搜档网
当前位置:搜档网 › 浅谈生物信息学在生物学研究中的应用

浅谈生物信息学在生物学研究中的应用

浅谈生物信息学在生物学研究中的应用
浅谈生物信息学在生物学研究中的应用

浅谈生物信息学在生物学研究中的应用

生物信息学(Bioinformatics)是一门新兴的、正在迅速发展的交叉学科,目前国内外对生物信息学的定义众说纷纭,没有形成统一认识。概括来说,现代生物信息学是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。

生物信息在生物学研究上的应用主要包括在基因组学研究上的应用和在蛋白质组学研究中的应用。

1.在基因组学研究中的应用

基因组(genome)表示一个生物体所有的遗传信息的总和。一个生物体基因所包含的信息决定了该生物体的生长、发育、繁殖和消亡等所有生命现象。有关基因组的研究称为基因组学(Genomics),基因组学根据研究重点的不同分为序列基因组学(Sequence genomics)、结构基因组学(Structural genomics)、功能基因组学(Functional genomics)与比较基因组学(Comparative genomics)。

结构基因组学的研究:结构基因组学(Structural genomics)是基于基因组学的一个重要组成部分和研究领域,它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学口。生物信息学在结构基因组学中的应用主要在于:基因组作图、核苷酸序列信息分析、基因定位、新基因的发现和鉴定等方面。比较基因组学的研究:借助生物信息学的手段对不同生物基因组的比较、分析,可以进行生物进化等方面的研究。

功能基因组学的研究:功能基因组学(Functional genomics)是指在全基因组序列测定的基础上,从整体水平研究基因及其产物在不同时空、条件下的结构与功能关系及活动规律的学科。功能基因组的研究是后基因组时代的关键点,它将借助生物信息学的技术平台,利用先进的基因表达技术及庞大的生物功能检测体系,从浩瀚无垠的基因库筛选并确知某一特定基因的功能,并通过比较分析基因及其表达的状态,确定出基因的功能内涵,揭示生命奥秘,甚至开发出基因产品。

2.在蛋白质组学的研究中的应用

在20世纪中后期,随着DNA双螺旋结构的提出和蛋白质空间结构的解析,生生命科学的研究进入了分子生物学时代,而遗传信息载体DNA和生命功能的体现者蛋白质的研究,成为了其主要内容。90年代初期启动的庞大的人类基因组计划,已经取得巨大的成在20世纪中后期,随着DNA双螺旋结构的提出和蛋白质

空间结构的解析,生生命科学的研就,人类基因组序列草图绘制完成后,生命科学研究跨入了后基因组时代。然而,人们清醒地识到基因仅是遗传信息的载体,而生命活动的执行者是基因的表达产物—蛋白质,它是生命现象复杂性和多变性的直接体现者。

蛋白质组一词是澳大利亚学者马克威尔金斯在1994年最先提出来的,它是指基因组表达的所有相应的蛋白质,也可以说是指细胞或组织或机体全部蛋白质的存在及其活动方式。蛋白质组学是从整体的蛋白质水平上,在一个更加深入、更加贴近生命本质的层次上去探讨和发现生命活动的规律和重要生理、病理现象的本质等。蛋白质组学的研究对揭示生命活动规律,探讨重大疾病机制,疾病诊断和防治、新药的开发提供重要的理论基础。

生物信息学在蛋白质组学中的蛋白质数据库的应用

2.1蛋白质组数据库

蛋白质组数据库是蛋白质组学研究的主要内容之一。通过构建不同环境条件下组织或细胞全部蛋白质的数据库来研究蛋白质表达的差异情况。与其他数据库相比, 目前大部分蛋白质组数据库都有以下几个方面的特点: (1)由于蛋白质相关数据的种类繁多,蛋白质组数据库的种类也多种多样,如双向电泳数据库、基于蛋白序列的数据库、蛋白质一级或高级结构数据库、蛋白质相互作用数据库等等;(2)新速度快,网络上的蛋白质组数据库的数据几乎每天都在更新;(3)网共享程度高, 越来越多的数据库资源与互联网相互配合,使得蛋白质相关数据的利用率空前的提高。蛋白质组数据库的主要内容即集中在基于双向电泳结果的数据库和基于蛋白质序列信息的数据库。

