搜档网
当前位置:搜档网 › 原子结构化学键分子结构

原子结构化学键分子结构

原子结构化学键分子结构
原子结构化学键分子结构

原子结构、化学键、分子结构习题

1.判断下列叙述就是否正确

(1)电子具有波粒二象性,故每个电子都既就是粒子又就是波。

(2)电子的波动性就是大量电子运动表现出的统计性规律的结果。

(3)波函数ψ ,即电子波的振幅。

(4)波函数Ψ,即原子轨道,就是描述电子空间运动状态的数学函数式。

(1) ?(2) √(3) ?(4) √

2、用原子轨道光谱学符号表示下列各套量子数:

(1) n =2, l = 1, m = –1 (2) n =4, l = 0, m =0 (3) n =5, l = 2, m =0

2 (1)2p (2) 4s (3) 5d

3、假定有下列电子的各套量子数,指出哪几套不可能存在,并说明原因。

(1) 3,2,2,1/2 (2) 3,0,–1,1/2 (3) 2, 2, 2, 2

(4) 1, 0, 0, 0, (5) 2,–1,0, –2/1 (6) 2,0,–2,1/2

3、(1)存在,为3d 的一条轨道;

(2) 当l=0时,m只能为0,或当m=±1时,l可以为2或1。

(3) 当l=2时,n应为≥3正整数,m s=+1/2或-1/2;

或n=2时l=0 m=0 m s=+1/2或-1/2;

l=1 m=0或±1,m s=+1/2或-1/2;

(4)m s=1/2或–1/2 ;

(5)l不可能有负值;

(6)当l=0时,m只能为0

4.指出下列各电子结构中,哪一种表示基态原子,哪一种表示激发态原子,哪一种表示就是错误的?

(1)1s22s2(2) 1s22s12d1(3) 1s22s12p2

(4) 1s22s22p13s1(5) 1s22s42p2(6) 1s22s22p63s23p63d1

5.符合下列每一种情况的各就是哪一族哪一元素?

(1)最外层有6个p电子。

(2)3d轨道无电子,n =4,l = 0的轨道只有1个电子。

(3)3d轨道全充满,4 s轨道只有1个电子。

(4)+3价电子的电子构型与氩原子实[Ar]相同。

(5)在前六周期元素(稀有气体元素除外)中,原子半径最大。

(6)在各周期中,第一电离能I1最高的一类元素。

(7)电负性相差最大的两个元素。

(8)+1价离子最外层有18个电子。

5、(1)ⅧA (2)K (3)Cu铜(4)Sc钪

(5)Cs (6)ⅧA(7)F (Ne)~ Cs (Fr) (8)ⅠB

6.填空

(1)n =3电子层内可能有的原子轨道数就是______;

(2)n =4电子层内可能有的运动状态数______;

(3)n =6电子层内可能有的能级数就是_______;

(4)l = 3能级的简并轨道数就是_____。

6、(1) 9 (2) 32 (3) 6 (4) 7

7、指出下列能级对应的n与l值,每一能级包含的轨道数就是多少?

(1)2 p (2) 4f (3) 6s (4) 5d

7、(1) n=2,l=1;3 (2) n=4,l=3, 7

(3) n=6;l=0 ;1 (4) n=5,l=2, 5

8、写出下列各种情况的合理量子数:

(1) n = ( ) , l = 2 , m=0 , m s= +1/2

(2) n = 3 , l = ( ) , m=1, m s= –1/2

(3) n = 4 , l = 3 , m=1 , m s= ( )

(4) n = 2 , l = 0, m= ( ) , m s= +1/2

(5) n = 1 , l = ( ) , m= ( ) , m s= ( )

8、(1) n≥3 (2) l=2,1 (3) +1/2(-1/2)

(4) m=0 (5) l=0,m=0,m s=+1/2(-1/2)

9、第五能级组包含哪几个能级?有几条原子轨道?该能级组就是第几周期?可含有多少个元素?

9、5s、4d、5p三个能级;9条轨道;第五周期;18个元素

10、用s,p,d,f等符号表示下列元素原子的电子结构,并说明她们在周期表中的周期、族、

区。

(1)13Al (2)24Cr (3)26Fe (4)33As (5)47Ag (6) 82Pb

10、13Al 1s22s22p63s23p1 [Ne]3s23p1第三周期ⅢA p区

24Cr 1s22s22p63s23p63d54s1 [Ar]3d54s1第四周期ⅥB d区

26Fe 1s22s22p63s23p63d64s2 [Ar]3d64s2第四周期Ⅷd区

33As 1s22s22p63s23p63d104s24p3 [Ar]3d104s24p3第四周期ⅤA p区

47Ag 1s22s22p63s23p63d104s24p64d105s1

[Kr] 4d105s1 第五周期ⅠB ds区

82P b 1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p2

[Xe] 4f145d106s26p2第六周期ⅣA p区

11.已知四种元素的原子的价电子层结构分别为:

(1)4 s1 (2)3s23 p5 (3)3d24s2 (4)5d106s2

试指出:(1)它们在周期系中各处于哪一区?哪一周期?哪一族?

(2)它们的最高正氧化态各就是多少?

11、(1) 第四周期,s区,ⅠA,+1 ;

(2)第三周期,p区,ⅦA,+7;

(3)第四周期,d区,ⅣB,+4 ;

(4)第六周期,ds区,ⅡB,+2

12.第五周期某元素,其原子失去2个电子,在l= 2的轨道内电子全充满,就是推断该元素的原子序数、电子结构,并指出位于周期表中那一族?就是什么元素?

12、Cd:[Kr]4d105s248号元素ⅡB

13、.已知甲元素就是第三周期p区元素其最低氧化数为–1,乙元素就是第四周期d区元素,其最高氧化数为+4,就是填下表:

13 甲:1s22s22p63s23p5ⅦA 非金属高

乙:[Ar]3d24s2ⅣB 金属低

14、元素钛的电子构型就是[Ar]3d24s2,试问这22个电子

(1) 属于哪几个电子层?哪几个亚层?

(2) 填充了哪几个能级组的多少个能级?

(3) 占据着多少条原子轨道?

(4) 其中单电子轨道有几条?

(5) 价电子有几个?

14、(1)4个电子层,7个亚层(2)4个能级组,7个能级

(3)12条原子轨道(4)2条原子轨道(5)4个价电子

15、具有下列原子外层电子构型的五种元素(1) 2s2 (2) 2s22p1 (3) 2s22p2 (4) 2s22p3 (5) 2s22p4以元素符号表示第一电离能最大的就是______,最小的就是______,电子亲与能大小发生反常的两个元素就是___________。

15、2s22p3(N); 2s22p1(B); 2s22p2(C)~2s22p3(N)

16、根据下列条件确定元素在周期表中的位置,并指出元素原子序数、元素名称及符号。

(1)基态原子中有3d7电子;

(2)基态原子电子构型为[Ar]3d104s1;

(3)M2+型阳离子的3d能级为半充满;

(4)M3+型阳离子与F–离子的电子构型相同;

(5)[Xe]4f145d106s1;

(6)[Ar]3d64s2;

