搜档网
当前位置:搜档网 › Design for H.264AVC Intra Frame Coder

Design for H.264AVC Intra Frame Coder

Fast Intra-Prediction Model Selection for H.264 Codec

Chang-sung Kim, Qing Li and C.-C. Jay Kuo

Integrated Media Systems Center and Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089-2564

ABSTRACT

We investigate the encoding speed improvement for H.264 with a special focus on fast intra-prediction mode selection in this work. It is possible to adopt the rate-distortion (RD) optimized mode in H.264 to maximize the coding gain at the cost of a very high computational complexity. To reduce the complexity associated with the intra-prediction mode selection, we propose a two-step fast algorithm. In the first step, we make a course-level decision to split all possible candidate modes into two groups: the group to be examined further and the group to be ignored. The sizes of these two groups are adaptively determined based on the block activities. Then, in the second step, we focus on the group of interest, and consider an RD model for final decision-making. It is demonstrated by experiment results that the proposed scheme performs 5 to 7 time faster than the current H.264 encoder (JM5.0c) with little degradation in the coding gain.

Keywords: H.264/JVT, Intra prediction, encoder complexity, Intra mode decision.

1.INTRODUCTION

Various video compression standards have been developed in the last decade for a wide range of applications. The diversity of applications and its different flavor of technological demand have resulted in two families of standards: the ITU H.26x and the ISO MPEG families. Recently, an emerging video coding standard, known as H.264/JVT, is jointly developed by ITU-T and ISO MPEG. H.264 has significantly improved the coding performance in both low and high bit rates as compared with previous coding standards such as H.263, MPEG-2 and MPEG-4 [1,7]. Primary technical objectives of H.264 include the following [2]: (i) significant coding efficiency (the average bitrate saving up to 50% as compared with H.263+ and MPEG-4 Simple Profile); (ii) adaptation to delay constraints (the low delay mode); (iii) error robustness; and (iv) network friendliness (NAL). To accomplish these objectives, many features are included in H.264 such as the 4x4 integers transform, the deblocking filter, variable block sizes and multiple reference frames for motion compensation, enhanced Intra prediction, and context based adaptive binary arithmetic code (CABAC). Among these features, enhanced Inter and Intra prediction techniques are key factors to the success of H.264. To achieve high coding efficiency, H.264 employs the rate-distortion optimization (RDO) technique to get the best result in terms of visual quality and coding rates. In order to perform RDO, the encoder encodes video by exhaustively searching the best mode in the RD sense among various predefined modes [3]. As a result, the computational complexity of the H.264 encoder is dramatically increased, which makes it difficult for practical applications such as real time video communication. Several attempts have been made to explore fast algorithms in motion estimation for H.264 video coding [4-6]. What seems to be lacking is the fast algorithm in the intra-mode prediction for H.264. Only few attempts have so far been made. Pan et al. [3] proposed a fast mode decision scheme based on pre-processing, which measures the average edge direction of a given block so as to reduce the number of probable modes to achieve complexity reduction. The overall performance is 20~30% faster than the RDO method at the cost of 2% extra bits and 55~65% faster at the cost of 5% extra bits. In terms of the speedup factor, there is still a huge gap between the desired encoding speed

and the actual one. Note also that the work in [3] shows the potential that the optimal performance in Intra prediction can be achieved by using some a priori information. That is, the a priori information can be used to reduce the complexity by detecting most probable modes at an early stage. The following t wo questions arise naturally: (i) what kind of a priori information can be utilized to obtain most probable modes and (ii) what method can replace RDO, which is most time consuming task.

In this work, we present a simple yet effective fast mode decision algorithm for H.264 Intra prediction using a two-level decision process. At the first level, some unlikely modes are filtered out. At the second level, the best mode is chosen among the remaining candidates. For further complexity reduction, an adaptive RD cost computation procedure is adopted. This procedure switches between our proposed RD model and the RDO procedure given in the original H.264 reference codes based on the block activities. The two-level mode decision scheme is implemented and integrated with H.264 JM5.0c codes. It is compared with RDO in some performance metrics such as the computational cost, the average PSNR and the coding bit-rate for all the sequences recommended in [10]. Simulation results demonstrate an excellent compression performance of the proposed fast algorithms for a wide range of bit-rates. For the computational speed, the proposed algorithm is five to seven times faster than the H.264 RDO method with little performance degradation.

The rest of this paper is organized as follows. After a brief overview of H.264 intra mode decision, we introduce the proposed two-level fast mode decision framework in Section 2. A rate distortion model for mode decision is proposed and an adaptive RD cost computation procedure is presented in Section 3. In Section 4, we provide experimental results to show the performance of the proposed scheme in terms of the rate distortion tradeoff and the speedup factor. Concluding remarks are given in Section 5.

2.FAST INTRA PREDICTION MODE DECISION

2.1 Intra-mode Decision

This section reviews the H.264 Intra mode decision scheme and analyzes the computational complexity of the exhaustive search scheme. Intra prediction in H.264 exploits the spatial correlation between the adjacent macroblocks. In JVT, the current macroblock is predicted by adjacent pixels in the upper and the left macroblocks that are decoded earlier. Then, the residual between the current macroblock and its prediction is transformed, quantized and entropy coded. Roughly speaking, the smaller the difference is, the fewer the coding bits are demanded for the current macroblock. To get a richer set of prediction patterns, H.264 offers 9 prediction modes for 4×4 luma blocks and 4 prediction modes for 16×16 luma blocks. For the chrominance components, there are 4 prediction modes applied to the two 8×8 chroma blocks (U and V).

Figure 1: The nine intra prediction modes for the 4x4 luminance block.

The nine intra prediction modes for 4x4 luminance blocks are illustrated in Figure 1, which include the DC prediction (Mode 2) and eight directional modes, labeled 0 thru 8 [8]. The arrows in Figure 1 indicate the direction of prediction in each mode. For modes 3-8, the predicted samples are formed from a weighted average of the prediction samples A -M [9]. For example, if mode 4 is selected, the top-right sample of gray 4x4 block (cross point of D and I) is predicted by round(B /4+ C /2 + D /4). Four prediction modes for 16x16 macroblock are vertical (mode 0), horizontal (mode 1), DC (mode 2) and plane prediction (mode 3). Basically, the 16x16 intra-prediction is chosen for regions with less spatial details such as the flat region. The 4 prediction modes for each 8x8 chroma component of a macroblock are very similar to the 16x16 luminance prediction modes. Note that if any of the 8x8 blocks of the luminance component are coded in the intra mode, both chroma blocks for U and V are intra-coded using the same intra-prediction mode. H.264 is developed based on the rate distortion optimization. That is, the encoder has to select the best combination of prediction modes for each macroblock to obtain the optimal RD performance [3]. If the RDO is chosen, t h e mode decision for a macroblock is made by minimizing the Lagrangian functional.

The RDO procedure to encode one macroblock, denoted by s , in an I-frame is given below.

(a) Given the last decoded frames and the macroblock quantization parameter QP , the Lagrangian

multiplier is given by 3/285.0QP MODE ?=λ [18].

(b) Select the best 4x4 intra prediction mode from nine intra 4x4 macroblock modes by minimizing

the following functional:

(,,|,)(,,|)(,,|)MODE MODE J s c MODE QP SSD s c MODE QP R s c MODE QP λλ=+?,

where QP is the macroblock quantizer, MODE λ is the Lagrange multiplier for mode decision,

MODE indicates a mode chosen from 9 intra 4x4 prediction modes, SSD is the sum of squared

differences between the original 4x4 block luminance signal s and its reconstruction c , and

)|,,(QP MODE c s R represents the number of bits associated with the chosen MODE . It includes

the bits needed for coding the intra prediction mode and DCT-coefficients for the 4x4 luminance

block.

(c) Determine the best 16x16 intra prediction mode by choosing the mode that results in the

minimum SATD (Sum of Absolute Transformed Difference).

(d) Compare the RD cost for the two best modes that are the 4x4 mode from Step (b) and the 16x16

mode from Step (c), and choose the better one as the macroblock prediction mode.

According to the above procedure of intra prediction in H.264, the number of mode combinations for luma and chroma blocks in a macroblock is N8× (N4×16+N16), where N8, N4 and N16 represent the number of modes for 8×8 chroma blocks, 4×4 and 16×16 luma blocks, respectively. This means that, for the intra coding of a macroblock in H.264, it has to perform 592 different RDO calculations to determine the optimal RDO mode [3]. As a result, the complexity of the encoder is extremely high. To reduce the encoding complexity with little RD performance degradation, the two-level mode decision is proposed in the next section.

2.2 The Proposed Mode Decision Scheme: An Overview

RDO guarantees the best mode in the RD sense since it exhaustively searches the best mode by measuring the RD cost based on the actual rate and distortion after entropy coding and reconstruction, respectively. As mentioned in the previous section, a total of 592 possible modes should be processed for the intra mode decision. This is too complex to be implemented for practical applications. It is desirable to find the best mode or the nearly best mode using some simplified method [3].