2.1.1基于双向电泳图谱的数据库

双向电泳技术是蛋白质组学研究中最重要的实验技术之一,所以基于双向电泳图片的数据库也成了蛋白质组学研究中主要内容。

2.1.2 基于蛋白质序列信息的数据库

基于蛋白质序列信息的数据库是生物信息学数据库中最基本的数据库,这些数据库以氨基酸残基顺序为基本内容,并附有注释信息(计算机的序列分析结果和生物学家查阅文献的结果)。基于蛋白质序列的数据库很多,主要有蛋白质信息资源数据库(PIR)、SWISS - PROT 数据库、蛋白质序列数据库 NRL - 3D和 TrEMBL 等等。

2.1.3 其他蛋白质组数据库

蛋白质生物信息学包含很多方面的内容:如蛋白质大分子的结构、相互作用等等,所以,除了上述的一些数据库之外,还有很多关于构象、相互作用等方面的数据库,是基于质谱应用的数据库,属于混合数据库。将生物信息学的实验思路引入蛋白质组学的实验方案后,实验人员可以通过互联网上的信息设计实验方

案,避免了很多重复性的劳动,少走很多弯路,为蛋白质组学的发展提供了可靠的信息资源。值得一提的是,上文提到的大多数数据库都能实现数据接收、在线查询和空间结构的可是化浏览等多种功能。而且,几乎所有这些数据库都是免费的,都可以免费下载或提供免费服务,使得蛋白质组学可以在生物信息学的辅助之下快速发展。

2.2生物信息学与蛋白质分析

在蛋白质组分析过程中,生物信息学的作用不仅仅体现在数据库的查阅和资料的整合中,生物信息学软件在蛋白质组研究领域的作用根式至关重要的。蛋白质分析软件应用主要集中在结合蛋白质组研究中的分离技术和坚定技术识别蛋白质(如2-DE)图像分析、Edman降解的序列组合、质谱数据的综合分析等),对有价值的未知蛋白质进行分析和预测(包括序列分析、结构预测、结构域、电点等性质的检测等)、针对蛋白质的分析预测方法应用的工具有4个方面。

2.2.1 蛋白质一级结构分析

根据20中氨基酸的理化性质可以分析电泳等实验中的未知蛋白质,同样也可以分析已知蛋白质的物化性质。设计PROPSEARCH的目的是为了通过排比方法查询一个新的蛋白质序列失败时,查找公认的蛋白质家族而设计的。PROPSEARCH可以通过氨基酸组分来查询,同时也可以通过其他的特性来进行查询,如从序列中计算所得的分子量、挑选的二肽组分的含量等。

2.2.2 蛋白质的物理性质预测

从蛋白质序列出发,预测蛋白质的许多物理性质,包括等电点、分子量、酶切特性、疏水性、电荷分布等。

2.2.3蛋白质二级结构预测

二级结构是指α螺旋和β折叠等规则的蛋白质局部结构元件。蛋白质的二级结构预测的基本依据是每一段相邻的氨基酸残基具有形成一定二级结构的倾向。因此,进行二级结构预测需要通过统计和分析发现这些倾向或者规律。蛋白质二级结构预测的方法有3种。一是由已知结构统计各种氨基酸残基形成二级结构的构象趋势,其中最常用的是Chou和Fasman 法;二是基于氨基酸的物理化学性质,包括堆积性、疏水性、电荷性、氢键形成能力等;三是通过序列比对,由已知三维结构的同源蛋白推断未知蛋白的二级结构。各种方法预测的准确率随蛋白质类型的不同而变化。一般对于α螺旋预测精度较好,对β折叠差些,而对除α螺旋和β折叠等之外的无规则二级结构则效果很差。

