的d 轨道 球对称电场中原子中的d 轨道 ② 在非球形对称的电场中,由于5个d 轨道在空间有不同取向,根据电场的对称性不同,各轨道 能量升高的幅度可能不同,即,原来的简并的d 轨道将发生能量分裂,分裂成几组能量不同的d 轨道。配体形成的静电场是非球对称的。 配位场效应:中心原子(或离子)的简并的d 轨道能级在配体的作用下产生分裂。 ㈡ 晶体场中的 d 轨道能级分裂 ⑴ 正八面体场(O h )中的d 轨道能级分裂 ① d 轨道的分裂 六个配体沿 x,y,z 轴的正负6个方向分布,以形成电场。配体的孤对电子的负电荷与中心原子d 轨道中的电子排斥,导致d 轨道能量升高。 ? 如果将配体的静电排斥作用进行球形平均,该球形场中,d 轨道能量升高的程度都相同,为E s 。

? 实际上各轨道所受电场作用不同, d z 2和d x 2-y 2的波瓣与六个配体正对,受电场的作用大,因此能量的升高程度大于在球形场中能量升高的平均值。而d xy 、d yz 、d xz 不与配体相对,能量升高的程度相对较少。 自由原子 xy yz xz d x 2-y 2d z 2 (d g 或e g )(d e 或t 2g ) 高能量的d z 2和d x 2-y 2轨道(二重简并)统称为d g 或e g 轨道;能量低的d xy 、d yz 、d xz 轨道(三重简并)统称为d e 或t 2g 轨道。前者是晶体场理论所用的符号,后者是分子轨道理论所用的符号。 e g 和t 2g 轨道的能量差,或者,电子从低能d 轨道进入高能d 轨道所需要的能量,称为分裂能,记做D 或10D q 。D q 是分裂能D 的1/10。八面体中的分裂能记做D O 。 ② d 轨道的能量 量子力学指出,在分裂前后,5个d 轨道的总能量不变。以球形场中d 轨道的能量为零点,有 ?? ???=+D =-03222g g g g t e O t e E E E E 解方程组,得到分裂后两组d 轨道的能量分别为 ??????? -=D -==D =q O t q O e D E D E g g 452 6532 ⑵ 正四面体场(T d )中的d 轨道能级分裂 ① d 轨道的分裂 坐标原点位于上图所示的立方体(红色线条)的中心,x,y,z 轴分别沿立方体的三条边方向。配体的位置如上图所示,形成正四面体场。 ? 在正四面体场中,d xy 、d yz 、d xz 离配体近,受电场的作用大,因此能量的升高程度大;而d z 2和d x 2-y 2 的能量则较低。 自自自自 自自自 x 2-y 2z 2 (d g 自e ) (d e 自t 2) 正四面体场中的分裂能记做D T 。 ? 正四面体场中只有四个配体,而且金属离子的d 轨道未直接指向配体,因而,受配体的排斥作用不如在八面体中那么强烈,两组轨道的差别较小,其分裂能D T 只有D O 的4/9。

