搜档网
当前位置:搜档网 › 离子液体在金属冶金中的应用

离子液体在金属冶金中的应用

离子液体在金属冶金中的应用
离子液体在金属冶金中的应用

离子液体在金属冶金中的应用

摘要:离子液体作为一种新型的反应介质,同时具有有机溶剂和高温熔盐的优点而成为非有前途的低温“绿色”溶剂,将其用于金属提取分离只需在室温或接近室温下进行,具有反应条件温和、能耗低、无污染等特点,可大幅度降低生产成本,具有巨大潜力。

关键词:离子液体;金属冶金;电沉积

Abstract: Ionic liquids as a new type of reaction medium, at the same time possesses the advantages of organic solvent and high temperature molten salt has become a promising "green" solvents at low temperature, the extraction and separation for metal at room temperature or near room, under mild reaction conditions, low energy consumption, no pollution etc., can greatly reduce the production cost, has enormous potential.

Keyword:ionic liquid ;metal and metallurgy;electro-deposition

前言

离子液体是室温离子液体的简称,是由特定有机阳离子和阴离子构成的在室温或接近室温下呈液态的熔盐体系,它具有一系列独特的物化性能,是一种真正的“绿色”溶剂,已广泛和成功地用于材料制备、催化、金属电沉积、燃料电池等领域。离子液体作为一种溶剂,提供了与传统分子溶剂完全不同的环境,一些化学反应子液体中进则可能取得与传统化学不同的令人惊异的结果。在金属的电解精炼方面,离子液体是一种理想的室温液态电解质,它融合了高温熔盐和水溶液的优点:具有较宽的电化学窗口,在室下即可得到在高温熔盐中才能电沉积得到的金属和合金,但没有高温熔盐那样的强腐蚀性;同时,在离子液体中还可电沉积得到大多数能在水溶液中得到的金属,且无副反应,因而得到的金属质量更好,特别是对铝、钛、硅和锗等很难在水溶液中电沉积得到的金属更是如此。离子液体的上述特性及其良好的电导率使之成为电沉积研究的崭新的电解质。在金属及其氧化物的溶解腐蚀、矿物中有价元素提取分离等方面,离子液体具有不易挥发和燃烧、可溶解许多无机物和有机物、易通过物理方法再生的优点,是一种新型“绿色”溶剂。这些特性使其在冶金和材料制备领域尤其是金属提取与分离等方面具有广阔的应用前景。

一、离子液体在金属Al制备中的应用

常规的铝电解是采用高温电解法和Hall-Héroult法,这些方法虽然产量高,但是电解温度高达850~900℃,存在高能耗、高污染等缺点。近几年,人们在对室温离子液体性质进行研究时发现,采用离子液体进行铝的电沉积具有很多优点,因为离子液体除具有其他溶剂的特点以外,还具有自身的一系列优越性,液体状态温度范围宽(?90~300 ℃);高热稳定性和高化学稳定性;电化学窗口较宽(3~5 V);蒸汽压比较低,几乎趋于零;可以根据阴阳离