2.2.4蛋白质的三维结构

蛋白质三维结构是预测时最复杂和最困难的预测技术。序列差异较大的蛋白质序列也可能折叠成类似的三维构象。由于蛋白质的折叠过程并不十分清晰,从理论上解决蛋白质折叠的问题还有待进一步的科学发展,但也有了一些有一定作

用的三维结构预测方法。即与已知结构的序列比较,同源模建,threading算法和折叠识别方法。常见的预测算法有:SWISS-MODEL (自动蛋白质同源模建服务器)、CPHmodels等。

2.3 生物信息学与蛋白质功能

生物信息学发展到今天不仅可以对蛋白质组数据进行分析和预测,而且可以对已知或者未知的基因产物进行功能上全面的分析和预测。

生物信息学最常用的分析方法是模式识别。主要是利用存在于蛋白质序列结构中的某些特殊的特征模体来识别相关蛋白质性质。换而言之,就是从新的蛋白序列中发现标志性的序列或者结构,以此建立模式,然后在已经建立好的已知蛋白质数据库中,搜集于此相似的模式,来确定未知蛋白质的归属,从而预测它的功能。许多基因是在特定时期和条件下被激活,才能表达出来,在正常人工模拟的环境下根本无法表达。类似于这样的恩未知蛋白质也需要通过生物信息学的方法计算分析预测,以获得它的功能信息。

生物信息学的发展将给生命科学研究带来革命性的变革,将帮助人类认识生命的起源、进化、遗传和发育的本质,揭示人体生理和病理过程的分子基础,为人类疾病的预测、诊断、预防和治疗提供合理和有效的方法或途径,同时还将对医药、卫生、食品、农业等产业产生巨大的推动作用,甚至可能引发新的产业革命。21世纪是生命科学的时代,生物信息学为生命科学的发展提供了便利和强有利的技术支持,推动着生命科学的迅速发展。

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

生物信息学复习资料全

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

生物信息学现状与展望

研究生课程考试卷 学号、姓名: j20112001 苗天锦 年级、专业:2011生物化学与分子生物学 培养层次:硕士 课程名称:生物信息学 授课学时学分: 32学时 2学分 考试成绩: 授课或主讲教师签字:

生物信息学现状与展望 摘要:生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因组时代",本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。 关键词:生物信息学;生物信息学背景;发展前景 一、生物信息学概述 1.生物信息学发展历史 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”【1】。 研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测定了DNA纤维的结构。1953年James Watson 和FrancisCrick在Nature杂志上推测出DNA 的三维结构(双螺旋)。Kornberg于1956年从大肠杆菌(E.coli)中分离出DNA 聚合酶I(DNA polymerase I),能使4种dNTP连接成DNA。Meselson与Stahl (1958)用实验方法证明了DNA复制是一种半保留复制。Crick于1954年提出了遗传信息传递的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起到了极其重要的指导作用。经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码得到了破译。限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程的技术基础【2】。自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。 2.生物信息学研究方向 2.1 序列比对

生物信息学中的机器学习方法

生物信息学中的机器学习方法 摘要:生物信息学是一门交叉学科,包含了生物信息的获取、管理、分析、解释和应用等方面,兴起于人类基因组计划。随着人类基因组计划的完成与深入,生物信息的研究工作由原来的计算生物学时代进入后基因组时代,后基因组时代中一个最重要的分支就是系统生物学。本文从信息科学的视角出发,详细论述了机器学习方法在计算生物学和系统生物学中的若干应用。 关键词:生物信息学;机器学习;序列比对;人类基因组;生物芯片 1.相关知识 1.1 生物信息学 生物信息学时生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。 生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。 生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA及蛋白质序列的数据管理和分析。自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。 目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。生物信息学的研究领域也迅速扩大。生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。事实上,我们今天正需要具备各种背景知识、才能和研究思路的研究人员,集思广益