固体物理 第二章 晶体的结合知识讲解

第二章晶体的结合 一、填空体 1. 晶体的结合类型为:共价结合、离子结合、分子结合、金属结合和氢键结合。 2. 共价结合的特点方向性和饱和性。 3. 晶体中原子的相互作用力可分为两类吸引力和排斥力。 4. 一般固体的结合可概括为范德瓦耳斯结合、金属结合、离子结合和共价结合四种基本类型。 5. 金属具有延展性的微观根源是金属原子容易相对滑动。 6. 石墨晶体的结合涉及到的结合类型有共价结合、氢键结合和金属结合。 7. GaAs晶体的结合涉及到的结合类型有共价结合和离子结合。 二、基本概念 1. 电离能 始原子失去一个电子所需要的能量。 2.电子的亲和能 电子的亲和能:一个中性原子获得一个电子成为负离子所释放出的能量。 3.电负性 描述化合物分子中组成原子吸引电子倾向强弱的物理量。 4.共价键 原子间通过共享电子所形成的化学键。 5.离子键 两个电负性相差很大的元素结合形成晶体时,电负性小的原子失去电子形成正离子,电负性大的得到电子形成负离子,这种靠正、负离子之间库仑吸引的结合成为离子键。 6.范德瓦尔斯力 答:分子晶体的粒子间偶极矩相互作用以及瞬时偶极矩相互诱生作用力称为范德瓦耳斯力。 7.氢键 答:氢原子处于两个电负性很强的原子(如氟、氧、氮、氯等)之间时,可同时受两个原子的吸引而与它们结合,这种结合作用称为氢键。 8.金属键 答:在金属中,组成金属的原子的价电子已脱离母原子而成为自由电子,自由电子为整个晶体共有,而剩下的离子实就好像沉浸在自由电子的海洋中。自由电子与离子实间的互相吸引作用具有负的势能,使势能降低形成稳定结构。这种公有化的价电子(自由电子)与离子实间的互作用称为金属键。 三、简答题 1.共价结合为什么有“饱和性”和“方向性”? 答:饱和性:当一个原子与其它原子结合时,能够形成共价键的数目有一个最大值,这个最大值决定于它所含的未配对的电子数,这个特性称为共价键的饱和性。 方向性:两个原子在以共价键结合时,必定选取尽可能使其电子云密度为最大的方位,电子云交迭得越厉害,共价键越稳固。这就是共价键具有方向性的物理本质。

第二章 晶体的结合知识分享

第二章 晶体的结合 1.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。 2.有人说“晶体的内能就是晶体的结合能”,对吗? 解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N 个原子在自由时的总能量之差,即0E E E N b -=。(其中b E 为结合能,N E 为组成这晶体的N 个原子在自由时的总能量,0E 为晶体的总能量)。而晶体的内能是指晶体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。 3.当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的? 解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先引力大于斥力,总的作用为引力,0)(r f ,而相互作用势能)(r u 也开始急剧增大。 4.为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好? 解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、导电性和导热性都较好。 5.有一晶体,在平衡时的体积为0V ,原子之间总的相互作用能为0U ,如果原子间相互作用能由下式给出: n m r r r u β α + - =)(, 试证明弹性模量可由[])9/(00V mn U 给出。 解:根据弹性模量的定义可知 022V V dV U d V dV dP V K ???? ??=??? ??-= …………………(1) 上式中利用了dV dU P - =的关系式。

晶体生长理论发展现状

晶体生长理论发展现状 人造晶体是一种重要的材料,随着科技的进步,合成手段不断的发展,晶体在精密光学仪器,激光武器,甚至日常生活等方面扮演越来越重要的角色。近些年来,基础学科(如物理学,化学)和制备技术的不断进步,晶体生长理论的研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的学科。晶体生长理论在经历了Bravais法则、负离子配位多面体生长基元模型等理论后日趋发展完善。但近些年来的研究,特别是对空心晶体的研究显示了晶体生长理论新的迹象。周午纵等提出的逆向晶体生长理论不仅完善了晶体生长的理论,同时也为我们更好地认识空心晶体,研究制备晶体提供了新的途径。传统晶体生长理论 传统晶体生长理论认为,晶体的形成是由晶体的成核和生长两个过程组成。完美的多面体外形是以晶核为中心逐渐长大形成的,经历基元的形成、基元在生长界面上的吸附、基元在界面的运动和基元在界面上结晶和脱附等过程。传统晶体生长理论自开始研究,主要经历了以下5个阶段: 1.晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Curie-Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件。以晶体平衡形态理论解释晶体生长形态--晶面的发育。但它们共同的局限性是:没有考虑外部因素(环境相和生长条件)变化对晶体生长的影响,无法解释晶体生长形态的多样性。 2.界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用。以界面生长理论解释晶核长大的动力学模型。现有的界面结构模型有以下局限性:晶体结构过于简单;没有考虑环境相(溶液、熔体或气体)的结构;在界面上吸附的基元限定为单个原子。 3.PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。对于环境相结构效应的忽