子调节Lewis酸性;无污染且可以循环使用。这些优点使得离子液体在电解铝工艺中得到广泛的关注和研究。

北京化工大学的赵海,徐联宾,陈建峰,张鹏远等人在研究离子液体[EMIM]Br-AlCl3 中恒电流沉积铝后提出,离子液体[EMIM]Br-AlCl3 的电导率随着温度的上升而增大,符Arrhenius 公式。电流密度,温度、搅拌速率和沉积时间均影响铝的沉积速率、电流效率和表面形貌。在电流密度为20 mA/cm2,温度为40 ℃,搅拌速率为700r/min,时间为60 min 的条件下,所得铝沉积层连续、致密、附着性好、颗粒状且粒径小;电流效率维持在80%以上,阴极铝层纯度达96%,其中少量的氧来至铝的氧化。不同AlCl3/[EMIM]Br 摩尔比的离子液体的电导率随着温度升高呈上升趋势;随着摩尔比的增加,离子液体的电导率反而降低。AlCl3/[EMIM]Br 摩尔比为2:1 的离子液体中,铝的沉积存在一个最优条件,只有在一个合理的范围内才能同时得到较高的沉积速率和电流效率。阴极铝的表面形态在各种条件下变得不一致,在沉积速率和电流效率都较高的条件下能得到表面平整、致密、连续、附着性好、呈颗粒状且有金属光泽的铝层。我国只是在近年来才开始将室温熔盐电镀铝作为一种工艺方法进行研究。在AlCl3-EMIC(N=0.667)室温离子液体中电沉积出铝镀层往往不够致密、光滑、鲜有金属光泽。据文献报道,加入LaCl3 可以改变镀层的性质,在配制好的AlCl3-EMIC 中加入过量的氯化镧,研究其成核机理,并与未加氯化镧得到的镀层相比较,希望镧的加入可以得到致密光亮的镀层。在含有饱和LaCl3 的AlCl3-EMIC 中电沉积铝,将氯化镧溶解到AlCl3-EMIC 室温离子液体(N=0.667)中,制备氯化镧饱和的AlCl3-EMIC 离子液体;采用循环伏安法、计时电流法研究了在饱和LaCl3-AlCl3-EMIC 中钨电极上的阴极过程和成核机理;并在不同的电流密度下制备了镀层,利用扫描电镜对镀层表面形貌进行了分析。氯化镧的加入使得铝的沉积电位负移,由拟合曲线可知其成核过程为三维瞬时形核,在12 mA/cm2 的电流密度下可以获得光滑密的镀层,氯化镧的加入可以细化晶粒。

二、离子液体在制镁工业中的应用

近年来,离子液体作为非水溶剂受到了越来越大的关注,就电沉积而言,离子液体兼备了高温熔盐和水溶液的优点,具有较宽的电化学窗口,在室温下即可得到在高温熔盐中才能电沉积得到的金属和合金,但没有高温熔盐那样的强腐蚀性;同时, 在离子液体中还可电沉积得到大多数能在水溶液中得到的金属,且没有副反应,因而得到的金属质量更好,离子液体中电沉积金属及其合金已有不少研究。目前主要集中在惰性电极,对于镁合金上的电镀及其镀层性能的研究报道还较少,Alcl3一EMxmCI(氯化1一乙基一3一甲基咪哇珊离子液体作为溶剂,在Az91D镁合金上进行电镀研究,获得了致密和结合良好的Al镀层但是AIC13一EMImCI离子液体易吸水,电镀需在惰性气体保护下进行Bakkar等采用可在大气环境中操作的离子液体氯化胆碱一尿素作为溶,在镁合金上进行电镀Zn研究,但只在不含Al 的Mg-Re 合金上获得了Zn层"Mg一Al系合金是镁合金中应用最广泛的一类,值得进一步研究Mg一Al系合金的电镀,而氯化胆碱一尿素离子液体在大气环境中稳定,且成本低和环保。采用氯化胆碱一尿素离子液体作为溶剂,Az91D镁合金作为电镀基体材料进行电镀Zn。Az91D镁合金在氯化胆碱一尿素离子液中电镀可获得Zn镀层,脉冲电镀比恒流电镀更利于获得致密均匀与基体结合良好的Zn 层;脉冲电镀Zn 层表面致密,厚度均匀,与基体结合良好,电化学测试结果表明,脉冲电镀Zn层腐蚀行为与纯zn相似,可为Az91D镁合金基体提供良好的防护作用。