国内外生物信息学发展状况

国内外生物信息学发展状况 1.国外生物信息发展状况 国外非常重视生物信息学的发展各种专业研究机构和公司如雨后春笋般涌现出来,生物科技公司和制药工业内部的生物 信息学部门的数量也与日俱增。美国早在1988年在国会的支持 下就成立了国家生物技术信息中心(NCBI),其目的是进行计 算分子生物学的基础研究,构建和散布分子生物学数据库;欧 洲于1993年3月就着手建立欧洲生物信息学研究所(EBI), 日本也于1995年4月组建了信息生物学中心(CIB)。目前, 绝大部分的核酸和蛋白质数据库由美国、欧洲和日本的3家数 据库系统产生,他们共同组成了 DDBJ/EMBL/Gen Bank国际核 酸序列数据库,每天交换数据,同步更新。以西欧各国为主的 欧洲分子生物学网络组织(EuropeanMolecular Biology Network, EMB Net)是目前国际最大的分子生物信息研究、开 发和服务机构,通过计算机网络使英、德法、瑞士等国生物信 息资源实现共享。在共享网络资源的同时,他们又分别建有自 己的生物信息学机构、二级或更高级的具有各自特色的专业数 据库以及自己的分析技术,服务于本国生物(医学)研究和开 发,有些服务也开放于全世界。 从专业出版业来看,1970年,出现了《Computer Methods and Programs in Biomedicine》这本期刊;到1985年4月, 就有了第一种生物信息学专业期刊《Computer Application

in the Biosciences》。现在,我们可以看到的专业期刊已经很多了。 2 国内生物信息学发展状况 我国生物信息学研究近年来发展较快,相继成立了北京大学生物信息学中心、华大基因组信息学研究中心、中国科学院上海生命科学院生物信息中心,部分高校已经或准备开设生物信息学专业。2002年国家自然科学基金委在生物化学、生物物理学与生物医学工程学学科设立了生物信息学项目,并列入生命科学部优先资助的研究项目。国家 863计划特别设立了生物信息技术主题,从国家需求的层面上推动我国生物信息技术的大力发展[3]。 但是由于起步较晚及诸多原因,我国的生物信息学发展水平远远落后于国外。在PubMed收录的以关键词“Bioinformatics”检索到的历年发表的文章数,可以看出大量的研究文献出现在21世纪以后。其中我国共有138篇占全部5548篇的2.5%,而美国则发表2160篇占全部的39%之多(统计数据截至2004年2月15日)。我国学者在生物信息学领域发表的有高影响力的论文只有不到美国学者发表数量的6%,差距相当大[4]。在生物信息学领域,一些著名院士和教授在各自领域取得了一定成绩,显露出蓬勃发展的势头,有的在国际上还占有一席之地。如北京大学的罗静初和顾孝诚教授在生物信息学网站建设方面、中科院生物物理所的陈润生研究员在EST