Figure 2: The framework of intra mode decision: the original intra mode decision

in H.264 (left) and the proposed intra mode decision scheme (right).

In this work, we propose an efficient method to improve the encoding speed without much sacrifice at the RD performance. The original and the proposed intra mode selection schemes are shown in Figure 2. In the original H.264 Intra mode decision, the best 16x16 mode is selected by choosing the mode whose SATD (sum of absolute transform differences) value is the minimum while the best 4x4 mode is selected by choosing the one that has the minimum RD measurement. MB res1 and MB res2 in this figure indicate the MB residuals for the selected optimal 16x16 and 4x4 modes, respectively. For the final decision, the Lagrangian RD cost is computed for these two best modes, and the one with the minimum cost is chosen to be the final mode for the current macroblock. In the proposed scheme, we first reduce the complexity by replacing the RD measurement for 4x4 blocks with two-level mode decision and the RD cost computation for the final two candidates is further simplified. Comparing the original and the proposed mode decision schemes, there are two major modifications as indicated by the gray blocks.

2.3 The Two-level Mode Decision

Figure 3 gives the block-diagram for the two-level mode decision scheme applied to 4x4 blocks. The idea of the two-level (or the coarse-to-fine) mode decision scheme can be described as follows. First, a coarse–level decision is made to fast detect the most probable modes based on some transform domain feature. Then, for the fine-level mode decision, we search the best mode with an RD model. More details will be given in Sections 2.3.1 and 2.3.2.

Figure 3: Two-level mode decision for 4x4 blocks.

2.3.1 The Coarse-level Mode Decision

The coarse mode decision (CMD) is used to filter out unlikely modes to decrease the number of candidates to be considered for the fine mode decision process that is more complicated. It has been observed [11] that the sum of absolute transform differences(SATD) has strong correlation with the rate-distortion performance so that it can be used as a feature to detect most probable modes. The CMD process is shown in Figure 4.

Figure 4: The block-diagram of the coarse mode decision (CMD) process.

The CMD process consists of the following two steps:

(i) Compute the approximate SATD value in all modes, and sort these modes from the smallest to

the largest.

(ii) Choose a certain number of modes, which have smaller SATD values according to the block

activity and the quantization parameter, where the block activity is measured in terms of the

variance of residuals and the number of probable modes to be selected is specified by a

predefined table called the NOC (number of candidates) table.

To compute SATD, we use the Hadamard transform to approximate DCT due to its simplicity. (Note that the Hadamard transform can be implemented with only addition and shift operations.) Then, all prediction modes are sorted according to their SATD values. This can be efficiently implemented using the quick sort algorithm of complexity O(n log(n )) [12]. The next step is to threshold the SATD values to select the most probable candidates for the second-level (or the fine-level) decision making.

The number of candidates (NoC) for selection is critical in complexity reduction, since the fewer modes are chosen, the higher the complexity is saved. The NoC should be adaptive to the block activity. For example, some residual block has more details while others are relatively flat. Also, the quantization parameter should be taken into account in choosing NoC since a smaller NoC is needed for a larger QP. In this work, the block activity is measured in terms of the standard deviation of residual coefficients [15, 16, 17]. The NoC with different block activities and different quantization parameters can be implemented as a lookup table.

2.3.2 The Fine-level Mode Decision

The objective of the fine mode decision (FMD) is to search the best mode among the most probable modes that have passed the CMD process as shown in Figure 5. Now, the best mode is the one that has minimum rate-distortion cost defined as:

()k k k

R D Mode Best ?+=λmin arg To reduce the RD performance degradation while keeping the complexity low, we choose one of the two RD methods dynamically. As shown in Figure 6, the FMD process can switch between the proposed RD model and the RDO process given by H.264. Generally speaking, the RD model contains some modeling errors, which lead to performance degradation. It is observed that the RD model error is negligible when the block residual is small. Thus, the RD model can be used. On the other hand, the RDO process should be utilized when the block residual is high to reduce the RD model error.

For a given block residual standard deviation and QP, the block activity can be measured for NoC selection as discussed in Section 2.3.1. The RD model is adopted when the NoC takes a small value such as 1, 2 and 3. The RD model used in this work will be presented in Section 3.

Figure 5: The block-diagram of the fine mode decision (FMD) process.

3.RATE DISTORTION MODEL FOR MODE DECISION

Several macroblock-based RD models were proposed for rate control and bit allocation in video coding [11,16,19,20, 21]. The normalized rate-distortion model [11] was based on the normalized variance of 8x8 blocks for different QP values. This model requires the training of model coefficients for different sequences, which may not be practical in real-time video coding. Yang and Jacquin [19] proposed a RD model based on the DC (mean) and the residual variance of 8x8 blocks. This process is fairly complex due to the search of the Lagrange multiplier. Besides, it is not applicable to 4x4 blocks. The quadratic rate distortion model [20] also demands the training of model coefficients. This model is not useful in our current context, since the modeling error may be large if the statistics of the input video sequence is different with that of training sequences. He and Mitra [16] proposed a ρdomain RD model that estimates the rate and the distortion of a macroblock by the percentage of nonzero coefficients. The model accuracy heavily depends on the non-zero percentage and parameters. The frame level rate estimation is of sufficient accuracy. However, for the rate estimation of 4x4 blocks for H.264 intra prediction, the block-based statistics is non-stationary, and the parameters obtained from the previously coded blocks are not accurate for the current block.

Thus, a more suitable RD model is needed for 4x4 blocks in our current application. We propose a new RD model to predict the rate and distortion of the 4x4 block and then refine it by the relationship between the predicted RD and the real RD. This proposed RD model is heuristic since the relationship is obtained by fitting the curve of observed data. However, it is shown by simulation that our model works well with a reasonable complexity.

3.1 Logarithmic Affine Distortion Model

The distortion between the original and the reconstructed 4x4 blocks depends on the quantization error. Thus, the proposed distortion model is based on the quantization error (rather than the quantization parameter or the variance of the block). Figure 6 shows that the relationship between the actual distortion and the total quantization error. The relationship is approximately linear in the natural logarithmic domain. This leads to a refined RD model called the logarithmic affine distortion model, which can be written as:

)ln(),ln(where ,otherwise

,,22011Qe x D y x x x y == +?≤+?=ημχημ

+?≤+?=otherwise ,)ln(,)ln()ln(22

011ημχημQ Q E x E D K

Q K E e D ημ+?=)log(

In above, Q E denotes the quantization error, and K K ημ, are parameters to characterize the piecewise linear

model as shown in Figure 6. The piecewise linear model for the distortion can be obtained by linear regression [22]. With this model, the distortion can be accurately estimated without reconstruction.

(a) Akiyo, QCIF (b) Stefan, QCIF Figure 6: The two line segments labeled by solid thick lines give the distortion model as a function of the quantization error.

3.2 Parametric Rate Model

Generally speaking, the actual coding bit rate depends on the entropy coding scheme. For the JVT baseline, the entropy codec is CAVLC (Context adaptive variable length code). It encodes 5 different types of symbols (or called tokens): (i) the coefficient token (the number of coefficients, the number of trailing ones), (ii) the sign of trailing ones, (iii) the level of nonzero coefficients, (iv) the total number of zeros before the last coefficients, and (v) the run of zeros. It uses four lookup tables for coefficient token and seven lookup tables for the level of nonzero coefficients. Different lookup tables are adaptively chosen based on the context. For this reason, it is difficult to predict the coding bit rates for 4x4 blocks.

Here, we propose a rate model that predicts the rate of a 4x4 block using the entropy token used in CAVLC. Then, the predicted rate is refined furthermore using the relationship between the actual and the predicted rates. The proposed bit cost is the sum of the bit cost spent for each token within the given block.

()∑

∑×∈×∈+?==block x x x block x b x x I x C Cost Bit 444444)()(αω

where x denotes the encoding token, )(x C b is the bit cost function for x , and x ω, x α are the weight and

constant for the encoding token, and )(x I denotes a linear term. To approximate the rate of a given 4x4 block, parameters x ω, x αare obtained empirically based on observations for various test sequences. The

actual bit rate is shown in Figure 7. The curve fitting method is used to approximate the mapping function. It

is easier to get fitting functions in three different regions. The three regions are shown in Figure 8 and can be written as:

() =+?+???C

e B e A e R k Cost Bit k k k Cost Bit k Cost Bit k x x x Region ,Region ,Region ,64454

34424

41ln The parameter vectors []621,,,k k k K L = in regions A and C are obtained by linear regression and those in

region B are obtained by minimizing MSE. Figure 7 compares the predicted bit rate using our rate model. They are very close to each other.

(a) Akiyo, QCIF (b) Stefan, QCIF Figure 7. The predicted rate (circled lines) model and the actual bit rate (solid curves).

