搜档网
当前位置:搜档网 › 浅析泰勒公式在求极限中的应用

浅析泰勒公式在求极限中的应用

浅析泰勒公式在求极限中的应用
浅析泰勒公式在求极限中的应用

版权所有

翻印必究https://www.sodocs.net/doc/cb13407568.html, 1

浅析泰勒公式在求极限中的应用泰勒公式是高等数学中一个非常重要的内容,它可以将一些复杂函数近似的表示为简单的多项式函数,因此应用十分广泛,多用于以下四个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、泰勒级数可以用来近似计算函数的值,并估计误差。

3、证明不等式。

4、求待定式的极限。

在考研中,多应用于极限的计算和不等式的证明。而要准确的应用泰勒公式,首先要知道定义,然后要弄清楚泰勒公式应用的方法,本次以其在极限计算中的应用为例讲述。

一、定义

泰勒公式是一个将在0x x =处具有n 阶导数的函数()f x 利用关于0x x =的n 次多项式来逼近函数的方法。

若函数()f x 在包含0x 的某个闭区间[,]a b 上具有n 阶导数,且在开区间(,)a b 上具有1n +阶导数,则对闭区间[,]a b 上任意一点x x,成立下式:

()20000000()()()=()+()())()()2!!

n n n f x f x f x f x f x x x x x x x R x n '''-+-++-+ 其中,表示()f x 的n 阶导数,等号后的多项式称为函数()f x 在0x 处的泰勒展开式,剩余的()n R x 是泰勒公式的余项。

二、应用

既然泰勒展开后是多项式,那么在应用时就必须弄清楚三点:

1.

展开的基点2.

展开的阶数3.余项的形式

https://www.sodocs.net/doc/cb13407568.html, 版权所有翻印必究

2在极限计算中,余项的形式是佩亚诺(Peano )余项,是0()n

x x -的高阶无穷小,即0()()n n R x o x x =-。而基点和阶数要根据具体的问题来定。例:求2

0444lim x x x x →++-解:这题用洛必达上下求导也可以解出来答案,但分子中含有根号,求导后相应也会变复杂,考生如若马虎很容易出错,但用泰勒公式就会方便很多,首先基点取0x =处,展开的阶段,发现分母是2

x ,所以泰勒公式展开到二阶即可。12222

1111142121((()2()4242224464x x x x x o x x o x ????+=+=+?+?-?+=+-+ ? ?????

12222

1111142121((()()2()4242224464x x x x x o x x o x ????-=-=+?-+?-?-+=--+ ? ?????所以本题2

022222022

20444

lim 112()2()4464464lim 1()32lim 1x x x x x x x x x o x x o x x x o x x →→→+-+-++--+-=-+==-根据以上步骤可以发现,虽然洛必达最终也会算出结果,但是与泰勒公式相比,明显泰勒公式在求极限中可以大大简化计算,为考试争取更多的时间。

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

§6.3 泰勒公式 数学分析课件(华师大四版) 高教社ppt 华东师大教材配套课件

带有拉格朗日型余项的泰勒公式 在近似计算中的应用 )(x f 设 在 0x x =处可导, 0000()()()()().f x f x f x x x o x x '=+-+-当 ||0x x -充分小时, )(x f 可以由一次多项式 ) )(()(000x x x f x f -'+其误差为 0().o x x -带有佩亚诺型余项的泰勒公式 )(0x x o -是不够的, 而要考虑用较高次 误差仅为 的多项式来逼近 f , 使得误差更小, 0(()).n o x x -如由有限增量公式 近似地代替, 但在许多情况下, 后退 前进 目录 退出 §3 泰勒公式 带有佩亚诺型余项的泰勒公式

问题: 是否存在一个 n 次多项式 ),(x P n 使得 ? ))(()()(n o n x x o x P x f -=-答案: 当 f (x )在点 x 0 有n 阶导数时, 这样的 n 次多 设 0100()()(),n n n P x a a x x a x x =+-++-则 有什么关系? 现在来分析这样的多项式与 f (x ) 项式是存在的. ,!)(0) (n n n a n x P =,)(00a x P n =,)(10a x P n =',!2)(20a x P n ='',

即 () 0().! n n n P x a n =上式表明 P n (x ) 的各项系数是由其在点 x 0 的各阶 设 f (x ) 在 x 0 处 n 阶可导. 导数所确定的. ),(00x P a n =,!1)(01x P a n '=,! 2)(02x P a n ''=, 即 00()()lim 0,() n n x x f x P x x x →-=-), )(()()(0n n x x o x P x f -=-如果

泰勒公式的应用精选

泰勒公式及其应用 摘要

文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()! 1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()! 1()(++-+n n x x n f ξ ξ在x 和0x 之间的一个数,该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 ! 2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项