浅谈生物信息学在生物方面的应用

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

生物信息学完整版

一、名词解释 1. 生物信息学: 1)生物信息学包含了生物信息的获取、处理、分析、和解释等在内的一门交叉学科; 2)它综合运用了数学、计算机学和生物学的各种工具来进行研究; 3)目的在于阐明大量生物学数据所包含的生物学意义。 2. BLAST(Basic Local Alignment Search Tool) 直译:基本局部排比搜索工具 意译:基于局部序列排比的常用数据库搜索工具 含义:蛋白质和核酸序列数据库搜索软件系统及相关数据库 3. PSI-BLAST:是一种迭代的搜索方法,可以提高BLAST和FASTA的相似序列发现率。 4. 一致序列:这些序列是指把多序列联配的信息压缩至单条序列,主要的缺点是除了在特 定位置最常见的残基之外,它们不能表示任何概率信息。 5. HMM 隐马尔可夫模型:一种统计模型,它考虑有关匹配、错配和间隔的所有可能的组合 来生成一组序列排列。(课件定义)是蛋白质结构域家族序列的一种严格的统计模型,包括序列的匹配,插入和缺失状态,并根据每种状态的概率分布和状态间的相互转换来生成蛋白质序列。 6. 信息位点:由位点产生的突变数目把其中的一课树与其他树区分开的位点。 7. 非信息位点:对于最大简约法来说没有意义的点。 8. 标度树:分支长度与相邻节点对的差异程度成正比的树。 9. 非标度树:只表示亲缘关系无差异程度信息。 10. 有根树:单一的节点能指派为共同的祖先,从祖先节点只有唯一的路径历经进化到达其 他任何节点。 11. 无根树:只表明节点间的关系,无进化发生方向的信息,通过引入外群或外部参考物种, 可以在无根树中指派根节点。 12. 注释:指从原始序列数据中获得有用的生物学信息。这主要是指在基因组DNA中寻找基 因和其他功能元件(结构注释),并给出这些序列的功能(功能注释)。 13. 聚类分析:一种通过将相似的数据划分到特定的组中以简化大规模数据集的方法。 14. 无监督分析法:这种方法没有内建的分类标准,组的数目和类型只决定于所使用的算法 和数据本身的分析方法。 15. 有监督分析法:这种方法引入某些形式的分类系统,从而将表达模式分配到一个或多个 预定义的类目中。 16. 微阵列芯片:将探针有规律地排列固定于载体上,与标记荧光分子的样品进行杂交,通 过扫描仪扫描对荧光信号的强度进行检测,从而迅速得出所要的信息。 17. 虚拟消化:是基于已知蛋白序列和切断酶的特异性的情况下进行的理论酶切(课件定 义)。是在已知蛋白质序列和蛋白外切酶之类切断试剂的已知特异性的基础上,由计算机进行的一种理论上的蛋白裂解反应。 18. 质谱(MS)是一种准确测定真空中离子的分子质量/电荷比(m/z)的方法,从而使分子质量 的准确确定成为可能。 19. 分子途径是指一组连续起作用以达到共同目标的蛋白质。 20. 虚拟细胞:一种建模手段,把细胞定义为许多结构,分子,反应和物质流的集合体。 21. 先导化合物:是指具有一定药理活性的、可通过结构改造来优化其药理特性而可能导致 药物发现的特殊化合物。就是利用计算机在含有大量化合物三维结构的数据库中,搜索能与生物大分子靶点匹配的化合物,或者搜索能与结合药效团相符的化合物,又称原型物,简称先导物,是通过各种途径或方法得到的具有生物活性的化学结构

生物信息学分析方法

核酸和蛋白质序列分析 蛋白质, 核酸, 序列 关键词:核酸序列蛋白质序列分析软 件 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.sodocs.net/doc/cb12958780.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch 算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.sodocs.net/doc/cb12958780.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.sodocs.net/doc/cb12958780.html,/fasta33/)和BLAST (https://www.sodocs.net/doc/cb12958780.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两