In video clips with slow motion and relatively smooth texture, the proposed two-level mode decision with the RD model gives almost the same performance as the RDO of H.264. However, its performance is degraded for fast motion and rough texture sequences. Thus, the RD computation method is changed adaptively based on the block activity as described in Section 2.4.

4. EXPERIMENTAL RESULTS

In the experiment, the proposed algorithm was integrated within the JVT reference software JM5.0. The test sequences were 15 MPEG sequences of classes A, B, and C. The system platform is the Intel Pentium 4 Processor of speed 1.8GHz, 512MB DDR RAM, and Microsoft Windows XP. The parameters of the RD model are fixed by analyzing all test sequences via an off-line computation.

To compare the rate distortion performance and the computational complexity of the proposed scheme with RDO of H.264, the PSNR and the bit rate (per frame) are measured at different QP from 10 to 40. The maximum number of candidates is limited to 4. Figures 8 (a)-(c) show the RD performance and the computational complexity for 3 different sequences. The left one shows the RD performance and the right one gives the computational complexity, which is measured in terms of the encoding time. The circled line is the RDO result and the squared line is the proposed approach. In the legend, VNoC means variable NoC and VM means the variable RD computing method according to its block activity and QP.

Figure 8-(a) Akiyo.QCIF [Class A]

Figure 8-(b) Foreman.QCIF [Class B]

Figure 8-(c) Stefan.QCIF [Class C]

From Figure 8, we see that the proposed fast intra-mode decision scheme gives almost identical RD performance while providing a speed-up factor of 5-7.The RD performance of the proposed scheme is

slightly degraded for the Stefan sequence as shown in Figure 8(c), which has a large number of macroblocks with a high block activity. Since the error for the coarse-level mode decision increases with the block activity, the rate distortion performance of the proposed scheme degrades.

The speedup factor is the ratio of the encoding time using the RDO technique and the proposed scheme. If the scale in Figure 9 is 6, then the proposed algorithm is 6 times faster than RDO mode decision. As shown in Figure 9, the proposed approach is approximately 5 to 6.5 times faster than RDO mode decision. Also, the speed factor is different from one sequence to the other. Especially, the higher the percentage of high activity blocks, the higher the speedup factor. The can be explained by the fact that the complexity of RDO increases in proportion to the percentage of high activity blocks due to the computational load to measure the bitrate and the distortion. In contrast, the complexity of the proposed scheme is limited by the RD model and the NoC, which is bounded by 4. As a result, the gap between RDO and our approach is larger.

Figure 9. Variation in the time complexity and the speedup factor [QCIF]

5.CONCLUSION AND FUTURE WORK

In this research, we proposed a fast mode decision scheme for intra prediction used in H.264 encoding. With this algorithm, we can speed up the JVT reference software JM5.0 by a factor 5 to 7 times in this module with little RD performance degradation. The actual speedup performance is related with the average block activity and the quantization parameter. Future research topics include the fast mode decision for the baseline profile and further improvement of the RD model.

REFERENCES

1.P. Topiwala, G. Sullivan, A. Joch & F. Kossentini, "Performance Evaluation of H.26L TML 8 vs.

H.263++ and MPEG4", Document VCEG-O42, 15th Meeting, ITU-T Q.6/SG16, Video Coding Experts

Group, Pattaya, Thailand, Dec. 2001.

2.Emerging H.26L Standard: Overview and TMS320C64x Digital Media Platform Implementation, White

paper, UB video Inc., Feb 2002.

3.Feng Pan, Xiao Lin, et al, “Fast Mode Decision for Intra Prediction”, ISO/IEC JTC1/SC29/WG11 and

ITU-T SG16 Q.6, JVT 7th Meeting Pattaya II, Thailand, 7-14, March 2003.

4.Xiang Li, Guowei Wu, "Fast Integer Pixel Motion Estimation", JVT-F011, 6th Meeting, Awaji Island,

Japan, December 5-13, 2002.

5.Zhibo Chen, Peng Zhou, Yun He, "Fast Integer Pel and Fractional Pel Motion Estimation for JVT", JVT-

F017, 6th Meeting, Awaji Island, Japan, December 5-13, 2002.

6.Hye-Yeon Cheong Tourapis, Alexis Michael Tourapis, Pankaj Topiwala, “Fast Motion Estimation within

the JVT Codec”, JVT-E023, 5th Meeting, Geneva, Switzerland, October 9-17 2002.

7. B. Erol, M. Gallant, G. C?té and F. Kossentini, "The H.263+ Video Coding Standard: Complexity and

Performance", IEEE Data Compression Conference, Snowbird, Utah, pp. 259-268, March 1998.

8.Iain E. G. Richardson, “H.264/MPEG-4 Part 10 White Paper: Intra Prediction”, https://www.sodocs.net/doc/cd13447630.html,, May

2003.

9.ITU-T Rec. H.264/ISO/IEC 11496-10, "Advanced Video Coding”, H.264/JVT Working Draft, Document

WD2R8, April 2002.

10.JVT Test Model Ad Hoc Group, “Evaluation Sheet for Motion Estimation”, Draft version 4, Feb. 19,

2003.

11.Kyeong Ho Yang; Jacquin, A.; Jayant, N.S., “A normalized rate-distortion model for H.263-compatible

codecs and its application to quantizer selection”, Image Processing, 1997. Proceedings., International Conference on , vol.2, pp. 41 -44, Oct 1997

12.Thomas H.Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, “ Introduction to

Algorithms second edition”, The MIT Press & McGraw-Hill Book Company, 2001.

13.C. A. Gonzales, E. Viscito, “Motion video adaptive quantization in the transform domain”, IEEE Trans.

CSVT, Vol. 1, No. 4, Dec. 1991.

14.de Queiroz, R.L.; Eschbach, R., “Segmentation of compressed documents”, Proceedings International

Conference on Image Processing 1997, Volume: 3 , pp. 70 -73, Oct 1997.

15.V. Darmstaedter, et al, “Low cost spatial watermarking”, Computer & Graphics, Vol. 22, No. 4, pp. 417-

424, 1988.

16.Zhihai He, Sanjit K. Mitra, “ A Unified Rate Distortion Analysis Framework for Transform Coding”,

IEEE Trans. CSVT, Vol. 11, No. 12, Dec. 2001.

17.Mester, R.; Franke, U., “Spectral entropy-activity classification in adaptive transform coding”, Selected

Areas in Communications, IEEE Journal on , Volume: 10 Issue: 5 pp. 913 -917, Jun 1992

18.Thomas Stockhammer, Dimitrios Kontopodis, Thomas Wiegand, “Rate-Distortion Optimization for

JVT/H.26L Video Coding in Packet Loss Environment”, Munich University of Technology, International Packet Video Workshop, 2002

19.Kyeong Ho Yang, Arnaud Jacquin, “Real time implementation of rate-distortion optimized coding mode

selection for H.263 video coders”, ICIP 98 Volume: 2, pp. 387 -390, Oct 1998.

20.Tihao Chiang, Y. Q. Zhang, “A new rate control scheme using quadratic rate distortion model”, IEEE

Trans. Circuits Syst. Video Technol., Feb. 1997.

21.Hwangjun Song, Jongwon Kim, and C. –C. Jay Kuo, “Hybrid DCT/Wavelet I-Frame Coding for Efficient

H.263+ Rate Control at Low Bit Rate”, 1998 IEEE International Symposium on Circuits and Systems,

Monterey, California, May 31-June 3, 1998.

22.Zhihai He, Sanjit K. Mitra, “ A Unified Rate Distortion Analysis Framework for Transform Coding”,