泰勒公式及其应用

目录 摘要 (1) 英文摘要 (2) 第一章绪论 (3) 第二章泰勒公式 (5) 1.1泰勒公式的意义 (5) 1.2泰勒公式余项的类型 (5) 1.3泰勒公式 (6) 第三章泰勒公式的实际应用 (7) 2.1利用泰勒公式求极限 (7) 2.2利用泰勒公式进行近似计算 (8) 2.3在不等式证明中的应用 (9) 2.4泰勒公式在外推上的应用 (10) 2.5求曲线的渐近线方程 (11) 2.6泰勒公式在函数凹凸性及拐点判断中的应用 (13) 2.7在广义积分敛散性中的应用 (14) 2.8泰勒公式在关于界的估计 (15) 2.9泰勒公式展开的唯一性问题 (15) 结束语 (16) 致谢 (17) 参考文献 (18)

第一章 绪论 近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式 ()20000000()()()()()()()(),1!2!! n n n f x f x f x T x f x x x x x x x n '''=+-+-++- 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即 ()200000000()()()()()()()()(()).2!! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证

(完整版)泰勒公式求极限部分资料

关于用泰勒公式求极限的部分讲解 1. 用奏勒必丸求收曝 【例2. 23】求械般liml ;―J —L - —U1 . 工 < 111(1 一 工?) SHL - X ) 【分析与解苔】请对照若本眩的解答过理去看题斥的【注】并棒刻题佥* 申极炭=恤号吟 「呼1+于> —一 ?泄!二!坦丄土4 O (.T X )] + 卜'—-J-J* —◎(*)] ........ .... ......... ..... ......... . 1 lim zT lll( 1 + J- >- Sin J- .2 MJ —lin

(2〉若所展園数为丙个以上审数的代数和■应展开到鼻为几次穿?原则圧:分别展 开到它们的系数消不掉的丁次数展低项为止.例如山一"2=工- 4-T 3+O (J 3)即町? 0 呆话需要宙出无穷小的运算规则:讼为正能数?则 (Do(r-) ±。(*) =/>(./) ? / = (加减法时低阶-吸收?'角阶) ②o(广)? o(j n ) = o(x^) x R ?o(x -) =o(工f)(義除法时阶数-累加”) Oo(JLr-) =▲ ?。(二?)一 o(J)M H 0,为計数(非冬常敷不影响阶数) /解了乗勒公式的使用?接下来我们去处理常见的泰勒公式?去休脸其魅力?熟记下而 一组公 式’ '十?(j?) ln( 1+工)=工一? r 2~o(j 2) ⑤ 【拄】(1)対以上公式踐坝?可以鮒到一纠爭函敎的尊价无穷小. 依次可彳孕: 二】< —r 1 ?arcsitkr — 4-./* ? i :m :—』■-寺“"■ ?r —srctanx ?寺工'■ x hi(l t 丄〉~ ? (2)變学会对这组叢旳数的尊价尢穷小公式广义化?例如:当 LC 时?若柯-0?则 ill x — stnor P ■可得,狗— bin 向 豹' ■迸咅自己去举一反二. 【分析与解答】因 x-^Otftinjr-^Ot 由狗一Nn 殉?*(殉)珂狗~0) 丄 故原极^ = lim- sin.r=.r — -^-T 3 4-n( r*) 6 arcsinx —JC -討+心)② 【例2.2J 】求lim Mnr[:sirKr-Bin?eirxr)] 4/ sin.r —sin(sinj-) —(sirvr)3 b (sinr)1 丄 7* taiu -? J