(7)[Kr]4d105s25p5。

16、(1) Co (钴) 27号, 第四周期, Ⅷ, d 区

(2)Cu(铜) 29号, 第四周期, ⅠB, ds区

(3)Mn(锰) 25号, 第四周期, ⅦB, d区

(4)Al(铝) 13号, 第三周期, ⅢA, p区

(5)Au(金) 79号, 第六周期, ⅠB, ds区

(6)Fe(铁) 26号, 第四周期, Ⅷ, d区

(7)I (碘) 53号, 第五周期, ⅦA, p区

17、判断下列叙述就是否正确

(1)基态原子外层未成对电子数等于该原子能形成的共价单键数,此即所谓的饱与

性。

(2)两原子以共价键键合时,化学键为σ键;以共价多重键结合时,化学键均为π键。

(3)碳-碳双键的键能大于碳-碳单键键能,小于2倍的碳-碳单键键能。

(4)所谓sp3杂化,就是指1个s电子与3个p电子的混杂。

(5)色散力不仅存在于非极性分子间。

17、(1) ×(2) ×(3) √ (4) ×(5) √

18、写出下列离子的电子结构式,并指出各属于何种离子构型。Fe2+, Sn4+, Pb2+, S2–, Cd2+,

Al3+, Ni2+, Mg2+

18、Fe2+1s22s22p63s23p63d69~17电子构型

Sn4+1s22s22p63s23p63d104s24p64d1018电子构型

Pb2+[Xe] 4f145d106s2 18+2电子构型

S2-1s22s22p63s23p68电子构型

Cd2+1s22s22p63s23p63d104s24p64d1018电子构型

Al3+1s22s22p6 8电子构型

Ni2+ 1s22s22p63s23p63d89~17电子构型

Mg2+1s22s22p6 8电子构型

19.判断下列分子中心原子的杂化轨道类型(注明等性或不等性)与分子的空间构型,说明分子就是否有极性。

OF2, NF3, BH3, SiCl4, NH3, NH4+, HCN, PCl3, CS2, CHCl3

19、OF2不等性sp3杂化V字型极性分子

NF3不等性sp3杂化三角锥型极性分子

BH3sp2等性杂化平面三角形非极性分子

SiCl4sp3等性杂化正四面体非极性分子

NH3不等性sp3杂化三角锥型极性分子

NH4+sp3等性杂化正四面体非极性分子

HCN sp杂化直线型极性分子

PCl3不等性sp3杂化三角锥型极性分子

CS2sp杂化直线型非极性分子

CHCl3sp3等性杂化四面体极性分子

20、下列各组有机分子中,每个碳原子所采用的杂化轨道:C2H2, C2H6, CH3-C≡CH,

CH3CH2OH, CH2O。

20、(1)C2H2: sp杂化: (2) C2H6: sp3杂化

(3)CH3-C≡CH : 第一个C:sp3 , 第二个C:sp 第三个C:sp

1 2 3

(4)CH3CH2OH : 两个碳均为sp3杂化

1 2

(5)CH2O : sp2杂化

21、指出化合物中,哪个化合物的键的极性最大?哪个最小?

(1)NaCl, MgCl2, AlCl3, SiCl4, PCl5

(2)LiF, NaF, F, RbF, CsF

(3)HF, HCl, HBr, HI

21、(1) 极性最大NaCl 极性最小PCl5

(2)极性最大CsF 极性最小LiF

(3)极性最大HF 极性最小HI

22、预测下列各组物质熔点、沸点的高低:

(1)乙醇与二甲醚(2)HF与HCl (3) NH3与NF3 (4)OF2与H2O

(5) NaF与MgO (6)CaO与BaO (7) NaCl与NaBr (8) MgO与MgF2

22、(1)乙醇>二甲醚(2)HF > HCl (3)NH3 > NF3

(4)OF2 < H2O (5)MgO> NaF (6)CaO > BaO

(7) NaCl > NaBr (8) MgO > MgF2

23、、指出下列分子间存在哪种作用力(包括氢键)?

(1)H2—H2(2)HBr—H2O (3)I2—CCl4

(4)CH3COOH—CH3COOH(5)NH3—H2O

(6)C3H8—CCl4 (7)C2H5OH—H2O (8)CO2—H2O

(9)HNO3—HNO3 (10)H3BO3—H3BO3

23、(1) 色散力(2) 色散力、诱导力、取向力

(3) 色散力(4)色散力、诱导力、取向力、氢键

(5)色散力、诱导力、取向力、氢键(6)色散力

(7)同(5)、(4) (8)色散力、诱导力

(9)同(2) (10)色散力、氢键

24、判断下列晶体的熔点高低顺序

(1)NaCl KCl N2NH3Si PH3(2)CaF2BaCl2CaCl2

(3)SiCl4SiBr4SiC MgO (4)KCl SiO2H2O

24、(1)Si > NaCl > KCl > NH3 > PH3 > N2

(2) CaF2 > CaCl2 > BaCl2

(3) SiC > MgO > SiBr4 > SiCl4

25、选择题

(1)下列晶体中熔化时只需克服色散力的就是_ a _、f___。

(a)HgCl2 (b)CH3COOH (c)CH3CH2OCH2CH3

(d)SiO2 (e)CHCl3 (f)CS2

(2)下列分子中,中心原子在成键时以sp3不等性杂化的就是

_b、c 。

(a)BeCl2(b)PH3(c)H2S (d)CH3Cl

(3)下列各物质化学键中只存在σ键的就是_____;同时存在σ键与π键的就是_____。

(a)PH3(b)乙烯(c)乙烷(d)SiO2

(e)N2(f)乙炔(g)CH2O

25、(1) (a)HgCl2(f) CS2

(2)(b) PH3(c) H2S

(3) (a) PH3 (c) 乙烷(d) SiO2只存在σ键

(b) C2H4(e) N2(f) 乙炔(g) CH2O 存在π、σ键

26、填空:

(1)PF3μ=3、44×10-30C·m,而BF3μ =0 ,这就是由于PF3的分子构型为_____型,就是____性分子,而BF3的分子构型为____型,就是____性分子。

(2)H2O,H2S,H2Se三物质,分子间取向力按______顺序递增,色散力按_______顺序递增,沸点按______顺序递增。

26、(1) 三角锥, 极, 平面三角,非极;

(2)H2Se、H2S、H2O;H2O、H2S、H2Se;H2S、H2Se、H2O;

原子结构-化学键-分子结构教学文案

原子结构、化学键、分子结构习题 1.判断下列叙述是否正确 (1)电子具有波粒二象性,故每个电子都既是粒子又是波。 (2)电子的波动性是大量电子运动表现出的统计性规律的结果。 (3)波函数ψ,即电子波的振幅。 (4)波函数Ψ,即原子轨道,是描述电子空间运动状态的数学函数式。 (1)?(2)√(3)?(4)√ 2. 用原子轨道光谱学符号表示下列各套量子数: (1) n =2, l = 1, m = –1 (2) n =4, l = 0, m =0 (3) n =5, l = 2, m =0 2 (1)2p (2) 4s (3) 5d 3. 假定有下列电子的各套量子数,指出哪几套不可能存在,并说明原因。 (1) 3,2,2,1/2 (2) 3,0,–1,1/2 (3) 2, 2, 2, 2 (4) 1, 0, 0, 0, (5) 2,–1,0, –2/1 (6) 2,0,–2,1/2 3. (1)存在,为3d 的一条轨道; (2) 当l=0时,m只能为0,或当m=±1时,l可以为2或1。 (3) 当l=2时,n应为≥3正整数,m s=+1/2或-1/2; 或n=2时l=0 m=0 m s=+1/2或-1/2; l=1 m=0或±1,m s=+1/2或-1/2; (4)m s=1/2或–1/2 ; (5)l不可能有负值; (6)当l=0时,m只能为0 4.指出下列各电子结构中,哪一种表示基态原子,哪一种表示激发态原子,哪一种表示是错误的? (1)1s22s2(2) 1s22s12d1(3) 1s22s12p2 (4) 1s22s22p13s1(5) 1s22s42p2(6) 1s22s22p63s23p63d1