IEEE Trans. Circuits Syst. Video Technol., Vol. 11, No. 12, Dec. 2001

JC-102C型标准COD消解器消解仪加热器COD自动消解回流仪

JC-102C型标准COD消解器|消解仪|加热器|COD自动消解回流仪 一、产品简介:JC-102C型标准COD消解器为101C型消解器的升级版本 ?国家标准GB11914—89分析方法规范地制定了水质化学需氧量COD(cr)的测定步骤,严格地规定了方法的加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标。显而易见,水质COD(cr)的测定是有严格的条件规定,违背了条件规定进行操作,就会影响测定的准确性。 ?JC-102C型标准COD(cr)测定仪遵循了国际标准(ISO)和国家标准(GB)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和GB法一致,确保可靠精确的分析结果。 ?本仪器采用微机技术进行定时控制远红外电炉板,可对8个、12个消解回流装置同时进行加热。达到节能、减低电力负荷、提高效率的目的。 仪器采用玻璃毛刺回流管代替球形回流管,并以风冷技术取代自来水冷却方式,既可以节水又能使仪器规范化,同时还提高了仪器使用的安全性。 ?聚创环保的仪器的化学溶液配制、操作和COD的计算完全遵照GB11914—89,低于50mg/L的COD水样可通过稀释滴定剂和氧化剂来提高精确度,高于1000mg/L的COD 水样,可以通过水样的比例稀释来完成测定。 二、技术规格: 1、测量温度:165℃国家标准规定 2、恒温精度:±1℃ 3、升温时间: (180℃)<20min 4、时间设定:0-999分钟可任意设置 5、测量范围:0~1000mg/L、0~10000mg/L(水样稀释) 6、测量时间:不大于2h 7、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L)、相对标准偏不大于5.0%工业 有机废水(500mg/L)、相对标准偏不大于8.0% 8、环境温度:5~40℃ 9、电源:AC 220V±22V,50HZ 三、技术特点: 1、该技术采用标准消解器和恒温加热器二合一技术,独特外观设计 2、可对8个或12个样品同时进行加热 3、具有加热速率快、热能利用率高、加热均匀、使用寿命长等优点 4、具有风冷功能、经济实用 5、带刺回流管、冷却效果更好 6、冷却时间快速、分析数据准确 7、升温时间快,温度恒定均匀 8、温度和时间可以任意设置 9、铝锭孔代替加热板,恒温精度更高 四、JC-102C型系列分类: ◆ 8管(可同时消解8个样品)◆12管(可同时消解12个样品)

JC-101A型COD恒温加热器消解器恒温消解仪

JC-101A型COD恒温加热器|消解器|恒温消解仪 一、产品简介: ?JC-101A型COD恒温加热器(COD消解仪)是经典方法分析污水中一种采用空气冷凝代替水冷凝测定化学耗氧量的加热回流装置,它采用新型温控器,升温速度快,温度恒定均匀,操作方便,是一种实验手段仪器化新产产品。经国家环保局环境监测仪器质量监督检验中心测试表明,结果符合国际标准方法ISO06066-86的要求。采用数字化设定、显示加热温度,自动控制加热温度,可设定加热时间。升温速度快,温度恒定均匀,耗电小,操作简单,性能稳定可靠,广泛用于环保、医疗、卫生、食品、自来水、造纸、污水处理、印染、石化、冶金、院校等行业的水质检测。 ?至2014年9月18日起聚创JC-101A型产品全面升级,加热孔数升级为15孔。在此日期之前订购该型号产品的客户再次订货需提前与服务人员确认,以免影响您的正常使用。 二、技术特点: 1、国内首家推出具有时间控制型恒温加热器;时间可任意设定。 2、国内首家自动进行计算加热回流时间,无需人工进行计时,加热回流时间2小时到达完毕后,仪器自动关机。 3、温漂小、节能、节水、耗电小,升温速度快。 4、加热板底部采用特殊材质和加工工艺制作,每个加热孔部位恒温均匀。 5、最新工艺表面防腐处理,增加仪器的使用年限。 6、高精度铝锭恒温加热,保证样品的实验精准度,是环保、安监、实验室首选仪器。 7、新增消解结束报警提示功能。 8、免校准温度,简化使用步骤。 三、技术指标: 1、温度范围:32°C ~ 399°C(可调) 2、恒温精度:±2°C 3、升温时间:(180°C)<20min 4、消解控制:0-99小时;0-99分钟;0-99秒分段可调 5、最大功耗:1.2KW 6、电源:AC220V 50Hz 7、加热样品数:15个可定做孔数。 可OEM贴牌或提供中性产品。 8、电源电压:AC220V±10%,50Hz 9、外形尺寸:40cm*29cm*10cm(长*宽*高) 四、配置: 1、主机一台 2、试管架一副 3、加热管15支 4、回流管15支 5、电源线一根 6、说明书一份 7、合格证一份 8、保修卡一份

COD消解器系列大全

COD消解器系列 南京科环分析仪器有限公司专业生产COD消解器,国标法COD消解器为环境监测站.污水处理厂,水文监测站广为选用,为公司最多中标产品,快速法COD消解器为快速消解,是COD快速测定仪的最佳配套产品. COD消解器分国标法和快速法2大类 国标法COD消解器又称为标准COD消解器、COD消解装置,COD 消解回流仪,即符合国家标准GB11914-89要求, 确保加热消解时间2小时的消解操作. KHCOD-100型COD自动消解回流仪 KHCOD-101型COD高氯消解回流仪 KHCOD-8型COD消解装置 KHCOD-12型COD消解装置 WMX-III-B型微波消解装置 XJ-Ⅲ型消解装置 快速法COD消解器又称为快速COD消解器,165℃加热15分钟,时间温度自已设订。 COD-9型COD消解仪 COD-12型COD消解器 COD-16型COD消解器 COD-25型COD消解器

K HCOD-100型COD自动消解回流仪国家标准GB11914-89—水中化学需氧量的测定∶加热、回流装置 GB 11914-89国家标准分析方法水质化学需氧量COD(Cr)的测定,KHCOD-100型COD自动消解回流仪接照国标,严格保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和GB法一致,确保可靠精确的分析结果。 KHCOD-100型COD自动消解回流仪主要由机身、回流管、风扇、电炉板等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对6个锥形瓶回流装置同时进行加热。 仪器采用玻璃毛刺回流管代替球形回流管,并以风冷和水冷技术取代循环水冷却方式,操作更加方便。冷却部分主要由毛刺冷凝管水冷和风扇风冷完成,冷凝管上部分为球形3泡, 冷却效果更佳,催化剂由此处加入,阻止了样品中轻组分的瞬间挥发,并可 加盖挥发帽。下部分为“毛刺”形,在一个平面上从冷凝管壁伸出的3个相向 的“冷泡”比单纯的球形冷凝管更增大了冷却面积,并能阻挡挥发性物质和蒸 气的通过,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了 样品的回流冷却。 仪器的化学溶液配制、操作和COD的计算完全遵照GB 11914-89,低于 50mg/L的COD水样可通过稀释滴定剂和氧化剂来提高精确度,高于 1000mg/L的COD水样,可以通过水样的比例稀释来完成测定。 KHCOD-100型COD自动消解回流仪技术规格 测量范围:0~1000mg/L, 0~10000mg/L(水样稀释) 测量时间:不大于2小时 测量误差:邻苯二甲酸氢钾标准溶液(500mg/L),相对标准偏不大于5.0% 工业有机废水(500mg/L),相对标准偏不大于8.0% 环境温度:0~45℃ 加热功率:1500W (AC 220V±22V,50HZ) KHCOD-100型COD自动消解回流仪主要特点 技术特性:(1)可以设定消解时间,消解完毕后,仪器自动停止加热,可无人看管。(2)样品消解完毕后,仪器风机继续工作,辅助样品冷却。(3)以风水双冷取代循环水冷却,节约用电、用水,提高了效率,增强了仪器的安全性。 KHCOD-12型COD消解装置 国家标准GB11914-89—水中化学需氧量的测定∶加热、回流装置 KHCOD-12型COD消解装置,遵循了国家GB11914-89标准分析方法规范地制定了水质化学需氧量COD(Cr)的测定步骤,严格地规定了方法的加热消解时间,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和GB法一致,确保可靠精确的分析结果。

标准COD消解器使用过程中注意事项

标准COD消解器使用过程中注意事项 1、标准COD消解器在通电使用前,应先从回流管注水口处加入尽可能多的蒸馏水,以保证冷却效果。 2、对于污染严重的水样,特别是工业污染源的水样,可选取所需体积的1/10的试料和1/10的试剂,放入10×150mm的硬质玻璃试管中,用酒精灯加热至沸数分钟,观察溶液是否变为蓝绿色,若呈现蓝绿色的话,应再适当的少取试料,重复以上实验,直至溶液不再变蓝绿色为止。以此确定待测水样合理的稀释倍数。稀释时,所取废水样量不得少于5mL,如果化学需氧量很高(如工厂车间废水),则废水样应多次稀释。 3、水样的氧化回流应该在通风橱内进行,以防氯气之类的有害气体妨碍操作人员的健康。 4、混合均匀的水样置250ml磨口的回流锥形瓶中,准确加入10.00ml重铬酸钾标准溶液及数粒小玻璃珠或沸石,连接磨口回流毛刺冷凝管,从冷凝管上口慢慢地加入30ml硫酸—硫酸银溶液,轻轻摇动锥形瓶使溶液混匀。这一步骤是为保证浓硫酸溶于水的放热反应造成体系温度升高(约为90~95℃),不致使低沸点的有机物从上段管口逸出。(如甲醇沸点64.5℃,乙醇沸点78.3℃,甲醛沸点-19.5℃,乙醛沸点20.8℃),如果直接在敞开的条件下,加入浓硫酸的话,低沸点的有机物不经氧化逸出后,就会造成测定的结果数据偏低。举个例说,若水中含有万分之一的乙醇(100ppm),其对COD的贡献为189mg/L(乙醇的理论COD为1.99g/g,测定CODcr的氧化率为95.2%),若在敞口三角瓶中直接加入浓硫酸的话,这一部分COD的损失还是较为可观的。 5、在COD测定过程中产生的废液中,含有浓硫酸、重铬酸钾、硫酸汞,属于危险废物,应该作为危险废物专门处理,不得直接排往下水道中。 6、由于方法的检出下限为10mg/L,在10~30mg/L间的COD测定一定要采用0.025mol/L的重铬酸钾溶液氧化,再用0.01mol/L的硫酸亚铁铵滴定,为了减少测定的相对标准偏差,建议加大试样的取样量,最好取50.0mL,平行测定也以三次以上为宜。为减少滴定误差,可采用50.0ml的取样量。 7、测定低浓度COD的水样时,还要考虑一些可能的影响因素,如用聚乙烯桶盛装的蒸馏水或去离子水,随着放置时间的增加,其COD值也会逐渐增加,有时甚至达到10mg/L以上。还有的实验人员采用娃哈哈等纯净水(这是饮料中的所谓“纯净水”与分析意义上的“纯净水”有着本质的区别),替代蒸馏水或去离子水做空白,也会出现空白值增高的现象。 8、每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其应注意其浓度的变化。 9、水样回流消解结束后,加入蒸馏水或去离子水应从冷凝管上方缓慢加入,以便将附着在管内壁的挥发性有机物冲到试液中。 10、滴定时不能激烈摇动锥形瓶,瓶内的试液不能溅出水花,否则影响测定结果。