生物信息学发展概况及研究进展

生物信息学发展概况及研究进展 韩龙生物化学与分子生物学2010200531 1 概述 生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴的边缘学科,它以核酸和蛋白质为主要研究对象,以数学、计算机科学为主要研究手段,对生物学实验数据进行获取、加工、存储、检索与分析,从而达到揭示数据所蕴含的生物学意义的目的[1]。 生物信息学的发展大致经历了前基因组时代、基因组时代和后基因组时代。目前,它的主要研究内容已经从对DNA和蛋白质序列比较、编码区分析、分子进化转移到大规模的数据整合、可视化,转移到比较基因组学、代谢网络分析、基因表达谱网络分析、蛋白质技术数据分析处理、蛋白质结构与功能分析以及药物靶点筛选等[1]。在后基因组时代的今天,生物信息学已经成为目前极其热门的系统生物学研究的重要手段。 利用各种功能的软件系统平台,目前生物信息学方法主要通过序列比对与分析、功能基因组与基因表达数据的分析、蛋白质结构预测以及基于结构的药物设计等方面应用于各个生命科学研究领域。 1.1序列比对与分析 序列比对是生物信息学的基础,是比较两个或两个以上符号序列的相似性或不相似性。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包——BLAST和FASTA;两个以上序列的多重序列是生物信息学中尚未解决的一个NP完全的组合优化问题,是目前研究的热点[2]。比较经典的算法有SAGA算法[3]、CLUSTAL算法以及隐马尔可夫模型(Hidden Markov Models,HMM)多重序列比对算法,另外,如Notredame等[4]开发的T-Coffee算法、Timo等[5]设计的Kalign算法、张琎等[6]设计的基于GC-GM多序列比对穷举遗传算法,是通过穷举某个特定范围内的所有序列的长度取值,来确定最终最佳比对长度的一种多序列比对算法。这些算法已应用于各种多序列比对软件,并在应用中不断得到优化。 1.2 功能基因组学 在后基因时代的今天,基因组学的研究已从结构基因组学(Structural genomics)转向功能基因组学(Functional genomics)[1] 。功能基因组的任务是进行基因组功能注释(Genome annotation),了解基因功能、认识基因与疾病的关系、掌握基因的产物及其在生命活动中的作用。基因的时空差异表达是功能基因组学研究的理论基础。

生物信息学名词解释

1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数 据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 序列格式:是GenBank 数据库的基本信 息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响 对比的结果。P37 值:衡量序列之间相似性是否显着的期望 值。E值大小说明了可以找到与查询序列 (query)相匹配的随机或无关序列的概 率,E值越接近零,越不可能找到其他匹 配序列,E值越小意味着序列的相似性偶 然发生的机会越小,也即相似性越能反映 真实的生物学意义。P95 12.低复杂度区域:BLAST搜索的过滤选 项。指序列中包含的重复度高的区域,如 poly(A)。 13.点矩阵(dot matrix):构建一个二 维矩阵,其X轴是一条序列,Y轴是另一 个序列,然后在2个序列相同碱基的对应 位置(x,y)加点,如果两条序列完全相 同则会形成一条主对角线,如果两条序列 相似则会出现一条或者几条直线;如果完 全没有相似性则不能连成直线。 14.多序列比对:通过序列的相似性检索 得到许多相似性序列,将这些序列做一个 总体的比对,以观察它们在结构上的异 同,来回答大量的生物学问题。 15.分子钟:认为分子进化速率是恒定的 或者几乎恒定的假说,从而可以通过分子 进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因 或者蛋白质的多序列比对或其他性状,可 以研究推断不同物种或基因之间的进化关 系。 17.进化树的二歧分叉结构:指在进化树 上任何一个分支节点,一个父分支都只能 被分成两个子分支。 系统发育图:用枝长表示进化时间的 系统树称为系统发育图,是引入时间概念 的支序图。 18.直系同源:指由于物种形成事件来自 一个共同祖先的不同物种中的同源序列, 具有相似或不同的功能。(书:在缺乏任 何基因复制证据的情况下,具有共同祖先 和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中 具有共同祖先,通过基因重复产生的一组 基因,这些基因在功能上可能发生了改 变。(书:由于基因重复事件产生的相似 序列。) 20.外类群:是进化树中处于一组被分析 物种之外的,具有相近亲缘关系的物种。 21.有根树:能够确定所有分析物种的共 同祖先的进化树。 22.除权配对算法(UPGMA):最初,每个 序列归为一类,然后找到距离最近的两类 将其归为一类,定义为一个节点,重复这 个过程,直到所有的聚类被加入,最终产 生树根。 23.邻接法(neighbor-joining method): 是一种不仅仅计算两两比对距离,还对整 个树的长度进行最小化,从而对树的拓扑 结构进行限制,能够克服UPGMA算法要求 进化速率保持恒定的缺陷。 24.最大简约法(MP):在一系列能够解 释序列差异的的进化树中找到具有最少核 酸或氨基酸替换的进化树。 25.最大似然法(ML):它对每个可能的 进化位点分配一个概率,然后综合所有位 点,找到概率最大的进化树。最大似然法 允许采用不同的进化模型对变异进行分析 评估,并在此基础上构建系统发育树。 26.一致树(consensus tree):在同一 算法中产生多个最优树,合并这些最优树 得到的树即一致树。 27.自举法检验(Bootstrap):放回式抽 样统计法。通过对数据集多次重复取样, 构建多个进化树,用来检查给定树的分枝 可信度。 28.开放阅读框(ORF):开放阅读框是基 因序列的一部分,包含一段可以编码蛋白 的碱基序列。 29.密码子偏好性(codon bias):氨基 酸的同义密码子的使用频率与相应的同功 tRNA的水平相一致,大多数高效表达的 基因仅使用那些含量高的同功tRNA所对 应的密码子,这种效应称为密码子偏好 性。 30.基因预测的从头分析:依据综合利用 基因的特征,如剪接位点,内含子与外显 子边界,调控区,预测基因组序列中包含 的基因。 31.结构域(domain):保守的结构单 元,包含独特的二级结构组合和疏水 内核,可能单独存在,也可能与其他