化学键与分子结构

第五章物质结构元素周期律 第三讲化学键与分子结构 【考纲要求】 1.理解有关化学键、离子键、共价键、配位键、*金属键等概念 2.掌握用电子式表示化学键的形成过程的方法,并能正确写出常见物质和微粒的电子 式,结构式。 3.掌握影响各类化学键强弱的因素,以及化学键的强弱对物质性质的影响。 教与学方案 笔记与反思【自学反馈】 一、概念辨析 1.化学键: (1)概念:。 (2)种类:、、。 2.离子键: (1)概念:。 (2)形成过程(以MgCl2为例):。 (3)影响离子键强弱的因素:。 (4)离子键的强弱对物质性质的影响:。 3.共价键: (1)概念:。 (2)形成过程(以CO2为例):。 (3)影响共价键强弱的因素:。 (4)共价键的强弱对物质性质的影响:。 (5)共价键极性强弱的分析方法:。 (6)共价键极性强弱对物质性质的影响:。 4.配位键: (1)概念:。 (2)形成过程(以NH4+为例):。 (3)形成配位键的条件:。 (4)配位键属于键,但在指出物质中化学键的类型时必须单独指出。 5.金属键:失去价电子的金属阳离子与在晶体内自由移动的价电子之间强烈的相互作用。 影响金属键强弱的因素:金属的原子半径和价电子的多少。一般情况下,金属的原子半径 越小,价电子越多,则金属键,金属的熔沸点就,硬度就。

三、八电子稳定结构问题:准确判断分子结构中各原子的最外层电子是否满足8电子稳定结构是学习的一个难点,也是高考的一个热点。如何判断才能既简单又无误呢?这里介绍一种简捷的判断方法。 (1)分子中含氢元素时,氢原子的最外层电子是不能满足8电子稳定结构。 (2)分子中无氢元素时,可根据化合价进行判断:某元素在该分子中的化合价的绝对值与其原子的最外层电子数之和等于8,则该元素原子的最外层满足8电子稳定结构; 否则就不满足8 四、分子的性质(溶解性、手性和含氧酸的酸性) 1、溶解性——相似相溶原理 2、手性——手性分子的判断方法是通过连在同一个碳原子上的四个原子或原子团必须互不相同。 3、含氧酸的酸性: (1)对于同一种元素的含氧酸来说,该元素的化合价越高,其含氧酸的酸性越强。 (2)如果把含氧酸的通式写成(HO)mROn的形式,成酸的元素R相同时,则n值越大,酸性也就越强。 二、自我演练: 1.用电子式表示下列物质中化学键的形成过程: Na2O: AlF3: Mg3N2: N2:、NH3: CS2:、BF3: CCl4:、PCl3: PCl5:、H3O+:。 2.写出下列物质的电子式: H2S:、NF3:、H2O2:、NaOH:、NaHS:、Na2O2:、FeS2:、CaC2:、NH4Cl:、KCN:、HCOOH:、—OH:、CH3COO-:、CH3-:、CH3+:。 .【例题解析】 [例1]判断并写出下列微粒符号: (1)含18个电子的阳离子_________________________________; (2)含18个电子的阴离子_________________________________; (3)含18个电子的化合物分子_____________________ ________。 (4) 含18个电子的单质分子. 解题思路:。 [例2] AB2离子化合物的阴、阳离子的电子层结构相同,每摩AB2分子中含有54摩电子,根据下列反应: ①H2+B2→C ②B2+X→Y+AB2+H2O ③Y+C→AB2+Z Z有漂白作用 (1)写出下列物质的化学式:AB2___________X_________Y_________

精品高考化学讲与练第5章第1讲原子结构化学键(含解析)新人教版

第5章 第1讲原子结构、化学键 李仕才 考纲要求 1.了解元素、核素和同位素的含义。2.了解原子的构成,了解原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的相互关系。3.了解原子核外电子排布规律,掌握原子结构示意图的表示方法。4.了解化学键的定义,了解离子键、共价键的形成。 5.了解相对原子质量、相对分子质量的定义,并能进行有关计算。 考点一 原子结构、核素 1.原子构成 (1)构成原子的微粒及作用 原子(A z X)??? 原子核????? 质子(Z 个)——决定元素的种类中子[(A -Z )个] 在质子数确定后决定原子种类同位素核外电子(Z 个)——最外层电子数决定元素的化学性质 (2)微粒之间的关系 ①原子中:质子数(Z )=核电荷数=核外电子数; ②质量数(A )=质子数(Z )+中子数(N ); ③阳离子的核外电子数=质子数-阳离子所带的电荷数; ④阴离子的核外电子数=质子数+阴离子所带的电荷数。 (3)微粒符号周围数字的含义

(4)两种相对原子质量 ①原子(即核素)的相对原子质量:一个原子(即核素)的质量与12C质量的1 12 的比值。一种元素有几种同位素,就有几种不同核素的相对原子质量。 ②元素的相对原子质量:是按该元素各种天然同位素原子所占的原子百分比算出的平均值。如:A r(Cl)=A r(35Cl)×a%+A r(37Cl)×b%。 2.元素、核素、同位素 (1)元素、核素、同位素的关系 (2)同位素的特征 ①同一元素的各种核素的中子数不同,质子数相同,化学性质几乎完全相同,物理性质差异较大; ②同一元素的各种稳定核素在自然界中所占的原子百分数(丰度)不变。 (3)氢元素的三种核素 1 1H:名称为氕,不含中子; 2 1H:用字母D表示,名称为氘或重氢; 3 1H:用字母T表示,名称为氚或超重氢。 (4)几种重要核素的用途 (1)一种元素可以有多种核素,也可能只有一种核素,有多少种核素就有多少种原子(√) (2)不同的核素可能具有相同的质子数,也可能质子数、中子数、质量数均不相同(√) (3)核聚变如21H+31H―→42He+10n,因为有新微粒生成,所以该变化是化学变化(×) (4)中子数不同而质子数相同的微粒一定互为同位素(×) (5)通过化学变化可以实现16O与18O间的相互转化(×) (6)3517Cl与3717Cl得电子能力几乎相同(√)