cod消解装置

COD消解装置 一、COD消解装置产品简介: TC-12型COD消解装置(COD消解仪)是经典方法分析污水中一种采用空气冷凝代替水冷凝测定化学耗氧量的加热回流装置,它采用新型温控器,升温速度快,温度恒定均匀,操作方便,是一种实验手段仪器化新产产品。经国家环保局环境监测仪器质量监督检验中心测试表明,结果符合国际标准方法ISO06066-86以及《HJ 828-2017 水质化学需氧量的测定重铬酸盐法》的要求。 TC-12型COD消解装置采用数字化设定、显示加热温度,自动控制加热温度,可设定加热时间。升温速度快,温度恒定均匀,耗电小,操作简单,性能稳定可靠,广泛用于环保、医疗、卫生、食品、自来水、造纸、污水处理、印染、石化、冶金、院校等行业的水质检测。 二、COD消解装置技术特点: 1、TC-12型COD消解装置采用数字化控温,时间可任意设定,操作方便 2、自动计算加热回流时间,加热回流时间2小时到达完毕后,仪器自动关机。 3、温漂小、节能、节水、耗电小,升温速度快。 4、采用新型数字化控温器件和加工工艺制作,每个加热孔部位恒温均匀。

5、污水冷却,操作更加方便,省电节能。 6、新增消解结束报警提示功能。 7、体积小、占用空间小。 三、COD消解装置技术指标: 1、温度可调节范围:室温—400℃ 2、恒温精度:±1℃ 3、升温时间:(200℃)<30min 4、时间设定:0-720min可调 5、最大功耗: 1.3kw 6、同时加热样品数:标准12孔(可定做) 7、电源电压:AC220V±10%,50Hz 8、外形尺寸:42cm*30cm*12cm(长*宽*高) 9、重量:17Kg 四、COD消解装置配置: 1、主机一台 2、试管架一副 3、加热管 12支(赠送3支,共计15支) 4、回流管12支(赠送3支,共计15支) 5、电源线一根 6、保修卡一份 7、合格证一份 8、说明书一份 9、防爆沸玻璃珠一份 9、测温仪一套(选配,最高可测1300℃)

标准cod消解器

标准COD消解器 一、标准COD消解器产品简介 ※国家标准GB11914-89分析方法规范地制定了水质化学需氧量COD(cr)的测定步骤,严格地规定了方法的加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标。显而易见,水质COD(cr)的测定是有严格的条件规定,违背了条件规定进行操作,就会影响测定的准确性。 ※TC-100D型标准COD消解器,遵循了国际标准(ISO)和国家标准(GB11914-89)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和国标法一致,确保可靠精确的分析结果。 ※TC-100D型标准COD消解器采用微机技术进行定时控制加热电炉,可对8个250ML锥形消解回流装置同时进行加热。达到节能、减低电力负荷、提高效率的目的。 ※TC-100D型标准COD消解器加热面板采用陶瓷玻璃作为加热载体,具有热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高,温度均匀性好等特点;采用玻璃

毛刺回流管代替球形回流管,并以风冷技术取代自来水回流冷却方式,并在冷凝管末段以静止水辅助冷却,既可以节水又能使仪器规范化,同时还提高了仪器使用的安全性。 ※仪器的化学溶液配制、操作和COD的计算完全遵照GB11914-89,低于50mg/L的COD水样可通过稀释滴定剂和氧化剂来提高精确度,高于700mg/L的COD水样,可以通过水样的比例稀释来完成测定。 二、标准COD消解器技术规格 1、测量范围:10~700mg/L、大于700mg/L的水样稀释后测定 2、消解时间:10分钟-2小时30分钟(用户可自主选择加热时间)(10分钟递进制) 3、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L)、相对标准偏差不大于5.0%;工业有机废水(500mg/L)、相对标准偏差不大于8.0% 4、消解样品数:8个(采用24#磨口的250mL锥形瓶) 5、环境温度:≤35℃ 6、加热功率:≤1600W(AC 220V,50HZ,用户可自主选择加热功率) 7、仪器尺寸:45cm(L) * 35cm(W) * 65cm(H) 三、标准COD消解器性能特点 1、冷却采用风冷技术冷却,并且采用大功率双风扇冷却,保证消解冷却回流效果。 2、平板电炉盘的波浪带状电热丝为新型稀土合金材料,其寿命极长。电炉盘表面覆盖可耐800℃高温玻璃面板,加热时电炉表面发热均匀,升温、降温速度快。 3、电炉盘使用新型的耐高温无机环保隔热材料,底板和周边的热损失小,受热、导热均匀,热效率更高。 4、平板电炉盘耐高温玻璃面板平整、光滑、易清洗;如表面沾污,用布擦干即可,可减少操作不当对仪器的损坏。 5、改进型的玻璃毛刺回流管和散热系统,其良好的消解回流效果确保样品消解结果的平行性和准确性。 6、对应用户选择的不同加热功率,可显示电炉表面加热温度。 7、可以设定消解时间,消解完毕后,仪器自动停止加热,仪器风机继续工作半小时,辅助样品冷却,可无人看管。 8、节电、节水,安全可靠,提高了操作人员的工作效率。

标准COD消解器技术指标

标准COD消解器技术指标 1.设备名称 标准COD消解器(国产) 2.设备用途说明 用于按照国家标准GB11914—89的分析方法进行水质化学需氧量COD(cr)的测定。 3.技术要求及参数 3.1标准COD消解器 COD消解器需完全遵照国家标准方法GB11914—89的规定,满足加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标要求。仪器可以进行加热时间的控制,配具加热指示灯,应能够对至少8个回流装置同时进行加热。当达到设定时间后,仪器可以自动停止加热。 3.2 回流装置:不少于8个。 3.2测量范围:不低于1000mg/L;对于稀释的水样,不低于10000mg/L。 3.3 测量时间:0~3小时。 3.4测量误差: 对于邻苯二甲酸氢钾标准溶液(500mg/L),要求相对标准偏差不大于5.0%; 对于工业有机废水(500mg/L) ,要求相对标准偏差不大于8.0%。 3.5环境温度:5~40℃。 3.6加热功率:500~1000W (AC220V±22V,50HZ) 4.必备附件、耗材等 必备附件包括仪器正常运行所需的回流加热装置以及加热瓶等。同时配具满足仪器正常运行一年所需的加热瓶、回流管等耗材。 5.售后服务: 5.1仪器到货后由公司工程师同用户共同开箱验货,并进行免费安装调试。安装工程师在用户现场安装调试完毕后,进行现场讲解培训,保证用户掌握基本技能,可以独立正确操作使用仪器; 5.2由生产厂家为用户提供现场技术培训,提供免费的仪器操作、维护、维修等相关培训;

5.3产品质量按中华人民共和国有关质量标准实行“三包”服务; 5.4验收合格签字后,仪器进入保修期,保修期至少为一年半。在保修期内免费维修。在保修期外,可为仪器提供终身维修服务。