浅谈生物信息学的发展和前景1

浅谈生物信息学的发展和前景 摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。 关键字:生物信息学、产生背景、发展现状、前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”。 一、生物信息学产生的背景 生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。 生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank 数据库中的DNA序列总量已超过70亿碱基对。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高生活质量。这就构成了一个极大的矛盾。这个矛盾就催生了一门新兴的交叉科学,这就是生物信息学。二、生物信息学研究的发展现状 资金和实力非常重要,生物信息的研究投入短期不算大,但是结合成果,其投入相当的大。因为目前生物信息主要在于教学和和研究,商业领域的应用不算很广。如一套LIMS加上软件就要花上数千万。加上相关项目的研究开发,不是国内相关的机构所能承受的。所以需要得到政府的支持和帮助。以及有识之士的投入。否则我们又将远远落后国外。国内的制药行业将永不得翻身!基因的流失(国外一些国家打着给国内免费治疗,分析疾病的考旗帜,

生物信息学主要内容和发展前景

生物信息学主要内容和发展前景 学生:xxx (x学院xxxx班,学号xxxxxxxxxxx) 摘要:21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 关键字:生物信息学;产生;研究内容;展现状;前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展,被誉为“解读生命天书的慧眼”。 一、生物信息学的产生 21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 二、生物信息学研究内容 (一)序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序

生物信息学的内容及发展

生物信息学的内容及发展 学生:XXX (X学院XXX班,学号:XXXXXXXXXXXXX) 摘要:生物信息学(Bioinformatics)是80年代末随着人类基因组计划的启动而兴起的一门新的交叉学科,最初常被称为基因组信息学。广义地说,生物信息学是用数理和信息科学的理论、技术和方法去研究生命现象、组织和分析呈现指数增长的生物数据的一门学科。伴随着人类基因组计划的胜利完成,生物信息学的作用愈显重要。 关键字:生物信息学;科学技术;内容;发展 生物信息学以计算机为其主要工具,发展各种软件,对逐日增长的浩如烟海的DNA和蛋白质的序列和结构进行收集、整理、储存、发布、提取、加工、分析和研究,目的在于通过这样的分析逐步认识生命的起源、进化、遗传和发育的本质,破译隐藏在DNA序列中的遗传语言,揭示生物体生理和病理过程的分子基础,为探索生命的奥秘提供最合理和有效的方法或途径。生物信息学已经成为生物医学、农学、遗传学、细胞生物学等学科发展的强大推动力量,也是药物设计、环境监测的重要组成部分。 一、生物信息学的定义与定位 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 生物信息学是在大分子方面的概念型的生物学,并且使用了信息学的技术,这包括了从应用数学、计算机科学以及统计学等学科衍生而来各种方法,并以此在大尺度上来理解和组织与生物大分子相关的信息。(Luscombe,2001) 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:⑴新算法和统计学方法研究;⑵各类数据的分析和解释;⑶研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 二、生物信息学的研究内容和方向 生物信息学的主要研究内容:基因组学 - 蛋白质组学- 系统生物