三、离子液体中电沉积钛

钛被称为第三金属,有高强度、高延展、耐高温、耐腐蚀性等特点,它的密度比铁小,强度高于铝,具有轻质结构,防腐效果比铝好得多,是一种非常有效的防腐材料和非常重要的工业材料。目前工业化生产钛的方法为镁热还原法(Kroll 法)和钠热还原法(Hunter 法),但生产成本高,目前工业中广泛应用的只有Kroll 法。钛及其合金的低温电沉积极为有趣,然而钛有Ti2+, Ti3+,Ti4+,因此,其电沉积的电化学机理比铝和镁复杂得多。早在1990 年,Carlin 等就研究了TiCl4 在[Emim]Cl/AlCl3 离子液体中的电化学性质,Ti4+离子通过2 步单电子过程被还原成Ti3+和Ti2+离子,Ti3+离子则以β-TiCl3 形式在电极上形成棕色的沉积层,但不能电沉积得到金属钛。 2003 年Mukhopadhyay 等报道室温下在离子液体[Bmim](CF3SO2)2N 中电沉积Ti,并首次利用电化学扫描隧道显微镜在室温下观察二维和三维原位相的形成。实验采用三电极体系,工作电极为高导热解石墨电极,Pt 环和Pt 线分别作为对电极和参考电极,99.999%的TiCl4 充分溶解在离子液体中作为电解液,TiCl4 的还原过程是先还原成TiCl2,之后再还原成金属Ti。 Tsuda 等的研究表明,50.2 ℃下在路易斯酸性[Emim]Cl/AlCl3 离子液体TiCl4被还原为Ti,且以Al?Ti 合金的状态沉积。2004 年以来,美国的海军研究所一直从事离子液体中TiO2电解制备金属钛的研究。 OGrady 等把长10cm、宽2mm、厚0.25mm的钛箔于空气中在550℃处理140 h,将表面先氧化出一层TiO2,然后在[Emim]Cl离子液体中电解还原,循环伏安曲线有变化,可能有金属钛还原出来。2005年Mukhopadhyay 等报道室温下在离子液体[Bmim](CF3SO2)2N中沉积纳米级钛金属丝,实验装置和电解液组成与2003年的工作类似,不同的是采用的工作电极为Au(111). 研究发现沉积开始时金基体上首先沉积一层厚度大约为0.25nm的二维β-TiCl3,这一过程中为欠电位沉积,随着扫描的进行,沉积由欠电位沉积转变为过电位沉积,生长也由二维转变为三维,?1.8 V的条件下逐渐形成一层1~2 nm 的钛沉积层。Kayayana等研了TiCl4 在[BMP]TFSI 离子液体中的还原,TiBr4 可以溶解在Lewis 碱性[BMP]Br 中,还原步骤为Ti4+→Ti3+(Ti2+),[BMP]TFSI中含TiBr4而不含[BMP]Br、沉积温度为180℃时,在?2.3V下还原Ti4+产生了部分Ti与TFSI?阴离子的复合物,在低于?3.0 V 以下可以得到没有TFSI?的Ti.2007年Andriyko 等研究60℃时TiCl4 在[Bmim]BF4 和[Bmmim]3N 离子液体中的电化学行为,发现TiCl4 的还原过程是单电子过程,在[Bmmim]3N 离子液体中Ti(IV)仅还原到Ti(III),这一过程是不可逆的,而且Ti(IV)与6 个咪唑环形成了1 个很大的配合物。上述这些研究工作表明,金属Ti可以在离子液体中电沉积出来,但研究工作还刚开始,而且Ti 的还原过程和机理非常复杂,因此弄清离子液体中Ti的存在形式、还原机理等问题对开发离子液体低温制备金属钛的新工艺具有非常重要的意义,筛选和开发新的离子液体进行TiCl4 或TiO2 直接电解制备金属钛也是一个重要的研究方向。

四、离子液体电沉积金属合金

目前,人们在离子液体中已电沉积出多种金属及合金,在锌合金方面,Sun等做了大量工作,在EMICE-ZnCl2体系中电沉积出Zn-Cd、Zn-Sn、Zn-Co、等合金。研究还发现,通过调整温度、槽电压等电沉积条件可改变合金成分。