价键理论的建立和发展

价键理论的建立和发展 作者沈逸然黄禾琳彭晨张鸿 单位北京大学化学与分子工程学院 内容提要 价键理论是二十世纪化学科学所取得的最重要的成果之一,它第一次向世人揭示了物质结构的微观本质,把化学领向了一个更为壮观的全新领域。而它的主要缔造者Pauling 更是化学史以及科学史上闻名遐迩的一代宗师。本文简明扼要地追述了价键理论的建立与发展,带领读者感受这一段波澜壮阔的历史,领略物质世界的奇妙无穷。当然,限于篇幅,本文一定还有很多细节难以满足您求知的欲望,在此致以诚挚的歉意。 关键词 量子价键杂化 人物 Heitler London Pauling Sidgwick 第一幕量子化学的暴风骤雨 在波动力学没有被发现之前,化学键是化学家和物理学家的一个大问题。大概的说,原子、分子间的吸引,有三种形式的化学力:离子键,共价键,范德华力。关于两异性电荷的离子会吸引,是当然的。范德华力与化学键相比,通常是非常弱的。问题的困难在于,基于古典物理学我们不能了解何以两个中性原子,如两个氢原子,会形成分子。况且共价键有个显著特点,那就是会饱和:一个氢原子可与另外一个氢原子结合,但不能和两个或三个氢原子结合;一个碳原子可与

四个氢原子结合,但不能与四个以上结合。即使在古典物理学中已知道中性粒子间有很强的引力,亦不可能说明为什么第三个原子不能够被已结合的二原子所吸引。饱和的特性对古典物理学家来说是不可理解的。在1927年,Heitler和London用波动力学解决了此问题,波动力学不仅能解释中性原子间的吸引,亦可使我们对饱和性质有完全的了解。 我们先来回顾一下量子化学建立的过程。 1924年,法国物理学家de Broglie针对Bohr原子结构理论所面临的困难,提出了电子等粒子的运动具有波粒二象性的假说,同时提出了物质波的概念和联系波动性和粒子性的de Broglie关系式。 Heisenberg在研究Bohr假设之后于1925 年提出关于原子的理论:矩阵力学。后来德国物理学家Born和Heisenberg等共同完成这个理论,Born称其为量子力学。 1926年,奥地利物理学家Schrodinger建立了类似于波动方程的关于物质波的偏微分方程——即Schrodinger方程,创立了波动力学。他认为波动力学和矩阵力学在数学上是等价的,de Broglie关系式也可以划入这个理论。于是量子力学这个关于微观世界客观运动的最基本的理论诞生了。 量子力学一经问世便引起了化学家的注意,他们很快就将量子力学运用到化学键领域的研究上。 1927年,德国物理学家Heitler和London合作用量子力学的Schrodinger方程来研究最简单的氢分子取得量子化学的最初成绩。他