化学键与分子结构

第6章化学键与分子结构 4课时 教学目标及基本要求 1. 熟悉共价键的价键理论的基本要点、共价键的特征、类型。能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。 2. 了解分子电偶极矩的概念及其应用于区分极性分子和非极性分子。熟悉分子间力的类型。了解氢键的形成。 教学重点 1. 价键理论要点 2. 共价键的特征及类型 3. 杂化轨道理论与分子空间构型 4. 分子间力与氢键 5. 配合物的价键理论 教学难点 1. 氢分子共价键的形成——共价键的本质 2. σ键和π键 3. 杂化轨道的形成 4. 内轨型、外轨型配合物 教学方式(手段)及教学过程中应注意的问题 1. 教学方式:以多媒体教学为主,讲述法、模型演示、动画模拟、课堂讨论相结合 2. 注意问题:本章有的内容难以理解,通过多媒体形象、生动的演示使同学都能逐步掌握本章知识。要将每一个知识点给同学尽量的讲详细。 主要教学内容 第 6 章化学键与分子结构 Chapter 6 Chemical bond & Molecular structure 6.1 离子键与离子的结构(Ionic bond and structure of ion) 6.1.1 离子键的形成与特性 德国科学家柯塞尔根据稀有气体原子的电子层结构特别稳定的事实,首先提出了离子键理论。用以说明电负性差别较大的元素间所形成的化学键。 电负性较小的活波金属和电负性较大的活波非金属元素的原子相互接近时,前者失去电子形成正离子,后者获得电子形成负离子。正负离子间通过静电引力而联系起来的化学键叫离子键。 例:NaCl 分子 11Na (X=1.01) 1s2 2s2 2p6 3s1 Na+ 1s2 2s2 2p6 17Cl (X=3.16) 1s2 2s2 2p6 3s2 3p5Cl- 1s2 2s2 2p6 3s2 3p6 离子键——正负离子间通过静电作用力而形成的化学键。 离子键的特征 1)离子键的本质是静电作用力,只有电负性相差较大的元素之间才能形成离子键。

化学键与分子结构

第六章化学键与分子结构 一、 教学重点: 1. 现代价键理论与杂化轨道理论的基本要点,并应用上述理论解释部分典型共价分子 的形成过程、结构特性; 2. 共价键的键参数及其与分子结构与性质的关系; 3. 分子极性与分子间作用力; 二、 内容提要 1. 离子键:原子通过电子得失形成阴、阳离子,阴、阳离子通过静电作用而形成的 化学键。 (1)、形成条件;典型金属与典型非金属,电负性差值大于 1.7,此时化学键离子性大于50%。 (2)、离子键的本质:静电作用力。 (3)、离子键的特征:无方向性与饱和性。 (4)、晶格能:298.15K、105Pa时,气态阴、阳离子结合形成1摩尔固态离子晶体时所放出的能量。晶格能数值愈大,则表示形成的离子晶体愈稳定,离子键愈强。 2、现代价键理论 (1)、现代价键理论的要点;第一、参与成键的原子其价电子层必须有未成对的单电子,且要求参与配对的电子自旋方向相反,两两偶合成对时才能形成稳定的共价键,同时某个成单电子一经与另一单电子配对就再也不能与第三个成单电子去配对成键了,此点体现了共价键的饱和性;第二、电子的配对过程实为单电子所在原子轨道的相互部分重叠,而原子轨道的重叠须满足对称匹配和最大重叠原则,原子轨道尽可能发生最大程度的重叠,成键原子核间电子云密度愈大,形成的共价键愈稳定,此点体现了共价键形成的方向性。 (2)、共价键的特性:方向性和饱和性。 (3)、共价键的类型 σ键:原子轨道沿原子核连线方向以“头碰头”的方式重叠而形成的键,共价单键均为该类键型。 π键:原子轨道以“肩并肩”的方式平行重叠而形成的共价键,共价双键和共价叁键中除一个σ键外其余均为π键。 π键的重叠程度比σ键的重叠程度小,π键上的电子对比σ键上的电子活泼,具有较大的流动性,因此含双键和叁键的化合物易发生加成等反应,化学性质较活泼。 (4)、键参数 键的极性 相同原子成键,X A-X B= 0 键无极性(X为电负性)

第章化学键与分子结构章节要点及习题

第3章化学键与分子结构 【章节要点】 价键基础 共价键是通过原子核之间共用电子平衡吸引力和排斥力而形成的。在H2中,这使得两个H原子距离为74pm 时能量最低。这个距离就被称为键长。这个距离的分子和孤立原子之间的能量差就称为键能。H2中的单键是一个σ键,关于键轴旋转对称。在简单的双原子分子例如O2,F2中,可以用含有单电子的原子轨道的重叠来描述键的形成。当双原子分子中两个原子不同时,电子对趋向于被其中一个原子所吸引,导致电子共享的不平均,由此产生了极性共价键。电子的不平均共享是分子中不同原子电负性不同的结果。原子之间电负性差值越大,键的极性越大。对于同一周期的原子,电负性一般随着原子序数的增大而增大;对于同一族的原子,电负性一般随着原子序数增大而减少。 离子键 电负性差别较大的元素形成的化合物通常比较适合形成离子型分子。离子型化合物一般由交替的正负离子组成,通过正负离子的静电引力结合在一起。吸引力的大小取决于离子所带的电荷及离子间的距离和一些其它因素。将晶体点阵打破变成气态离子所需的总能量称为晶格能。离子化合物中晶格能的变化趋势可以用离子电荷和距离来解释。 路易斯结构 路易斯结构给出了分子中价层电子的分布。成键的电子在单键(1对电子)、双键(2对电子)、三键(3对电子)中出现,分别在成键原子之间用1,2,3条横线描述。非成键电子被称为孤对电子,用圆点表示于元素符号旁边。路易斯结构可用以下五个步骤画出: 第一步数出价层电子数。 第二步用单键组成键的框架。 第三步在每一个外部的原子放上3对孤对电子,H除外。 第四步将剩余的价层电子分配给内部的原子。 第五步将所有原子的形式上的电荷减至最小。 被4对原子包围的原子是八隅体结构的。这种排布通常在第二周期的元素中比较常见。当电子排布有多种时,使所有原子所带形式电荷减小的结构更优。在一些情况下,一个分子可以画出两种或者更多的能量等价的路易斯结构,差别仅仅是电子对的位置不同。这种结构被称为共振结构。当然也存在能量不等的共振结构;在这种情况下,带有最少形式电荷的结构依然是最优的。 价层电子对互斥(VSEPR)理论 VSEPR理论认为分子采用电子对排斥力最小的一种构型。通过将电子对放置在尽可能远的地方可以实现。通常通过如下三个步骤预测分子的结构: 画出分子的路易斯结构。 数出中心原子成键电子对和孤对电子对的数目,用下表确定电子对对数最适合的几何构型。 如有必要,通过考察电子对之间的排斥力修改分子几何构型。排斥力主要取决于电子对是成键电子(BP)还是孤对电子(LP)。排斥力的顺序如下: LP—LP>BP—LP>BP—BP 当孤对电子对存在时,电子对的理想几何构型将会有轻微变形,因为孤对电子对比成键电子对占据更多的空间。

原子结构和化学键知识点

寻找10电子微粒和18电子微粒 的方法 1.10电子微粒 2.18电子微粒 CH3—CH3、H2N—NH2、HO—OH、F—F、F—CH3、CH3—OH…… 识记1-20号元素的特殊电子层 结构 (1)最外层有1个电子的元素:H、Li、Na、K; (2)最外层电子数等于次外层电子数的元素:Be、Ar; (3)最外层电子数是次外层电子数2倍的元素:C; (4)最外层电子数是次外层电子数3倍的元素:O; (5)最外层电子数是内层电子总数一半的元素:Li、P; (6)最外层电子数是次外层电子数4倍的元素:Ne; (7)次外层电子数是最外层电子数2倍的元素:Li、Si; (8)电子层数与最外层电子数相等的元素:H、Be、Al; (9)电子层数是最外层电子数2倍的元素:Li、Ca; (10)最外层电子数是电子层数2倍的元素:He、C、S。 化学键与物质类别的关系以及对 物质性质的影响 1.化学键与物质类别的关系