4.1 BMIC-ZnCl2离子液体中电沉积铜-锌合金

昆明理工大学材料科学与工程学院王波、徐存英在了Cu-Zn和BMIC-ZnCl2(物质的量比为1∶2)离子液体中,采用恒电位法于低碳钢基体上进行了Cu-Zn合金电沉积实验。研究CuCl的浓度﹑沉积电位、温度对Cu-Zn合金成分、形貌及电流效率的影响,并采用带X射线能量散射谱(EDS)的扫描电子显微镜(SEM)及X射线衍射仪对所得Cu-Zn合金沉积层的成分、表面形貌及物相进行分析。结果发现当电解液中Cu-Zn的浓度为0.2mol/l 时,阴极沉积电位在-0.1v附近,温度为70℃时,可得到质量较好的Cu-Zn合金仿金镀层。他们采用物质的量比为1∶2的BMIC-ZnCl2路易斯酸性离子液体电沉积Cu-Zn合金。研究了究CuCl的浓度﹑沉积电位、温度等参数对Cu-Zn合金沉积层成分及电流效率的影响,获得了进行Cu-Zn合金仿金镀的工艺参数,这对于实现高电流效率下成分可控的Cu-Zn电镀仿金具有重要意义。在含有0.2mol/l CuCl的物质的量比为1∶2的路易斯酸性BMIC-ZnCl2离子液体中,通过控制沉积电位在-0.1V附近、温度为70℃,在低碳钢基体上可电沉积得到颗粒尺寸较小、均匀的Cu-Zn仿金镀层。镀层的晶相为Cu-Zn合金。

4.2Urea-NaCl-ZnCl2离子液体中电沉积Zn-Ti合金

目前,工业上常用热浸的方法来制备Zn-Ti 合金镀层,然而热浸镀容易使部件产生氢脆,造成能耗高、电流效率低、污染环境等问题,严重制约了Zn-Ti 合金的发展。离子液体电沉积金属,因其电化学窗口宽、蒸气压几乎可以忽略、热稳定性好、化学和电化学稳定性优良,克服了水溶液和高温熔盐电解的缺陷,成为国内外很热门的研究方向。昆明理工大学刘成虎,华一新等人采用电化学方法研究urea-NaCl-ZnCl2-TiCl4 离子液体中Ti(Ⅳ)在玻碳电极的阴极还原过程,并应用恒电位沉积考察温度、电位和ZnCl2 含量对沉积层的影响。结果表明:阴极反应为准可逆反应,Ti(Ⅳ)可逐步还原为Ti(0);在低碳钢上,Zn 和Ti 发生诱导共沉积,得到平整的沉积层;适当提高沉积温度和电位可使沉积颗粒细化,镀层表面更加致密平整,但ZnCl2 含量的增加对Zn-Ti 合金沉积有阻碍作用;当ZnCl2 的摩尔分数为10%、温度为80 ℃、沉积电位为?1.5~?2.0 V 时,得到的镀层平整、致密、光滑,粒径约为0.8 μm。

4.3Urea-ZnCl2离子液体中电沉积Zn-Ti合金

吴青,徐存英等人研究了TiCl4 对Urea-ZnCl2离子液体体系电化学行为的影响。结果表明:TiCl4的加入能够提高Urea-ZnCl2离子液体的电导率,促进钛以Zn-Ti合金的形式沉积。在铜基体上进行恒电位沉积,可获得均匀致密的Zn-Ti合金层,且晶粒尺寸随沉积温度的升高而增大。从2AlCl3/Et3NHCl离子液体中电沉积制备Ni和Ni-Al合金采用离子液体电沉积技术直接将Ni-Al合金沉积到零部件的表面形成Ni-Al合金涂层,这样可以简化工序。相对于其它氯化铝型离子液体,2AlCl3/Et3NHCl离子液体具有成本低、熔点低、电导率高的优势,故本论文进一步采用2AlCl3/Et3NHCl离子液体进行电沉积Ni-Al合金的研究,以探讨离子液体中电沉积Ni-Al合金应用于航空航天领域的耐热耐腐蚀的合金涂层的可能性。系统考察了电位、电流密度及Ni2+浓度对电沉积Ni-Al合金的组成及形貌的影响,并探讨了离子液体中电沉积Ni-Al合金的机理。在含Ni2+的2AlCl3/Et3NHCl离子液体中的铜电极上通过恒电位电沉积制备出金属Ni和Ni-Al合金。采用循环伏安和计时电流方法,揭