晶体生长理论发展简史

晶体生长理论发展简史 摘要:本文介绍了从二十世纪初至二十世纪五十年代晶体生长理论和实验知识方面的发展历史。综述内容涉及大多数相关论文的完整地评述、晶体生长发展编年表以及历届晶体生长会议。 结晶工艺技术至少可以追溯到先于人类大部分有文字记载的历史。利用海水蒸发结晶食盐在很多地方史前就已经开始了,并且可以被认为这是人类最早转变材料的技术方法之一,也许它还可与古人的陶瓷烧结技术相提并论。结晶过程记载于文献中远早于公元前。罗马人Plinius在他的《自然史》提到了许多关于盐,例如硫酸盐的结晶问题。中世纪欧洲和亚洲的炼丹术士对结晶过程和现象已经有较详尽的了解。炼丹术士Geber早在十二世纪至十三世纪已经在其论文中介绍了通过重结晶、升华和过滤的方法制备和纯化各种材料。 到中世纪末,总的技术进步也导致了在材料生产和转化方面相应技术的进步。在十六世纪中叶,Birringuccio(1540年)祥尽记载了通过重结晶沥滤和纯化硝盐;以及萨克逊科学家Agricola(1556年)在他的著名的、更广泛影响的著作《论金属?De re metallica》中介绍了如何生产食盐、明矾和硫酸盐(见图1) 图1硫酸盐的结晶生产(用绳子作为晶种) 到十七世纪已开始越来越多地使用具有现代普通意义上的“结晶”一词。最初Homer (荷马)用“crystallos”一词只表示冰晶体,古人已经将其延伸到石英晶体(岩石晶体)。同样在十七世纪准确意义上的结晶“Crystallization”一词开始使用,以替代早期使用的诸如凝固“Condensation”和絮凝“Coagulation”的一类表述。 1611年新年晚上的雪花飘落在Johannes Kepler的衣袖上为其著名的论文《新年的礼物,或论六角形雪花》一文的起始点。Kepler推断雪花晶体是由球状颗粒密堆而成,并就此提出了关于晶体形貌和结构的正确原则。约五十年后,Hooke(1665年)在对很多种晶体微结构观察的基础上,在其撰文《Micrographia》中指出任何晶体的形貌可以由球状颗粒排列堆积而实现。仔细观察一下Kepler的晶体堆积图,并回忆一下Agricola和上文提及到的他的先驱者们的工作,可以认为在晶体生长发展的早期,无论在晶体生长还是在晶体结构方面最基础的知识已经开始应用。 的确,从晶体发展的历史回顾可以看到晶体形貌学的现代科学发展始于十七世纪。大约在1600年,Caesalpinus(1902年)已经观察发现从溶液中生长的特殊材料晶体,如食糖、硝石、明矾、矾等。由于每一种材料的特点表现为相应典型的形貌。然而在Nicolaus Steno (尼可拉斯?斯丹诺)于1669年发现晶体角守恒定律(晶体生长的基本规律)之前,现代科学意义上的晶体形貌学并未形成。斯丹诺(Steno)的工作后来由Guglielmini(1668年,1705年)得到延伸和总结,最后大约在100年以后,由Rome de I’Isle(1772年,1783年)最后得到证实。根据他们的研究认为任何化合物晶体均具有其特殊的结晶形态。 与晶体形貌的广泛的实验经验和精确描述相反,对晶体的形成和生长过程由于长期受中世纪宗教规定和迷信的束缚,常被认为与植物或者动物的生长过程相类似,而与某种神秘的力量或者效能相联系。当然在当时要理解晶体是如何从流体、从透明的甚至微观上清晰的

晶体场理论与分子轨道理论的比较及配位场理论

晶体场理论与分子轨道理论的比较及配位场理论 黄珺 (湖北师范学院化学与环境工程系0303班,湖北黄石,435002) 摘要:配位化合物中的化学键主要是指中心离子和配位体之间的化学键。自1893年维尔纳提出了配位理论后,有关配合物中的化学键理论主要有现代价键理论、晶体场理论、配位键理论和分子轨道理论。本文主要讨论分子轨道理论和晶体场理论。分子轨道理论以量子力学为基础,用于说明共价分子结构。晶体场理论是1929年由皮赛和范弗雷克提出的,用于配合物化学键研究,成功地解释了配合物的磁性、光学性质及结构等,故在配合物的化学键理论中确立了重要地位。 关键词:晶体场理论、分子轨道理论、配位场理论、配位键、化学键 Crystal field theory and molecular orbit theory comparison and legend field theory Huang Jun (Chemistry and environment engineering department, Hubei Normal University, Huangshi, 435002) Abstract:In the coordination compound chemical bond mainly was refers to between the central ion and the legend chemical bond .The Vyell natrium proposed since 1893 the coordinate theory ,in the related preparation chemical bond theory mainly had the present price key theory and the crystal field theory ,the coordination bond theory and the molecular orbit theory .This article main discussion molecular orbit theory and the crystal field theory .Molecular orbit theory take the quantum mechanics as a foundation ,used in explaining the covalent molecule structure .The crystal field theory was in 1929 proposes by H.Bathe and J.H.Van Vleck ,used in the preparation chemical bond research ,successfully explained and preparation magnetism ,the optical quality and the structure and so on ,therefore has established the important status in the preparation chemical bond theory. Key words: Crystal field theory molecular orbital theory legend field theory coordinate bond chemical bond 晶体场理论是20世纪50年代初,在价键理论和纯静电理论的基础上发展起来的.晶体场理论把中心离子看作是带正电的点电荷,把配位体看作是带负电的点电荷,它们之间的结合完全看作是静电和排斥作用.同时考虑到配位体对中心离子d轨道的影响,它在解释光学和磁学等性质方面很成功. (分子轨道理论把组成分子的所有原子作为一个分子整体来考虑,在分子中的电子不再从属于某些特定的原子,而是遍及整个分子范围内运动,分子中每个电子运动状态,可以用波函数来描述.)[1]首先,来比较这两种理论的基本观点. 晶体场理论的基本观点:(1) 在配合物中,中心离子和配位体之间的相互作用类似于离子晶体中正、负离子间的静电作用,故它们间的化学键力纯属静电作用力. (2)当中心离子(指d区元素的离子)处于由配体所形成的非球形对称的负电场中时,中心离子的d 电子将受到配体负电场的排斥作用,使5个等价的d轨道发生能级分裂,有些轨道的能量降低.