BCOD-810便携COD仪说明书

BCOD-810 便携式COD测定仪 使 用 说 明 书 南京崇恩仪器设备有限公司

仪器出厂前已经标定过,用户可按下列方法直接测定样品中的COD值含量: 1、接上电源,打开消解仪开关,仪器自动升温至165℃。 2、打开便携式COD仪电源,选取若干支清洗干净的消解管,加入半管的蒸馏水, 标上数字标记,按“设置”键,用键头键选择第7项进行消解管的校准(如之 前已校准过可跳过这步)。 3、分别吸取2mL蒸馏水(空白)或待测样品置于消解管中,加入1mL硫酸汞溶液, 摇匀,加入1mL相应浓度氧化剂及3mL催化剂,具塞摇匀。 4、将消解管依次插入消解仪炉孔内,盖上防护罩,待温度降至低于设定值后按“消 解”键,仪器自动定时消解,消解完毕后蜂鸣器报警。 5、取出消解管至试管架,自然冷却2min后,再水冷至室温,待测。 6、按COD仪“曲线”键,利用箭头键选择所需的标准曲线序号,按“确认”键 确认。 7、将已消解好待测的样品空白消解管擦净,按方向标志(其中低量程5~200 mg/L 对刻线2,中高量程200~2000 mg/L对刻线1)放入比色孔内,按“空白”键,输入该消解管序号,按“确认”键,仪器自动调零。 8、将已消解好待测的被测样品消解管擦净,按方向标志(其中低量程5~200 mg/L 对刻线2,中高量程200~2000 mg/L对刻线1)放入比色孔内,按“测量”键,用数字键或键头键输入管号,按“确认”键,仪器显示样品的COD值。 注意: 1、仪器出厂前已经标定三条标准曲线,其中第1条为COD值等于5~200 mg/L 时的工作曲线,第2条为COD值等于200~2000 mg/L时的工作曲线,用户可 根据需要选用。 2、为保证测定准确性,应经常进行消解管的校准(参照P8页设置第7项)。 仪器操作 一、概述 化学需氧量(COD或CODcr)是指在一定严格的条件下,水中的还原性物质在外加的强氧化剂的作用下,被氧化分解时所消耗氧化剂的数量,以氧的mg/L表示。化学需氧量反映了水中受还原性物质污染的程度,这些物质包括有机物、亚硝酸盐、亚铁盐、硫化物等,但一般水及废水中无机还原性物质的数量相对不大,而被有机物污染是很普遍的,因此,COD可作为有机物质相对含量的一项综合性指标。

智能COD消解仪(氯气校正法)技术参数

产品名称:智能COD消解仪(氯气校正法) 型号:SEHCL-100 一、产品用途:用于高氯水体(水和废水,氯离子浓度大于1000mg/L)中的化学需氧量的样品消解。 二、适用范围 适用于油田、沿海炼油厂、油库、氯碱厂、农药、化工、废水深海排放等废水(含高氯废水样品)中的化学需氧量的消解处理。 符合HJ-T-70-2001-高氯COD测定-氯气校正法标准 三、工作原理 在一定条件下,用水样所消耗的重铬酸钾的量,换算成相应的氧的质量浓度,即为表观CODcr。水样中被氧化的氯离子生成的氯气所对应的氧的质量浓度,即为氯离子校正值。表观CODcr与氯离子校正值之差,即为所测水样的CODcr。适用于氯离子浓度大于1000mg/L、小于50000mg/L、CODcr大于10mg/L的水和废水中CODcr的消解。 四、技术要求 1、主机构成:加热消解智能控制系统、制冷循环系统、氮吹控制系统、氯气吸收装置 2、加热方式:采用陶瓷红外辐射器加微晶面板(热膨胀系数在0℃-700℃小于1.6x 10-6 /℃,热导率在90℃时1.7W/m.℃),耐强酸碱腐蚀、热导性好热源,独立控温,消解均匀。 3、消解单元:六联,单孔单控,消解温度、定时时间、氮气流量可自由设定。 4、智能模式运行,不少于6个样品通道,恒温循环冷凝,独立进行各类样品消解工作。 5、终点控制:高精度氮气流量计量模块,单孔单控,恒流吹扫,到达设定的消解时间自动停止加热,氮气流量自动切换成静置流量,状态自动切换流量,无需人员干预。 6、抗氯干扰:[Cl-]﹤50000mg/L无影响 7、COD测量范围:≥10mg/L COD ≤ 700mg/L的水样(未经稀释),超过水样稀释测定 8、消解瓶:使用聚四氟接头螺纹连接,密封效果好,安装拆卸省时省力 9、冷凝管:采用直线轴承结构,上下轻松滑动,冷凝水进出口采用螺纹连接,方便清洗更换。 10、氯气吸收装置:采用二次吸收装置,和吸收液反应充分 11、制冷系统:内置压缩机冷却系统,内部循环水制冷,无需外接水源,一次加水多次使用,不需要外接自来水,节约水资源 12、氮吹系统:采用进口比例阀,氮气流量数字调节,根据压力自动闭环控制流量; 五、参数要求 1、样品数量:不少于6位样品

COD-571-1消解装置_COD消解器_COD-571化学需氧量分析仪XJ-Ⅲ消解装置 COD消解

COD-571-1消解装置/COD消解器/COD-571化学需氧量分析仪XJ-Ⅲ消解装置 COD消解装置COD、TP、TN消解仪 COD-571-1消解装置/COD消解器/COD-571化学需氧量分析仪RL004962XJ-Ⅲ消解装置COD消解装置 COD、TP、TN消解仪RL004965图片 /COD-571化学需氧量分析仪RL004962XJ-Ⅲ消解装置COD消解装置 COD、TP、TN消解仪RL004965内容 型号:RL004962 COD-571型技术参数 仪器特点:中文菜单显示,操作简单采用重铬酸钾比色法直接读出COD结果,无需滴定等其它方法进行分析采用PP40打印机,可打印测试结果COD-571-1型消解装置结构紧凑,可同时进行21个样品消解反应,降低能耗分析成本低、减少二次污染消解温度50℃~150℃任意设定,并有超温报警装置消解时间0~120min任意设定,反应结束自动关闭,操作方便技术指标:1.测量范围:(0~1500)mg/L2.基本误差:(0~150.0)mg/L ; ±8%(读数)±1mg/L (150~1500)mg/L ;±8%(读数)3.仪器稳定性:±2(读数)/15min4.仪器重复性:3%(读数)5.消解温度控制误差:±5℃(在150℃以下)6.定时误差::120min±5min7.仪器正常工作条件a)环境温度b)相对湿度:不大于85%c)供电电源:AC (220±22)V;(50±1)Hzd)周围环境中无腐蚀性气体、无明显振动和强电磁场提示:水样的颜色和浊度将影响测量精度 型号:RL004965 适用范围及主要用途 XJ-III(COD、TP、TN)消解装置可对各种地表水、生活污水、工业废水中化学需氧量(COD)、总磷TP)、总氮(TN)等进行水消解测定。 广泛适用于各级环保部门,水资源管理部门及公共卫生部门对水质的鉴定与管理。 产品特点 公开所用试剂剂配方,用户无须购买耗材。 微电脑控制温度和时间,准确直观,消解完成蜂鸣提示。 可消解多种物质;化学需氧量(COD)、总磷(TP)、总氮(TN)等。 省时、省费用、操作简单方便,恒温精度高。

COD分析方法-2125915

化学需氧量 USEPA1消解比色法2方法8000 测量范围:0.7—40.03 mg/L COD; 3—150 mg/L COD; 20—1500 mg/L COD; 200—15,000 mg/L COD 应用范围:用于水与废水,需要消解 13-150 mg/L和20- 1500 mg/L量程的COD检测法是美国环境保护署(USEPA) 认可的用于废水分析的方法(标准方法5200 D), 美 国联邦注册登记,1980年4月21日,45(78), 26811-26812。 2Jirka, A.M.; Carter, M.J., 分析化学, 1975, 47(8), 1397 3 DR 2700和DR/2400无法测量极低量程 测试准备工作 表1 仪器详细说明 仪器型号遮光罩适配器型号 DR 5000 —— DR 2800 LZV646 — DR 2700 LZV646 — DR/2500 — — DR/2400 — 5945700 测试开始前: 使用DR 2800和DR 2700测试前,将遮光罩遮住样品室#2。 DR 2700和DR/2400无法测量极低量程(0.7—40.0 mg/L COD) 如果测试过程中处理不当或使用的方法错误,某些化学试剂及仪器可能会危害到使用者的健康和安全。请阅读所有警告以及相关 的材料安全性数据表(MSDS)。 每次检测样品时都需进行一次空白值测试。使用同批的小瓶进行所有测试(样品和空白值)。批号显示在容器标签上。请参见用于 比色确定的空白值。 试剂外溢会影响测试的精度,并会对皮肤和其它材料造成危害。若遇此情况请用流水冲洗溢出试剂。 请带上防护眼镜并穿防护服。一旦触及试剂,请用流水清洗接触部位。请反复阅读和严格遵循书中说明。 如果测试的样品氯化物含量很高,请参阅可选择的替代试剂。 准备下列物品: 名称及描述数量 250 mL烧杯 1 混合器 1 COD消解试剂管视情况而定 DRB200反应器 1 遮光罩或适配器(请参见仪器详细说明 ) 1 磁力搅拌器 1 不透光的容器(放置对光敏感的试剂)视情况而定 0.1—1.0mL移液枪和枪头(用于200-15,000 mg/L量程) 1 2mL移液管 2 试管架 2 订购信息请参看消耗品和替代品信息