示铜电极上沉积金属Ni的成核机理,研究了电沉积Ni-Al合金的机理,以及恒电位沉积Ni-Al合金工艺条件对沉积Ni-Al合金表面形貌和电流效率的影响。结果表明:在铜电极上电沉积金属Ni的成核机理为受扩散控制的三维瞬时成核过程。在电量≥3.0 C 时,电沉积Ni-Al合金的组成基本不再变化。Ni-Al合金的电沉积机理为,Ni的电沉积受扩散控制,同时进Al的欠电位沉积在Ni-Al合金电沉积过程中某些Ni-Al合金相的沉积可能受动力学限制而使Ni-Al 合金的组成偏离热力学预测结果。在电沉积Ni-Al 合金的沉积电流小且平稳,电沉积速率慢条件,Ni-Al合金表面形貌致密均一,反之就会出现瘤节。电沉积Ni-Al合金的电流效率>90%,电沉积物的组成接近于Ni3Al合金。

结语

近年来随着研究的深入和创造性成果的不断涌现,离子液体在有色金属提取分离领域的应用取得了可喜成绩。然而离子液体是一种新的物质,对其研究总体上还处于初级阶段,未知的方面还很多,一些性质还不清楚,在有色金属提取与分离方面还有如下问题需要进行大量的工作:(1) 离子液体结构与性质的基础问题,包含离子液体结构、离子的存在形式等对其性质的影响.不同的阴阳离子组合可以形成不同的离子液体。理论上,现有的阴阳离子可以组合形成1018 种不同的离子液体,对如此众多的离子液体进行实验研究几乎是不可能的,即使对少数离子液体进行研究也将耗费大量人力物力。物质的结构决定其性质,加强结构与性质关系的研究,从而根据特定需求设计出所需离子液体,减少实验的盲目性和局限性是一个非常重要的研究方向;(2) 离子液体中金属及其氧化物的溶解与腐蚀、金属电沉积的机理及如何改善提取分离所得金属的质量等问题。很多金属及其氧化物可以溶解在离子液体中,而且几乎所有金属都可以从离子液体中电沉积出来,但影响因素及其控制、离子液体的作用、金属离子存在形态、移动等微观机理的研究是难点和热点问题;(3) 离子液体的抗水化、抗氧化及离子液体合成的大规模集成系统、循环利用等问题.当前很多研究都集中在[Emim]Cl, BPC 和AlCl3, PF6, ZnCl2 型离子液体,而它们都极易吸水或与水反应,故操作必须在惰性气体保护下的手套箱中进行,而且目前离子液体的合成成本较高,循环使用率不高.因此探索条件温和、技术路线简单的大规模集成系统、循环综合利用技术、降低成本是大规模工业应用面临的瓶颈问题;(4) 离子液体中有色金属提取分离的新工艺新技术。相信随着研究的日益深入,在金属提取分离领域中离子液体将发挥越来越重要的作用,真正形成一个新兴的离子液体冶金领域。

参考文献

[1]赵海,徐联宾,etal.离子液体[EMIM]Br-AlCl3 中恒电流沉积铝.中国有色金属学报[J],2012,09.

[2]陈彦,颜灵光,etal.在含有饱和LaCl3 的.AlCl3-EMIC中电沉积铝.稀有金属材料与工程[J]2009,04.

[3]杨海燕,郭兴伍,吴国华etal.Az91D镁合金在氯化胆碱一尿素离子液体中电镀Zn的研究.中国腐蚀与防护学报[J]2010,04.

[4]王波,徐存英,华一新etal.BMIC-ZnCl2离子液体中电沉积铜-锌合金.材料导报[J]2011,11.

[5]吴青,徐存英,华一新etal.Urea-ZnCl2离子液体中电沉积Zn-Ti合金.材料科学与工程学报[J]2011,12.