开题报告浅谈泰勒公式及其应用

附件 7 论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告 论文(设计)题目 浅谈泰勒公式及其应用 系(院) 数学系 专业班级 数学与应用数学 B1002 学科 理学 学生 姓名 马尚红 指导教师 姓名 马园媛 学号 1025809043 职称 讲师 一、选题的根据 ( 1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主 要参考文献等。 2、撰写要求: 宋体、小四号 。) 1. 选题的来源及意义 泰勒公式是数学分析中非常重要的内容, 是一个用函数在某点的信息描述其附近 取值的公式。如果函数足够光滑的话, 在已知函数在某一点的各阶导数值的情况之下, 泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中值。 泰勒公式还给出了这个多项式和实际的函数值之间的偏差。 泰勒公式的初 衷是用多项 式来近似表示函数在某点周围的情况。比如说,指数函数 e x 在x 0的 附近可以用以 2 3 n 下多项式来近似地表示: e x 1 x x x x 称为指数函数在 0处的 n 阶泰勒 2! 3! n! 展开公式。这个公式只对 0附近的 x 有用, x 离 0越远,这个公式就越不准确。实际 函数值和多项式的偏差称为泰勒公式的余项。对于一般的函数,泰勒公式的系数的选 择依赖于函数在一点的各阶导数值,这个想法的原由可以由微分的定义开始。微分是 函数在一点附近的最佳线性近似: f a h f a f ' a h o h ,其中 o h 是比 h 高 阶 的无穷小。 也就是说 f a h f a f ' a h,或 f x f a f ' a x a .注意到 f x 和 f ' a x a 在a 处的零阶导数和 一阶导数都相同。对足够光滑的函数,如果一个 多 项式在 a 处的前 n 次导数值都与函数在 a 处的前 n 次导数值重合,那么这个多项 式应 该能很好地近似描述函数在 a 附近的情况。对于多元函数,也有类似的泰勒公式。设 a,r 是欧几里得空间 RN 中的开球, f 是定义在 a,r 的闭包上的实值函数,并在 每一点都存在所有的 n 1次偏导数。这时的泰勒公式为:对所有, f x 1 f a x a x x a ,其中的 是多重指标 0 ! x n 1 泰勒公式也是大学数学中的一个重要知识, 由此本文将总结几种泰勒公式的证明 及其应用。其泰勒公式在近似计算,求极限,判断函数凸凹性等方面的应用,除此之 外,它还可应用于行列式,证明不等式,判断无穷级数、无穷积分的收敛性,求函数 导数的中值估计、求曲面的渐进线方程,高阶求导等等。 2. 国内外研究状况 其中的余项也满足不等式:对所有 n 1的 满足 x

泰勒公式及其应用典型例题

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】

设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式 近似 【问题二】 若问题一的解存在,其误差的表达式是什么一、【求解问题一】 问题一的求解就是确定多项式的系数。

…………… 上述工整且有规律的求系数过程,不难归纳出: 于是,所求的多项式为: (2) 二、【解决问题二】 泰勒(Tayler)中值定理

若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路: 这表明: 只要对函数及在与 之间反复使用次柯西中值定理就有可能完成该定理的证明工作。【证明】

以与为端点的区间或记为,。 函数在上具有直至阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有 此式可用作误差界的估计。 故

2021年洛必达法则 泰勒公式

*欧阳光明*创编
2021.03.07
第三章 微分中值定理与导数的应用
欧阳光明(2021.03.07)
第二讲 洛必达法则 泰勒公式
目的 1.使学生掌握用洛必达法则求各种类型未定式极限的方法; 2.理解泰勒中值定理的内涵;
3. 了解
等函数的麦克劳林公式;
4.学会泰勒中值定理的一些简单应用.
重点 1.运用洛必达法则求各种类型未定式极限的方法;
2.使学生理解泰勒中值定理的内涵.
难点 使学生深刻理解泰勒中值定理的精髓.
一、洛必达法则
在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已
经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存
在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系
知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之
比的极限和无穷大之比的极限称为未定式,并分别简记为 和 . 由于在讨论上述未定式的极限时,不能应用商的极限运算法
则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天
*欧阳光明*创编
2021.03.07

*欧阳光明*创编
2021.03.07
在这里我们应用导数的理论推出一种既简便又重要的未定式极限的
计算方法,并着重讨论当 时, 型未定式极限的计算,关于这
种情形有以下定理.
定理 1 设
(1) 当 时,函数 及 都趋于零;
(2)在点 的某去心邻域内, 及 都存在,且

(3) 则
存在(或为无穷大),

也就是说,当
存在时,
也存在,且等于
;当
为无穷大时,
也是无穷大.这种在一定条件下,通
过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必
达(L’Hospital)法则.
下面我们给出定理 1 的严格证明:
分析 由于上述定理的结论是把函数的问题转化为其导数的问
题,显然应考虑微分中值定理.再由分子和分母是两个不同的函
数,因此应考虑应用柯西中值定理.
证 因为求极限
与 及 的取值无关,所以可以假定
.于是由条件(1)和(2)知, 及 在点 的某一邻
域内是连续的.设 是这邻域内一点,则在以 及 为端点的区间
*欧阳光明*创编
2021.03.07

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

考研数学:求极限的16个方法

考研数学:求极限的16个方法 极限问题一直是考研数学中的考察重点,很多考研er在面对题型的变化时,会觉得有些无从下手,下面给大家盘点一下求极限的16个方法,让你轻松应对各种情况。 首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致。 1、极限分为一般极限,还有个数列极限(区别在于数列极限是发散的,是一般极限的一种) 2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a 次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小) 2)洛必达法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存 在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0.洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了3)0的0次方,1的无穷次方,无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0) 3、泰勒公式(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助 4、面对无穷大比上无穷大形式的解决办法。 取大头原则最大项除分子分母!看上去复杂处理很简单。 5、无穷小与有界函数的处理办法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了! 6、夹逼定理(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