标准COD消解器

标准COD消解器 标准COD消解器,最初是在电炉、铁架台,冷凝循环水的基础上改进,将循环水冷却改为了毛刺冷凝管风冷,6个电炉改为一块电炉板上做6个样,操作简单方便,而且节能省工。 经过10多年用户的使用情况,还有几方面得到了改进: 1、电炉板:碳化硅电炉板存在表面不平整,加热不均匀的现象,而且极不容 易冷却;现在选用新型节能环保模板材料,优质粗直径低功能加 热丝,微晶玻璃加热台面,解决了客户需要解决的问题。 2、控制面板;控制面板上有开始、定时、风冷,三个按键,显示窗口只数字显 示加热时间倒计时,现在改为液晶显示,中文菜单操作,显示实 时变化温度和消解时间倒计时。 3、冷却;单风扇冷却小型冷凝管,现已改为双风扇冷却,大而高的3泡毛 刺冷凝管。 用户反应的情况很多,我们也一一做了改进,新型号KHCOD-8K型,在是加热部份,增加了可控硅调节加热功率新功能,在加热过程中,仪器直接显示加热温度的变化,在不需要重新设置的情况下,随意调节电位器,改变加热功率,从而控制加热温度,不论春夏秋冬,可以随时控制反应液的沸腾状况,同时把冷凝管加长,水冷处改为3泡,增加直径,提高冷凝效果,防止雾化气化,确保反应液在消解回流中没有逸失,保证测量数据的准确性。微晶加热板隔空加热,冷却速度很快。下一步在老师的指导下,申报了国家填目,可自动滴定,增加反应液自动混合搅拌功能。 符合国标:新标准HJ828-2017代替原GB 11914-89 液晶显示:显示待机、消解、控温、风冷,显示加热温度,同时显示消解时间,测量范围:5~700mg/L,700mg/L~10000 mg/L水样稀释后测定 消解时间:1分钟~9小时60分钟(用户设置加热时间,正常2小时30分钟)控制温度:室温—400℃,自动加热,调压控温,采用满意沸腾效果。 测量误差:邻苯二甲酸氢钾标准溶液(500mg/L)相对标准偏差不大于5.0%;

高氯cod消解器

高氯COD消解器 一、高氯COD消解器产品介绍: 《水质化学耗氧量的测定重铬酸钾法》(GB11914-89)规定,该标准不适用于含氯离子浓度大于1000mg/L(稀释后)的含盐水。当氯离子含量超过1000mg/L时,COD的最低允许限值为250mg/L,低于此值的准确度就不可靠。因此,GB11914-89不适用于高氯离子废水。我公司依据最新行业标准HJ/T70-2001的指导结合用户的实际需求设计了TC-100F型高氯COD消解器,本款仪器消除了高氯离子含量对COD测定的干扰,可作为氯离子含量小于20000mg/L的高氯废水中化学需氧量(COD)的测定标准仪器,适用于油田、沿海炼油厂、油库、氯碱厂等废水中COD的测定。 二、高氯COD消解器主要特点: 1、依据行标HJ/T70-2001的要求,消解全程氮气流通,符合技术要求 2、配备4个流量计(高配),可对每个样品单独控制氮气流速,节约氮气以及提高实验精准度 3、采用石墨板加热,可同时进行4个样品以及1个对比样品的消解实验

4、内置大功率风扇,利用风冷技术代替水冷却,结合玻璃毛刺冷凝回流管冷却,有效节水节能 5、采用特制三角烧瓶消解,消解完毕之后可直接滴定,方便实验人员操作 三、高氯COD消解器技术指标: 1、抗氯干扰:1000~20000mg/L(高于请按照HJ/T132-2003实验) 2、检出限:30mg/L 3、氮气流速:5~60mL/min 4、测量范围:≤1000mg/L(大于稀释) 5、消解时间:2h(调时幅度10min) 6、消解容积:250mL 7、测量误差:≤500mg/L,相对标准偏差不大于5.0%;≤1000mg/L,相对标准偏差不大于8.0% 8、工作环境:(5 ~ 40)℃;相对湿度<85%(无冷凝); 9、加热功率:1400W(220V,50HZ) 四、高氯COD消解器产品配置 1、主机(4个流量计)1台 2、三角烧瓶(250mL) 5个 3、冷凝回流管 5支 4、磨口导气弯管4支 5、导气管4支 6、硅胶软管 4根 7、电源线1根 8、说明书1份 9、合格证 1份 10、保修卡 1份

COD消解器原理及相关参数

COD消解器原理及相关参数 选择COD消解器之前首先我们要明确的是什么是”COD”?COD消解器是用来做什么的? COD表示水中还原性物质多少的一个指标,即为化学需氧量COD(Chemical Oxygen Demand),以化学方法测量水样中需要被氧化的还原性物质的量。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数,常以符号COD表示。 COD消解器是用来做什么的?COD 消解器是测定COD指标时对水样前处理的一款加热装置,其本身是不具有测定功能,该系列产品遵循国际标准(ISO)和国家标准(GB11914-89)的基本原则,保证其消解操作,试剂溶液的配置加入量都和国标法一致,确保可靠精确的分析结果,化学需氧量越大,说明水体受有机物的污染越严重。 下面就简单介绍一款COD产品相关技术参数 JC-102型标准COD消解器采用微机技术进行定时控制加热电炉,可对8个250ml锥形消解回流装置同时进行加热。达到节能、减低电力负荷、节水、提高效率的目的。 1、测量范围:10~700mg/L、大于700mg/L的水样稀释后测定 2、消解时间:10分钟-2小时30分钟(用户可自主选择加热时间)

3、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L)相对标准偏差不大于5.0%,工业有机废水(500mg/L)相对标准偏差不大于8.0% 4、环境温度:≤35℃ 5、消解样品数:8个(采用24#磨口的250mL锥形瓶) 6、加热功率:≤1600W(AC 220V,50HZ,用户可自主选择加热功率) 7、仪器尺寸:45cm(L)* 35cm(W)* 65cm(H) JC-102型标准COD消解器平板电炉盘的波浪带状电热丝为新型稀土合金材料,其寿命极长。电炉盘表面覆盖可耐800℃高温玻璃面板,加热时电炉表面发热均匀,升温、降温速度快。耐高温玻璃面板平整、光滑、易清洗,如表面沾污,用布擦干即可,可减少操作不当对仪器的损坏。 电炉盘使用新型的耐高温无机环保隔热材料,底板和周边的热损失小,受热、导热均匀,热效率更高。改进型的玻璃毛刺回流管和散热系统,其良好的消解回流效果确保样品消解结果的平行性和准确性。 用户可选择不同的加热功率,可以设定消解时间,消解完毕后,仪器自动停止加热,仪器风机继续工作半小时,辅助样品冷却,可无人看管。仪器可显示电炉表面加热温度。JC-102型标准COD消解器节电、节水,安全可靠,极大的提高了操作人员的工作效率。

标准COD消解器

标准COD消解器 一、设备名称与型号 设备名称型号 标准COD消解器HCA-102 二、参考文件 1. 仪器使用说明书 三、仪器概述 遵循了国际标准(ISO)和国家标准(GB11914-89)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和国标法一致,确保可靠精确的分析结果。 采用微机技术定时、定功率控制加热电炉,可同时对8个250mL锥形消解回流装置进行加热。仪器采用玻璃毛刺冷凝管代替球形冷凝管,并以风冷技术取代自来水回流冷却方式,在冷凝管末段加以静止水辅助冷却,即可节水又能规范化仪器,同时提高了仪器安全性能。 仪器的化学溶液配制、操作和COD的计算完全按照GB11914-89,低于50mg/L的COD水样可通过稀释滴定剂和氧化剂提高精确度,高于700mg/L的COD水样可通过水样比例稀释完成测定。 四、技术规格 测量范围:10~700mg/L(大于700mg/L水样进行稀释) 消解时间:10min~150min 测量误差:邻苯二甲酸氢钾标准溶液(500mg/L)相对标准偏差不大于5.0%,工业有机废水(500mg/L)相对标准偏差不大于8.0% 环境温度:5~35℃ 消解样品数:8个(24#磨口250mL锥形瓶) 加热功率:≤1600W(AC 220V,50Hz) 仪器尺寸:450mm(L)*350mm(W)*650mm(H) 五、使用说明 (1)功率:功率显示控制键 (2)设定:消解的时间、功率设定减 a:消解时间设定:仪器开机设定时间为130min。每按一次设定自动减去10min。建议设定为130min。