(1)只含共价键的物质 ①同种非金属元素构成的单质,如I2、N2、P4、金刚石、晶体硅等。 ②不同种非金属元素构成的共价化合物,如HCl、NH3、SiO2、CS2等。 (2)只含有离子键的物质:活泼非金属元素与活泼金属元素形成的化合物,如Na2S、CsCl、 K2O、NaH等。 (3)既含有离子键又含有共价键的物质,如Na2O2、CaC2、NH4Cl、NaOH、Na2SO4等。 (4)无化学键的物质:稀有气体,如氩气、氦气等。 2.离子化合物和共价化合物的判断方法 (1)根据化学键的类型判断 凡含有离子键的化合物,一定是离子化合物;只含有共价键的化合物,是共价化合物。 (2)根据化合物的类型来判断 大多数碱性氧化物、强碱和盐都属于离子化合物;非金属氢化物、非金属氧化物、含氧酸都属于共价化合物。 (3)根据化合物的性质来判断 熔点、沸点较低的化合物是共价化合物。熔化状态下能导电的化合物是离子化合物,如NaCl,不导电的化合物是共价化合物,如HCl。 3.化学键对物质性质的影响 (1)对物理性质的影响 金刚石、晶体硅、石英、金刚砂等物质硬度大、熔点高,就是因为其中的共价键很强,破坏时需消耗很多的能量。 NaCl等部分离子化合物,也有很强的离子键,故熔点也较高。 (2)对化学性质的影响 N2分子中有很强的共价键,故在通常状况下,N2很稳定,H2S、HI等分子中的共价键较弱,故它们受热时易分解。

32 高三化学-原子结构与化学键

原子结构与化学键 1.通过对学生阅读\理解力的有效训练,促使学生集中精神学习,激发学生阅读的主动性 2.通过强化自我意识,培养学生的自我控制能力,提高学生的坚持\自控性 3.通过掌控分析法,提升学生自我认知能力,引导学生掌握原子结构与化学键题的方法及技巧 优胜教育 北京黄庄 校区 杨红静 老师

共价化合物:原子间通过共用电子对形成分子的化合物叫做共价化合物。(只有共价键) 极性共价键(简称极性键):由不同种原子形成,A -B 型,如,H -Cl 。 共价键 非极性共价键(简称非极性键):由同种原子形成,A -A 型,如,Cl -Cl 。 2.电子式: 用电子式表示离子键形成的物质的结构与表示共价键形成的物质的结构的不同点:(1)电荷:用电子式表示离子键形成的物质的结构需标出阳离子和阴离子的电荷;而表示共价键形成的物质的结构不能标电荷。(2)[ ](方括号):离子键形成的物质中的阴离子需用方括号括起来,而共价键形成的物质中不能用方括号。 要求:学生用思维导图、流程图、树状图、图表等形式总结概括以上知识。 例 完成效果 计时:_____分钟 题目:设某元素某原子核内的质子数为m ,中子数为n ,则下述论断中正确的是( ) A. 不能由此确定该元素的相对原子质量 B. 这种原子的相对原子质量为m +n C. 若碳原子质量为w g ,此原子的质量为(m+n )w g D. 核内中子的总质量小于质子的质量 掌控分析过程 第1步: 明确题意 1.快速浏览题干及问题材料; 2.在题干中勾画题眼、关键词、考点等有效信息; 第2步: 信息加工 老师指导学生提取有效信息 第3步: 解决问题 学生列出知识(公式、定理、模型、方法规律等) 第4步: 评价反思 学生在老师的指导下,总结解决此类问题的关键点或问题延伸 1

化学键与分子结构

第6章化学键与分子结构(讲授4学时) Chapter 6 Chemical bond & molecular structure 本章教学内容: 离子键与离子化合物。 共价键与分子结构。价键理论。杂化轨道与分子空间构型。 分子间力和氢键。分子的极性,电偶极矩。 本章教学要求: (1)了解共价键的价键理论的基本要点以及共价键的特征、共价键的类型。 (2)能联系杂化轨道理论(s-p型)说明一些典型分子的空间构型。 (3)了解分子电偶极矩的概念,能判断分子的极性。 (4)明确分子间力(以及氢键)的本质及特性。 本章教学重点: 共价键的形成,价键理论,共价键的特征、类型; a)H 2 b)杂化轨道理论及分子的空间构型 本章习题:P1609,10,11,13,14

6.1 离子键与离子的结构(Ionic bond and structure of ion) 6.1.1离子键的形成 NaCl分子 Na (X=1.01) 1s2 2s22p63s1 Na+1s2 2s22p6 11 Cl (X=3.16) 1s2 2s22p63s23p5 Cl-1s2 2s22p63s23p6 17 离子键——正负离子间通过静电作用力而形成的化学键。 6.1.2离子键的特征 ●离子键的本质是静电作用力,只有电负性相差较大的元素之间才能形成离 子键。 ●离子键无方向性,无饱和性。 ●离子键是极性键。 电子失去的顺序:np-ns-(n-1)d-(n-2)f 用n+0.4l做判据,其数值越大,越易失去电子。 6.1.3各种简单离子构型(负离子anion一般仅有外层8电子结构,正离子cation有外层多种结构) 6.2共价键与分子结构(covalence bond &molecular structure) 6.2.1价键理论(valence bond theory) (1)共价键形成的本质 1)氢分子共价键的形成 1927年,Heitler and London将量子力学成果应用于H 分子结构的研究, 2 使共价键的本质得到初步解决。他们的结果认为:当两个氢原子相互靠近,且它们的1s电子处于自旋状态反平行时,两个电子才能配对成键;当两个氢原子的

原子结构化学键

第15讲 原子结构 化学键 考纲要求 1.理解元素、核素和同位素的含义。2.了解原子的构成。知道原子序数、核电荷数、质子数、中子数、核外电子数以及它们之间的数量关系。3.掌握1~18号元素的原子核外电子排布,能用原子结构示意图表示原子和简单离子结构。4.知道化学键的含义。能用电子式表示一些常见物质的结构。5.能识别典型的离子化合物和共价化合物。 考点一 原子结构、核素 1.原子构成 (1)构成原子的微粒及作用 原子(A Z X )????? 原子核? ??? ? 质子(Z 个)——决定元素的种类中子[(A -Z )个] 在质子数确定后 决定原子种类同位素核外电子(Z 个)——最外层电子数决定元素的化学性质 (2)微粒之间的关系 ①原子中:质子数(Z )=核电荷数=核外电子数; ②质量数(A )=质子数(Z )+中子数(N ); ③阳离子的核外电子数=质子数-阳离子所带的电荷数; ④阴离子的核外电子数=质子数+阴离子所带的电荷数。 (3)微粒符号周围数字的含义