(整理)几种求极限方法的总结

几种求极限方法的总结 摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法. 关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列 []1 根据极限的定义:数列{n x }收敛??a,ε?〉0,?N N ∈+,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11 lim =+∞→n n n 证明:0,ε?>要使不等式 11-+n n =11n ε<+成立:解得n 11ε>-,取N=?? ????-11ε,于是0,ε?>? N=?? ? ???-11ε,n N ?>,有1,1n n ε-<+即11lim =+∞→n n n 2利用两边夹定理求极限[]1 例2 求极限???? ??+++++++∞ →n n n n n n 22221 31211 1lim 解:设= n c n n n n ++++ +2 2 2 12 11 1 则有:2 n c n n > =+ 同时有: 21 n c n <=+,于是 n c << 1 n n <=+>=. 有 11 n n n c n n <<< < =+ 已知:11lim =+∞→n n n ∴???? ??+++++++∞→n n n n n n 2222131211 1lim =1 3利用函数的单调有界性求极限[]1

实数的连续性定理:单调有界数列必有极限. 例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞ →lim 解:显然{}n x 是单调增加的。我们来证明它是有界的.易见 12x a x +=,23x a x += , 1-+=n n x a x , 从而 12 -+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+ 两段除以n x ,得 1n n a x x < + 1+≤≤?a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12 -+=n n x a x 两边去极限,则有∞ →-∞ →+=n n n n x a x 12 l i m l i m ?a l l +=2解得2 1 4++= a l l 4利用无穷小的性质求极限[]2 关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞ → 解4 )2 21sin()221sin( 2cos 1cos x x x x x x -+++-=-+ 2)221sin( 2≤++-x x 而) 1(21 221)221sin( 0x x x x x x ++=-+≤-+≤ 而,0) 1(21 lim =++∞ →x x x 故 02 _1lim =+∞ →x x n 5 应用“两个重要极限”求极限[]2 e x x x x x x =+=∞→→)1 1(lim ,1sin lim

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用 学生姓名: 学号: 专业:数学与应用数学 班级: 指导教师: 完成日期:2012年 5月20日

泰勒公式及其应用 内容摘要 本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用. 通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础. 关键词:泰勒公式 Lagrange余项 Peano余项应用

The Taylor Formula and The Application Of Taylor Formula Abstract This paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula. By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference. Key Words:Taylor formula Lagrange residual term Peano residual term application

泰勒公式的理解及泰勒公式

对泰勒公式的理解及泰勒公式的应用 1 函数展开与向量空间 泰勒公式是函数展开的一种工具,也就是说,利用泰勒公式将函数展成幂级数是函数展开的一种方法,当然,函数的展开方法有多种,例如:用泰勒公式展开、三角级数的展开等。为更好地理解函数展开的意义以及泰勒公式的应用,文章先对函数的展开进行论述,然后,用例题对其应用做进一步的说明。 在高等数学中,函数展开有许多不同的形式,最常用的有如下两种类型的函数级数展开。 1.1 函数的泰勒展开(幂级数展开) 若函数f(x)在区间{x||x-x 0|<R}内无穷可微,且它的Lagrange余项r n(x)当n→∞ 时,收敛于零,则在这区间内有: 1 2 函数的三角级数展开 若函数f(x)在区间[-π,π]上连续且逐段光滑,则在这区间内有: 从函数展开式(1)和(2)两边的项来看,左边的函数f(x)作为一个整体,它只有有限的一项,而右边却包含着无限多项,说明在一定条件下,有限形式的函数可以用无限形式的级数来表示, 关于这一点,可以从另一个视角来看,若把展开式(1)和(2)中的函数系: {1,(x-x0),(x-x 0)2,(x-x0)3,…,(x-x0)n,…} {1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…} 分别看成无限维函数空间的两个坐标系, 其中的函数就是相应的坐标向量,则f(x)就可以看作这个空间的一个点(或一个向量),则两级数的系数组成的两个数列: {a0,a1,a2,…,a n}与{a0,a1,b1,a2,b2,…,n,b n,…} 就是f(x)分别在这两个坐标系中的坐标,于是从形式来看,f(x)作为这无限维空间中的一个点(一个向量),但从数来看,f(x)在这个空间中却要用无限个坐标来决定.在高等数学中, 根据问题的需要,进行有限与无限形式的相互变换,在解决数学问题中是常有的。可见,换个角度看函数的展开,会给人加深印象,能在原有的基础上根深蒂固。 谈到有限与无限,在高等数学中,根据问题的需要,进行有限与无限形式的相互变换,在解决数学问题中是常常会用到的,这就是泰勒公式的魅力所在.比如说:函数的分解与求和,函数关系的证明等,就要用这种有限与无限之间的变换方法。

考研高数:泰勒公式求极限

考研高数:泰勒公式求极限

凯程教育: 凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方

面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。 建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。 有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

相关主题