b:消解功率设定:先按“功率”键显示功率,然后按“设定”键选择加热功率,每按一次设定键自动减去100W。加热功率选择范围800W~1600W,建议使用1400W的加热功率。按“功率”键5秒后如没有功率选择自动回到显示温度状态。下次开机做样时,仪器保存上次设定功率加热。 (3)开始:消解开始控制键。按“开始”键后仪器进行加热回流消解,时间从设定值处倒计时,秒闪烁灯(:)闪烁,同时温度实时显示。当时间为零后,仪器自动停止加热,1小时后自动关闭风扇。 具体操作步骤:仪器在通电使用前,应先从冷凝管上方的冷却水注水口处加入尽可能多的蒸馏水,以保证冷却效果。 (1)打开仪器右侧电源开关,此时仪器显示器上方显示时间2 10(2小时10分钟),下面显示加热板表面温度(如0023),冷却风扇同时打开。 (2)按实验要求,调整加热时间和加热功率。 (3)回流消解:按“开始”键,仪器开始进行回流消解,秒闪烁灯(:)闪烁,同时温度实时显示。时间为零后,仪器停止加热,一小时后自动关闭风扇。 样品处理及分析方法参照国家标准分析方法GB11914-89.使用本仪器分析样品的COD浓度大于50mg/L时,具体操作如下:带有24#标准磨口的250mL锥形瓶加入20mL试样,加入0.250mol/L重铬酸钾标准溶液10.0mL和几颗防暴沸瓷珠或玻璃珠,摇匀。将锥形瓶接到毛刺冷凝管下端。从冷凝管上端试剂注入口处缓慢加入30mL硫酸银-硫酸试剂,为防止低沸点有机物的逸出,应不断旋动锥形瓶使之混合均匀。按“开始”键后,仪器自动按设定加热时间和加热功率开始加热消解样品;设定时间到后,仪器停止加热,此时仪器时间显示0:00;一小时过后仪器冷却风扇停止转动。用90mL蒸馏水自冷凝管上端试剂注入口处冲洗冷凝管壁,然后取下锥形瓶。滴定前溶液总体积不得少于140mL。溶液再度冷却至室温后,加入3滴1,10-菲绕啉指示剂溶液,混合均匀。用硫酸亚铁铵标准滴定溶液滴定,溶液颜色由黄色经蓝绿色变为红褐色即为终点。 六、注意事项 1.保证电源接地良好 2.保证平板电炉盘的洁净,若有沾污用布擦干即可。

cod微波消解法测定步骤

微波消解法测定CODcr 药品、设备和仪器 药品: a.硫酸银,化学纯 b.硫酸汞,化学纯 c.浓硫酸,密度为ml d.重铬酸钾,化学纯 e.邻菲罗啉(C12H8N2·H20),化学纯 f.硫酸亚铁(FeSO4·7H2O),化学纯 g.蒸馏水等 设备和仪器: a.微波消解炉; b.聚四氟乙烯消解罐; c.酸式滴定装置;移液管容量瓶;锥形瓶;、500ml烧杯若干;h.电子天平(带称量纸和药勺);i.棕色试剂瓶;j.蒸馏水发生器;k.烘箱。还需要滴管、玻璃棒、滤纸、漏斗、漏斗架、100ml容量瓶、10ml移液管、洗耳球、滴管等实验室常用仪器。 试剂制备 a)重铬酸钾消解溶液(1/6K2Cr2o7=l) 称重铬酸钾于1000mL烧杯中,溶解于大约500mL蒸馏水中,在搅拌中徐徐地加入250mL浓硫酸,冷却后,转移至1000mL容量瓶中,用蒸馏水稀释至标线,摇匀。 该溶液重铬酸钾浓度用于测定COD浓度在50~1000mg/l的水样(含2500mg/l以上需稀释的水样)。 b)掩蔽剂:硫酸汞(Hg2S04)结晶或粉末 c)催化剂:称取10g硫酸银(Ag2S04)溶解于l升的浓硫酸(H2S04)中,摇匀 d)试亚铁灵指示剂:称取 1.485g邻菲罗啉(C12H8N2·H20)和0.695g硫酸亚铁(FeSO4·7H2O)溶于蒸馏水中,稀释至100mL,贮于棕色瓶内 e) 硫酸亚铁铵标准溶液[(NH4)2Fe(SO4)2·6H20≈L]: 称取19.8g硫酸亚铁铵溶于蒸馏水中,边搅拌边缓慢加入20mL浓硫酸,冷却后移入1000mL容量瓶中,加蒸馏水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定: 准确吸取重铬酸钾标准溶液于150mL锥形瓶中,加蒸馏水稀释至30mL左右,缓慢加入5mL浓硫酸,混匀。冷却后,加入2滴试亚铁灵指示剂用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。

自配消解液分光光度法测定污水中的COD[开题报告]

开题报告 环境工程 自配消解液分光光度法测定污水中的COD 一、选题的背景、意义 化学需氧量(COD)是以化学方法测量水样中需要被氧化的还原性物质的量,水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样中还原性物质全部被氧化后,需要的氧的毫克数,以mg/L表示。它反映了水中受还原性物质污染的程度。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等,但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性氧化法与重铬酸钾氧化法。 在饮用水的标准中Ⅰ类和Ⅱ类水化学需氧量(COD)≤15、Ⅲ类水化学需氧量(COD)≤20、Ⅳ类水化学需氧量(COD)≤30、Ⅴ类水化学需氧量(COD)≤ 40。COD的的数值越大表明水体的污染情况越严重。 目前,中国将重铬酸钾法规定为国家标准方法(简称国标法,GBl1914—89),此法可靠性高、重现性好,但是其操作烦琐、耗时长、耗能大,所用试剂量大,对环境造成的二次污染较大[1,2],且同时测定多个样品时有一定的局限性。因此,目前较多的实验室采用美国国家环保局认可的HACH微回流法[3],该法简便、省时,但是专用的进口试剂包价格昂贵,且单一种类进口试剂包的测量量程范围较窄,很难满足日常大量监测工作的需要。为解决这一问题,通过对哈希回流法的改进,利用分光光度法并采用自主配置COD消解液代替进口消解液测定水COD,在降低检测成本、扩大测量量程的同时还满足了测量的准确度和精密度要求[4]。 随着科技的进步,水质的监测分析方法也在不断的发展改进,在企业污染治 COD。该方法简便、快理、环保等领域,大多采用密闭消解比色法测定水中的 cr 捷、安全、节能,特别适用于大批量样品的测定,但是试剂的成本比较高,针对

5.标准COD消解器期间核查作业指导书

标准COD 消解器期间核查作业指导书 1. 期间核查的目的: 为了检查标准COD 消解器的时间控制器准确性,电炉板温度均匀性,确认仪器的可靠性,使其保持良好的运行状态,从而保证本实验室所得到的测量结果准确可靠。 2. 期间核查的条件: 2.1环境条件:0~45℃,相对湿度≤85%,并处于没有腐蚀性气体的环境。 2.2 控制时间范围及精度:1~150min ,时间控制精度:<5s ;电炉板温度均匀性:±1℃ 3. 期间核查的频率:标准COD 消解器使用频繁时,每季度一次,仪器使用不频繁时,可适当减少核查的频次。 4. 核查项目和核查方法: 4.1 外观核查:外观完好;铭牌上标有仪器的名称、型号、制造厂名(或厂标)、出厂编号、玻璃毛刺回流管无破损。 4.2运行试验: 打开仪器右侧板电源开关,待最后显示消解时间为最大设定值,按下“风扇”按钮,此时风扇指示灯亮起,风扇运转正常无异常噪音。每按下“设定”,消解时间自动减去10min 。按下“开始”,此时开始指示灯应亮起,电炉板开始以额定功率加热。 4.3 仪器微机时间控制准确度: 将仪器消解时间分别设定为2:00,1:00,0:30,待仪器开始倒计时,同时用秒表(经JJG237-2010 秒表检定规程检定),仪器消解结束时即刻停止秒表计时,分别记录仪器消解和秒表计时的时间差,并计算平均值- ?t 。 4.4电炉板温度均匀度: 将电炉板用网格法平均分为9块,运行试验电炉开始加热30min 后,用分度值不大于0.1℃的红外测温仪(经检定合格)测量电炉板各区域温度,记录各区域温度Ti 。 5. 核查参考技术指标:(如仪器老化,可比对检定证书上的值,将技术指标适当放宽) 根据下式得到电炉板各区域温度差ΔT ,并根据ΔT 对仪器进行评估。 ΔT = - ∑i i T T 式中i T ∑为电炉板各区域温度和,- i T 为各区域温度平均值。 消解时间控制准确度- ?t :±5s 。 电炉板区域温度差ΔT :±1℃。 6. 结果判断方法:仪器符合条款5的技术指标,仪器可继续使用,否则应当停止使用,进行检查、修理和送计量检定机构校准。

相关主题