三种晶体生长理论

三种晶体生长理论: 一、层生长理论 科赛尔首先提出,后经斯兰特斯基加以发展的晶体的层生长理论亦称为科赛尔-斯兰特斯基理论。这一模型主要讨论的关键问题是:在一个面尚未生长完全前在一界面上找出最佳生长位置。图8-2表示了一个简单立方晶体模型中一界面上的各种位置,各位上成键数目不同,新支点就位后的稳定程度不同。每个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位置是能量上最有利的位置,即结合成键时应该是成键数目最多、释放出能量最大的位置。图8-2所示质点在生长中的晶体表面上所可能有的各种生长位置:k为曲折面,具有三面凹角,是最有利的生长位置;其次是S阶梯面,具有两面凹角的位置;最不利的生长位置是A。由此可以得出如下的结论:警惕在理想情况下生长时,一旦有三面凹角位存在,质点则优先沿着三面凹角位生长一条行列;而当这一行列长满后,就只有二面凹角位了,质点就只能在二面凹角处就位生长,这时又会产生三面凹角位,然后生长相邻的行列;在长满一层面网后,质点就只能在光滑表面上生长,这一过程就相当于在光滑表面上形成一个二维核,来提供三面凹角和二面凹角,再开始生长第二层面网。晶面(最外的面网)是平行向外推移而生长的。这就是晶体生长的层生长模型,它可以解释如下一些生长现象:(1)晶体常生长成面平棱直的多面体形态。 (2)晶体在生长的过程中,环境可能有所变化,不同时刻生成的晶体在物性(如颜色)和成分等方面可能有细微的变化,因而在晶体的断面上常常可以看到带状构造 (图8-3)。它表明晶面是平行向外推移生长的。 (3)由于晶面是向外推移生长的,所以同种矿物不同晶面上对应晶面间的夹角不变。 (4)晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体中心为顶点的锥状体,成为生长锥或砂钟状构造(图8-4,图8-5)在薄片中常常能看到。 然而晶体生长的实际情况要比简单层生长模型复杂得多,往往一次沉淀在一个晶面上的物质层的厚度可达几万或几十万个分子层。同时亦不一定是一层一层的顺序堆积,而是一层尚未长完,又有一个新层开始生长。这样继续生长下去的结果,使晶面表面不平坦,成为阶梯状,称为晶面阶梯。 层生长模型虽然有其正确的方面,在实际晶体生长过程中并非完全按照二维层生长的机制进行。因为当晶体的一层面网生长完成之后,再在其上开始生长第二层面网时有很大的困难,其原因是已生长好的面网对溶液中质点的引力较小,不易克服质点的热振动使质点就位。因此,在过饱和度或过冷却度较低的情况下,晶体生长就需要用其他的生长机制加以解释。