生物信息学的进展及其在分子微生物学研究中的应用

近年来,人类基因组计划和其它物种基因组学计划的启动和实施,使人类在生命科学领域尤其是在核酸、蛋白质等生物大分子的序列、结构与功能等领域迅速积累了大量数据。人们渴望从这些巨量数据挖掘出有用的信息。生物信息学这门新兴学科应运而生。微生物全基因测序,不仅是人类最早和首先完成的第一种生物的全基因组分析,也是迄今为止完成测序基因组种类最多的领域。生物信息学研究方法的运用为病原微生物的研究注入了新的血液。通过生物信息学研究平台,人们不仅能够实时在线检索丰富的微生物资源、共享海量的信息数据,还可以利用不断优化的系统平台、新的算法对微生物学各方面作进一步的研究。本文对近年来生物信息学方法在分子微生物学多方面的研究作一简要综述。 1 生物信息学研究概况 生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴的边缘学科,它以核酸和蛋白质为主要研究对象,以数学、计算机科学为主要研究手段,对生物学实验数据进行获取、加工、存储、检索与分析,从而达到揭示数据所蕴含的生物学意义的目的[1]。 生物信息学的发展大致经历了前基因组时代、基因组时代和后基因组时代。目前,它的主要研究内容已经从对DNA和蛋白质序列比较、编码区分析、分子进化转移到大规模的数据整合、可视化,转移到比较基因组学、代谢网络分析、基因表达谱网络分析、蛋白质技术数据分析处理、蛋白质结构与功能分析以及药物靶点筛选等[1]。在后基因组时代的今天,生物信息学已经成为目前极其热门的系统生物学研究的重要手段。 利用各种功能的软件系统平台,目前生物信息学 生物信息学的进展及其在分子微生物学研究中的应用 陈文聪 胡朝晖 朱庆义★ [摘 要] 生物信息学的飞速发展,为其他生命学科的研究提供了新的平台。随着微生物基因组、蛋 白质组的数据日益丰富,生物信息学方法在分子微生物学研究中应用越来越广泛,为人类疾病防治带来了 不可估量的影响。本文概述了生物信息学的研究概况和生物信息学在分子微生物学研究领域中的应用, 如微生物鉴定、溯源分析、新型疫苗研究,以及微生物致病机理的研究等具有重要意义。 [关键词] 生物信息学;分子微生物 Application of the bioinformatics in the research of molecular microbiology CHEN Wencong, HU Chaohui, ZHU Qingyi★ (Guangzhou Kingmed Center for Clinical Laboratory, Guangdong, Guangzhou 510330, China) [ABSTRACT] The rapid development of bioinformatics provides a new platform for other life science research. The widely use of bioinformatics methods in the research of microbiology results from the enrichment of microbial genome data and proteome data, which have contributed to human diseases' prevention and therapy. The paper reviewed the progress of bioinformatics and the application of its in the research of microbiology, such as the identi?cation of microbe, the analysis of evolution, the study of new vaccines and the nosogenesis of microbe, which are signi?cant to the research of microbiology. [KEY WORDS] Bioinformatics; Molecular microbiology 基金项目:十一五国家科技重大专项课题(2008ZX10004-006);国家标准化委员会资助项目(20081021-T-361) 作者单位:广州金域医学检验中心,广东,广州 510330 ★通讯作者:朱庆义,E-mail:zqy@https://www.sodocs.net/doc/cb12958780.html, ?综述?

相关主题