(4)两种相对原子质量 ①原子(即核素)的相对原子质量:一个原子(即核素)的质量与12C质量的1 12的比值。一种元素有几种同位素,就有几种不同核素的相对原子质量。 ②元素的相对原子质量:是按该元素各种天然同位素原子所占的原子百分比算出的平均值。如:A r(Cl)=A r(35Cl)×a%+A r(37Cl)×b%。 2.元素、核素、同位素 (1)元素、核素、同位素的关系 (2)同位素的特征 ①同一元素的各种核素的中子数不同,质子数相同,化学性质几乎完全相同,物理性质差异较大; ②同一元素的各种稳定核素在自然界中所占的原子百分数(丰度)不变。 (3)氢元素的三种核素 1 1 H:名称为氕,不含中子; 2 1 H:用字母D表示,名称为氘或重氢; 3 1 H:用字母T表示,名称为氚或超重氢。 (4)几种重要核素的用途 (1)一种元素可以有多种核素,也可能只有一种核素,有多少种核素就有多少种原子(√) (2)不同的核素可能具有相同的质子数,也可能质子数、中子数、质量数均不相同(√) (3)核聚变如21H+31H―→42He+10n,因为有新微粒生成,所以该变化是化学变化(×) (4)中子数不同而质子数相同的微粒一定互为同位素(×) (5)通过化学变化可以实现16O与18O间的相互转化(×) (6)3517Cl与3717Cl得电子能力几乎相同(√)

原子结构-化学键-分子结构

原子结构-化学键-分 子结构 https://www.sodocs.net/doc/ca13019706.html,work Information Technology Company.2020YEAR

原子结构、化学键、分子结构习题 1.判断下列叙述是否正确 (1)电子具有波粒二象性,故每个电子都既是粒子又是波。 (2)电子的波动性是大量电子运动表现出的统计性规律的结果。 (3)波函数,即电子波的振幅。 (4)波函数Ψ,即原子轨道,是描述电子空间运动状态的数学函数式。 (1)(2)(3)(4) 2. 用原子轨道光谱学符号表示下列各套量子数: (1) n =2, l = 1, m = –1 (2) n =4, l = 0, m =0 (3) n =5, l = 2, m =0 2 (1)2p (2) 4s (3) 5d 3. 假定有下列电子的各套量子数,指出哪几套不可能存在,并说明原因。 (1) 3,2,2,1/2 (2) 3,0,–1,1/2 (3) 2, 2, 2, 2 (4) 1, 0, 0, 0, (5) 2,–1,0, –2/1 (6) 2,0,–2,1/2 3. (1)存在,为3d 的一条轨道; (2) 当l=0时,m只能为0,或当m=±1时,l可以为2或1。 (3) 当l=2时,n应为≥3正整数,m s=+1/2或-1/2; 或n=2时l=0 m=0 m s=+1/2或-1/2; l=1 m=0或±1,m s=+1/2或-1/2; (4)m s=1/2或–1/2 ; (5)l不可能有负值; (6)当l=0时,m只能为0 4.指出下列各电子结构中,哪一种表示基态原子,哪一种表示激发态原子,哪一种表示是错误的? (1)1s22s2 (2) 1s22s12d1 (3) 1s22s12p2 (4) 1s22s22p13s1 (5) 1s22s42p2 (6) 1s22s22p63s23p63d1

原子结构 化学键

原子结构化学键 一、选择题(本题包括4小题,每题8分,共32分) 1.Co是γ放射源,可用于农作物诱变育种,我国用该方法培养出了许多农作物新品种。下列对Co的叙述中不正确的是( ) A.质量数是60 B.质子数是60 C.中子数是33 D.电子数是27 【解析】选B。根据Co可知质量数为60,质子数=核外电子数=27,中子数 =60-27=33,只有选项B错误。 2.(2020·武汉模拟)下列有关C C C说法错误的是( ) A.是碳元素的三种同位素 B.是不同的核素 C.化学性质完全不同 D.其中的14C和14N的质量数相等 【解析】选C。A项,同位素是质子数相同,中子数不同的同种元素的不同核素,因此三者互为同位素,正确;B项,是三种不同的核素,正确;C项,核外电子排布相同,化学性质相同,错误;D项,根据原子表示,左上角是质量数,两者质量数相等,正确。 【加固训练】

有以下六种原子Li Li Na Mg、C N,下列相关说法不正确的是( ) A.Li和Li在元素周期表中所处的位置相同 B C和N质量数相等,二者互为同位素 C Na和Mg的中子数相同但不属于同种元素 D Li的质量数和N的中子数相等 【解析】选B。Li和Li互为同位素,A正确;N的质子数不相等,二者不互为同位素,B错误Na和Mg质子数不相同,属于不同种元素,C正确Li的质量数为7N的中子数也为7,D正确。 3.(2020·青岛模拟)下列说法正确的是( ) A.原子最外层电子数等于或大于3的元素一定是非金属元素 B.原子最外层只有1个电子的元素一定是金属元素 C.最外层电子数比次外层电子数多的元素一定位于第2周期 D.某元素的离子最外层电子数与次外层电子数相同,该元素一定位于第3周期【解析】选C。金属Al、Sn、Bi等最外层电子数等于或大于3,A项错误;H最外层只有一个电子,是非金属,B项错误;最外层电子数不能大于8,除第2周期元素原子的次外层电子数为2外,以后的其他周期原子的次外层电子数为8或18,C

原子结构-化学键-分子结构

原子结构、化学键、分子结构习题 1.判断下列叙述就是否正确 (1)电子具有波粒二象性,故每个电子都既就是粒子又就是波。 (2)电子得波动性就是大量电子运动表现出得统计性规律得结果。 (3)波函数ψ ,即电子波得振幅。 (4)波函数Ψ,即原子轨道,就是描述电子空间运动状态得数学函数式。 (1) ?(2) √(3) ?(4) √ 2、用原子轨道光谱学符号表示下列各套量子数: (1) n =2, l = 1, m = –1 (2) n =4, l = 0, m =0 (3) n =5, l = 2, m =0 2 (1)2p (2) 4s (3) 5d 3、假定有下列电子得各套量子数,指出哪几套不可能存在,并说明原因。 (1) 3,2,2,1/2 (2) 3,0,–1,1/2 (3) 2, 2, 2, 2 (4) 1, 0, 0, 0, (5) 2,–1,0, –2/1 (6) 2,0,–2,1/2 3、(1)存在,为3d 得一条轨道; (2) 当l=0时,m只能为0,或当m=±1时,l可以为2或1。 (3) 当l=2时,n应为≥3正整数,m s=+1/2或-1/2; 或n=2时l=0 m=0 m s=+1/2或-1/2; l=1 m=0或±1,m s=+1/2或-1/2; (4)m s=1/2或–1/2 ; (5)l不可能有负值; (6)当l=0时,m只能为0 4.指出下列各电子结构中,哪一种表示基态原子,哪一种表示激发态原子,哪一种表示就是错误得? (1)1s22s2(2) 1s22s12d1(3) 1s22s12p2 (4) 1s22s22p13s1(5) 1s22s42p2(6) 1s22s22p63s23p63d1 5.符合下列每一种情况得各就是哪一族哪一元素? (1)最外层有6个p电子。 (2)3d轨道无电子,n =4,l = 0得轨道只有1个电子。 (3)3d轨道全充满,4 s轨道只有1个电子。