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

晶体生长理论综述

综述晶体生长理论的发展现状 1前言 晶体生长理论是用以阐明晶体生长这一物理化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。 近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。可以预言,未来晶体生长理论研究必将有更大的发展[1]。 2晶体生长理论的综述 自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2],晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。本文主要对晶体平衡形态理论、界面生长理论、PBC理论、晶体逆向生长等理论作简要的介绍。 2.1晶体平衡形态理论 晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。

第二章晶体的结合知识分享

第二章晶体的结合 1?试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非 常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在 整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时 偶极距或固有偶极距而形成,其结合力一般与r7成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O, F, N等)相结合形成 的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol。 2?有人说“晶体的内能就是晶体的结合能”,对吗? 解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N个原子在自由时的总能量之差,即E b E N E O。(其中E b为结合能,E N 为组成这晶体的N个原子在自由时的总能量,E0为晶体的总能量)。而晶体的内能是指晶 体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。 3?当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的? 解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先 引力大于斥力,总的作用为引力,f(r) 0,而相互作用势能u(r)逐渐减小;当2个原子 慢慢接近到平衡距离r°时,此时,引力等于斥力,总的作用为零,f(r) 0,而相互作用 势能u(r)达到最小值;当2个原子间距离继续减小时,由于斥力急剧增大,此时,斥力开始大于引力,总的作用为斥力,f(r) 0,而相互作用势能u(r)也开始急剧增大。 4?为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好? 解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而 是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、 导电性和导热性都较好。 5?有一晶体,在平衡时的体积为V。,原子之间总的相互作用能为U o,如果原子间相互作用能由下式给出: U(r) m n , r r 试证明弹性模量可由U o mn/(9V0)给出。 解:根据弹性模量的定义可知 K v dP v d2U dV V0 dV2V0 .............................................. (A \ (1) 上式中利用了P 的关系式。dV

晶体场理论

晶体场理论 晶体场理论(英语:Crystal field theory,首字母縮略字:CFT)是配位化学理论的一种,1929-1935年由汉斯·贝特和约翰·哈斯布鲁克·范扶累克提出。它以过渡金属配合物的电子层结构为出发点,可以很好地解释配合物的磁性、颜色、立体构型、热力学性质和配合物畸变等主要问题,但不能合理解释配体的光谱化学序列和一些金属有机配合物的形成。 晶体场理论将配位键看成纯离子键,着眼于中心原子的d轨道在各种对称性配位体静电场中的变化,简明直观,结合实验数据容易进行定量或半定量的计算。但在实际配合物中,纯离子键或纯共价键都很罕见,目前配合物的结构理论兼有晶体场理论和分子轨道理论的精髓,称之为配位场理论。 [编辑]概述 晶体场理论认为,配合物中心原子处在配体所形成的静电场中,两者之间完全靠静电作用结合,类似于正负离子之间的作用。在晶体场影响下,五个简并的d 轨道发生能级分裂,d电子重新分布使配合物趋于稳定。 [编辑]能级分裂 d原子轨道分为、、、和五种,其空间取向各不相同,但能级却是相同的,参见原子轨道。在一定对称性的配体静电场(负)作用下,由于与配体的距离不同,d轨道中的电子将不同程度地排斥配体的负电荷,d轨道开始失去简并性而发生能级分裂。能级分裂与以下因素有关: ?金属离子的性质; ?金属的氧化态,高氧化态的分裂能较大; ?配合物立体构型,即配体在金属离子周围的分布; ?配体的性质。 最常见的配合物构型为八面体,其中中心原子位于八面体中心,而六个配体则沿着三个坐标轴的正、负方向接近中心原子。 先将球形场的能级记为。和轨道的电子云极大值方向正好与配体负电荷迎头相碰,排斥较大,因此能级升高较多,高于。而、和轨道的电子云则正好处在配体之间,排斥较小,因此能级升高较小,低于。 因而d轨道分裂为两组能级: ?和轨道,能量高于,记为或轨道; ?、和轨道,能量低于,记为或轨道。

相关主题