化学键与分子结构练习题

化学键与分子结构练习题 一.选择题 1、下列化合物熔点高低顺序为()。 (A)SiCl 4>KCl>SiBr 4 >KBr (B)KCl>KBr>SiBr 4 >SiCl 4 (C)SiBr 4>SiCl 4 >KBr >KCl (D)KCl>KBr>SiCl 4 >SiBr 4 2、下列物质在水溶液中溶解度最小的是()。 (A)NaCl (B)AgCl (C)CaS (D)Ag 2 S 3、在下列各种晶体熔化时,需要破坏共价键的是(),只需克服色散力的是()。 (A)SiCl 4 (B)HF (C)Ag (D)NaCl (E)SiC 4、下列化合物熔点高低顺序为()。 (A)SiO 2>HCl>HF (B)HCl>HF>SiO 2 (C)SiO 2>HF>HCl (D)HF>SiO 2 >HCl 5、乙醇的沸点(78℃)比乙醚的沸点(35℃)高得多,主要原因是()。(A)由于相对分子质量不同(B)由于分子极性不同 (C)由于乙醇分子间存在氢键(D)由于乙醇分子间取向力强 6、下列微粒半径由大到小的顺序是()。 (A)Cl-、K+、Ca 2+、Na+(B)Cl-、Ca2+、K+、Na+ (C)Na+、K+、Ca 2+、Cl- (D)K+、Ca2+、Cl-、Na+ 7、下列固态物质由独立小分子构成的是()。 (A)金刚石(B)铜(C)干冰(D)食盐 8、在下列化合物中()不具有孤对电子。 (A)H 2O (B)NH 3 (C)NH+ 4 (D)H 2 S 9、形成HCl分子时原子轨道重叠是()。 (A)s—s重叠(B)p y —p y (或p y -p y )重叠 (C)s—p x 重叠(D)p x —p x 重叠 10、中心原子仅以sp杂化轨道成键的是()。 (A)BeCl 2和HgCl 2 (B)CO 2 和CS 2 (C)H 2S和H 2 O (D)BBr 3 和CCl 4 11、BCl 3 分子几何构型是平面三角形,B与Cl所成键是()。(A)(sp2—p)σ键(B)(sp—s)σ键 (C)(sp2—s)σ键(D)(sp—p)σ键 12、在下列化合物中,含有氢键的是()。

原子结构、化学键

原子结构、化学键 一、原子的构成 1.原子的构成粒子 2.原子中的4个数量关系 (1)质子数(Z)=核电荷数=□03核外电子数。 (2)质量数(A)=□04质子数+□05中子数。 (3)阳离子的核外电子数=□06质子数-所带电荷数。如Mg2+的核外电子数是□0710。 (4)阴离子的核外电子数=□08质子数+所带电荷数。如S2-的核外电子数是□0918。 3.“三素”——元素、核素、同位素 (1)元素、核素、同位素的概念及相互关系

(2)同位素的特征与应用 ①同位素的特征 a .化学性质□ 16相同,物理性质□17不同。 b .天然存在的同一元素各核素所占的原子百分数一般□18固定。 ②常见的重要核素及其应用 二、原子核外电子排布规律 1.核外电子排布规律 能量规律―→离核由近到远,电子能量由□ 01低到□02高 数量规律―→????? 每层最多容纳的电子数为□ 032n 最外层不超过□048个(K 层为 最外层时不超过□ 052个)次外层不超过□ 0618个 2.原子结构示意图

3.核外电子排布与元素性质的关系 (1)金属元素原子的最外层电子数一般小于4,较易□10失电子,易形成□11阳离子,在化合物中显□12正化合价。 (2)非金属元素原子的最外层电子数一般大于或等于4,较易□13得电子,活泼非金属原子易形成□14阴离子。在化合物中主要显□15负化合价。 (3)稀有气体元素的原子最外层为□168电子(氦为□172电子)稳定结构,□18不易失去或得到电子,通常表现为□190价。 三、化学键 1.化学键 (1)概念:使□01离子相结合或原子相结合的作用力。 (2)分类

专题15:分子结构与化学键

专题15:分子结构与化学键 一、单选题(共13题;共26分) 1.2010年诺贝尔物理学奖所指向的是碳的又一张奇妙脸孔:人类已知的最薄材料——石墨烯。下列说法中,正确的是() A. 固态时,碳的各种单质的晶体类型相同 B. 石墨烯含有极性键 C. 从石墨剥离得石墨烯需要破坏化学键 D. 石墨烯具有导电性 2.属于极性分子的是() A. CO2 B. H2O C. CCl4 D. N2 3.下列物质中,既含有离子键又含有共价键的是() A. N2 B. HCl C. MgCl2 D. Na2O2 4.下列说法正确的是() A. 分子间作用力与化学键的大小相当 B. 分子间作用力的大小远大于化学键,是一种很强的作用力 C. 分子间作用力主要影响物质的化学性质 D. 分子内部的相邻原子之间强烈的相互作用称为化学键,而分子之间也存在相互作用,称为分子间作用力 5.下列物质性质的变化规律,与共价键的键能大小有关的是() A. F2、Cl2、Br2、I2的熔点、沸点逐渐开高 B. HCl、HBr、HI、HF的沸点逐渐升高 C. 金刚石的硬度、熔点、沸点都高于晶体硅 D. NaF、NaCl、NaBr、NaI的熔点依次降低 6.H2S 分子结构和H2O 相似,但S-H 键键能比O-H 键键能低。下列判断错误的是() A. H2S 分子呈折线型 B. H2S 分子是极性分子 C. H2S 沸点低于H2O,因为S-H 键键能低 D. H2S 分子稳定性低于H2O 分子 7.(2019?海南)根据图中的能量关系,可求得的键能为() A. B. C. D.

8.W、X、Y、Z均为短周期主族元素,原子序数依次增加,W与X不在同一周期,且原子核外最外层电子数分别为1、5、5、7,下列说法正确的是( ) A. 原子半径大小顺序:r(Z)>r(Y)>r(X)>r(W) B. W和X形成的化合物中只有离子键 C. Y的最高价氧化物对应的水化物的酸性比Z强 D. X的最低价气态氢化物的热稳定性比Y强 9.下列晶体中含有非极性共价键的离子晶体是() ①硅晶体②H2O2③CaC2④NH4Cl ⑤Na2O2⑥苯甲酸 A. ①②④⑥ B. ①③ C. ②④⑤⑥ D. ③⑤ 10.下列描述中正确的是() A. CS2为V形的极性分子 B. ClO3—的空间构型为平面三角形 C. SF6中有6对相同的成键电子对 D. SiF4和SO32—的中心原子均为sp2杂化 11.氢化铵(NH4H)与氯化铵的结构相似,它与水反应有气体生成。下列关于氢化铵叙述正确的是() A. 是离子化合物,含有离子键和共价键 B. 电子式是 C. 与水反应时,NH4H是氧化剂 D. 固体投入少量的水中,只产生一种气体 12.下列常见分子中σ键、π键判断正确的是( ) A. C22-与O22+互为等电子体,1mol O22+中含有的π键数目为2N A B. CO与N2结构相似,CO分子中σ键与π键数目之比为2:1 C. CN-与N2结构相似,CH2=CHCN分子中σ键与π键数目之比为1:1 D. 已知反应N2O4(l) + 2N2H4(l) = 3N2(g) + 4H2O(l),若该反应中有4molN-H键断裂,则形成的π键数目为6 N A 13.下列各组物质中,按熔点由低到高的顺序排列正确的是() A. Cl2、Br2、I2 B. CO2、SiO2、KCl C. O2、I2、Hg D. 金刚石、NaCl、SO2 二、填空题(共2题;共2分) 14.在下列变化中:①I2升华;②烧碱熔化;③NaCl溶于水;④HCl溶于水;⑤O2溶于水;⑥Na2O2溶于水,未发生化学键破坏的是________,仅发生离子键破坏的是________,仅发生共价键破坏的是 ________,既发生离子键破坏,又发生共价键破坏的是________。 15.已知PH3与NH3结构相似,回答下列问题: ①PH3的电子式________,结构式________. ②几何构型为________. ③中心原子采取________杂化. ④PH3分子中的化学键________(填“有”或“无”)极性,其分子为________(填“极性”或”非极性”)分子. ⑤PH3与NH3的热稳定性:________更强. 三、综合题(共2题;共7分)

{高中试卷}高三化学一轮复习:原子结构与化学键[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日 期: 原子结构与化学键 1.元素X 、Y 和Z 可结合形成化合物XYZ 3;X 、Y 和Z 的原子序数和为26;Y 和Z 在同一周期。下 列有关推测正确的是( ) A .XYZ 3是一种可溶于水的酸,且X 与Y 可形成共价化合物XY B .XYZ 3是一种微溶于水的盐,且X 与Z 可形成离子化合物XZ C .XYZ 3是一种易溶于水的盐,且Y 与Z 可形成离子化合物YZ D .XYZ 3是一种离子化合物,且Y 与Z 可形成离子化合物YZ 2 解析:根据题意,符合条件的化合物有NaNO 3和MgCO 3两种,B 项中MgCO 3微溶于水,MgO 为离子化合物。 答案:B 2.下列有关表述正确的是( ) A .—OH 与OH - 组成元素相同,含有的质子数也相同 B .NH 4Cl 的电子式为:???? ??H ·N H ·· ··H ·H +Cl - C .丙烷分子的比例模型示意图: D .CO 2分子的比例模型示意图: 解析:A 项,质子数均为9,正确;B 项,没有写出氯离子最外层电子、缺少中括号;C 项,

该图型为丙烷分子的球棍模型;D项,CO2分子是直线形分子,且r C>r O。 答案:A 3.短周期元素X、Y的原子序数相差2。下列有关叙述正确的是( ) A.X与Y不可能位于同一主族 B.X与Y一定位于同一周期 C.X与Y不可能形成共价化合物XY D.X与Y可能形成离子化合物XY 解析:原子序数相差2的短周期元素,可以是同一主族,如H和Li;也可以是不同周期,如F和Na等;可形成共价化合物,如CO;也可形成离子化合物,如NaF。 答案:D 4.甲、乙、丙、丁4种物质分别含2种或3种元素,它们的分子中各含18个电子。甲是气态氢化物,在水中分步电离出两种阴离子。下列推断合理的是( ) A.某钠盐溶液含甲电离出的阴离子,则该溶液显碱性,只能与酸反应 B.乙与氧气的摩尔质量相同,则乙一定含有极性键和非极性键 C.丙中含有第二周期ⅣA族的元素,则丙一定是甲烷的同系物 D.丁和甲中各元素质量比相同,则丁中一定含有-1价的元素 解析:本题考查物质结构知识。选项A,甲是18电子的氢化物,且其水溶液为二元弱酸,不难得出甲为H2S,其中NaHS溶液中含有HS-、S2-,溶液显碱性,但NaHS能与NaOH等反应; 选项B,O2的摩尔质量为32 g/mol,乙的摩尔质量也为32 g/mol,且含有18个电子,CH3OH 符合,CH3OH中只含有极性键,无非极性键;选项C,第二周期ⅣA族元素为C,CH3OH符合,但CH3OH不是CH4的同系物;选项D,H2S中元素的质量比为1/16(H/S),H2O2分子中元素的质

高中化学-原子结构与化学键全面总结

专题六 原子结构与化学键 一.原子结构 原子定义:化学变化中的最小微粒。 1.原子结构和各微粒之间的数量关系(1)原子的构成 (2)各微粒间的数量关系A Z X 表示质量数为A、质子数为Z 的一个原子。①核电荷数=核内质子数=原子核外电子总数,②质量数(A)=质子数(Z)+中子数(N),③离子所带电荷数=质子数-核外电子数。2.原子核外电子排布(1)电子层的意义 表示电子离原子核平均距离的大小, 电子层常常用n 表示,n 越小表示电子离原子核等越近;因为电子没有固定的运动轨迹,所以是一个概率平均距离。 (2)原子核外电子排布规律 ①每个电子层最多容纳2n2个电子, ②最外层电子数最多不超过8(K 层为最外层电子时,最多不超过2个) 1。最外层电子排满8个(He 为2个)形成稳定结构,该结构是稀有气体元素原子结构,不易得失电子,化学性质稳定, 2。最外层电子数小于4时易失去电子,表现出金属性, 3。最外层电子数大于4时易失去电子,表现出非金属性。 (3)次外层电子数最多不超过18个。 电子式是表示物质结构的一种式子,其写法是在 元素周围用“.”或“ × ”表示原子或离子的最外层电子,若为离子还需要用“n +”或“n -”(n 为正整数)表示离子所带电荷。 注意事项: 1.离子化合物中阴、阳离子个数比不是1:1时,要注意每一个离子都与带相反电荷的离子直接相邻, 2.写双原子分子的电子式时,要注意共用电子对的数目和表示方法, 具体方法如下: 三.化学键 1.概念:使离子相结合或原子相结合的作用力。 2.分类 3.离子键 (1)概念:带相反电荷离子之间的相互作用, (2)成键微粒:阴、阳离子,(3)成键实质:静电作用, (4)形成条件:活泼金属与活泼非金属化合时,一般形成离子键, (5)存在:所有离子化合物中都有离子键 4.共价键 (1)概念:原子间通过共用电子对所形成的相互作用, (2)成键微粒:原子, (3)成键实质:原子间形成共用电子对,电子对核的静电引力与核间、电子间的静电斥力达到平衡, (4)形成条件:同种或不同种非金属元素的原子相结合时,一般形成共价键, (5)共价键的分类 (6)共价键存在

原子结构、化学键

金牌化学高三专题系列之 原子结构和化学键 一、原子结构的构成及各微粒之间的数量关系 1.原子的构成及各微粒之间的数量关系 (1)原子的构成 ________的种类 _________的种类 核外电子:最外层电子数决定 ___________________ (2)各微粒间的数量关系 X A Z 表示质量数为A 、质子数为Z 的一个原子。 a.核电荷数=核内质子数=原子核外电子数; b.质量数(A)=质子数(Z)+中子数(N); c.离子所带电荷数=质子数-核外电子总数。 2.原子核外电子排布 (1)电子层的意义 表示__________________________________________,通俗地讲就是____________________________。 电子层常用n 表示,n 越小,表示电子离核_______;反之,电子离核_______。由于电子的运动没有固定的轨迹,因此只能讲平均距离。 (2)原子核外电子排布规律 a.每个电子层最多能容纳______个电子。 b.最外层电子数最多不超过______(K 层为最外层时,最多不超过2个)。 c.最外层电子___________(He 为2个)形成稳定结构,该结构是稀有气体元素原子结构,不易得失电子,因此化学性质稳定,一般条件下不发生反应。 d.最外层电子数较少的(1、2、3个)有失电子达到稳定结构的倾向,表现出__________。 e.最外层电子数较多的(4、5、6、7个)有得失电子或形成共用电子对达到稳定结构的倾向,表现出_________。 f.次外层电子数最多不超过_____个。 (3)最外层电子数与元素性质的关系

相关主题