[6]刘成虎,华一新,徐存英etal.Urea-NaCl-ZnCl2 离子液体中电沉积Zn-Ti 合金,中国有色金属

学报[J]2012,11.

[7]裴启飞,华一新,徐存英etal.AlCl3-BMIC离子液体中Na+含量对铝电沉积的影响,中国有色金属学报[J]2012,11.

[8]高丽霞,王丽娜,齐涛.从2AlCl3/Et3NHCl离子液体中电沉积制备Ni 和Ni-Al 合金,物理化学学报[J]2012, 28 (1), 111-120.

离子液体的应用前景

离子液体的应用前景 离子液体是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体的优点 一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题; 二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积; 三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用; 四、表现出Lewis、Franklin酸的酸性,且酸强度可调。 上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。 离子液体的应用前景 迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。 世界领先的离子液体开发者—德国SolventInnovation公司即将推出数以吨计的商品。SolventInnovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其

(环境管理)重金属离子污染

重金属离子污染 水体重金属离子污染是指含有重金属离子的污染物进入水体对水体造成的污染。矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属废水(含有铬、镉、铜、汞、镍、锌等重金属离子)是对水体污染最严重和对人类危害最大的工业废水之一。废水中的重金属是各种常用水处理方法不能分解破坏的,而只能转移它们的存在位置和转变它们的物理化学状态。因此,重金属废水应当在产生地点就地处理,不同其他废水混合。如果用含有重金属离子的污泥和废水作为肥料和灌溉农田,会使土壤受污染,造成农作物中及进入水体后造成水生生物中重金属离子的富集,通过食物链对人体产生严重危害。 镉:自1995年起,居住在日本富山市神通川下游地区的一些农民得了一种奇怪的病。得病初期,患者只感到腰、背和手足等处关节疼痛,后来发展为神经痛。患者走起路来像鸭子一样摇摇摆摆,晚上睡在床上经常痛得直喊“痛……”因此这种病被称为“痛痛病”,又称为“骨痛病”。得了这种病,人的身高缩短,骨骼变形、易折,轻微活动,甚至咳嗽一声,都可能导致骨折。一些人痛不欲生,自杀身亡。经过调查,造成这种骨痛病的原因是神通川上游的炼锌厂长年累月排放含镉的废水,当地农民长期饮用受到镉污染的河水,并且食用此水灌溉生长的稻米,于是镉便通过食物链进入人体,在体内逐渐积聚,引起镉中毒,造成“骨痛病。 汞: 五十年代初期,在日本九州熊本县水俣镇,由于人食用受甲基汞毒害的鱼类而导致甲基汞中毒,导致中毒者283人,其中60人死亡。症状:口齿不清、步履不稳、面部痴呆进而耳聋眼瞎、全身麻木,最后精神失常,身体弯曲至死亡。其产生的原因是由于工厂生产氯乙烯和醋酸乙烯时采用氯化汞、硫酸、催化剂,把含有机汞的废水、废渣排入水俣湾,使鱼、贝壳类受污染。 锰: 四十多年前,日本有个村庄发生了一起可怕的集体“发疯”事件,有16个村民突然一起“发疯”了。这些“疯子”一会儿哭哭啼啼,一会儿又哈哈大笑;发作时两手乱摇,颤抖不止,而下肢发硬直,如此反复发作,直至“疯死”。这起集体“发疯”事件经多方研究调查,发现这些人喝的是同一口水井中的水,考察水井,又在旁边挖出了大量废旧、破烂的干电池。原来这是水井的水受干电池中某些有害成份污染而造成的。据环境科学研究表明,废旧干电池中的锌、二氧化锰等成分长期埋在地下,会

离子注入对金属材料改性

离子注入材料表面改性的研究方法 【摘要】本文论述了离子注入材料表面改性的特点和发展应用,阐述了离子注入材料表面改性的机理。大量研究表明,离子注入通过改变材料表面和界面的物理化学特性及微观结构,能够显著提高材料的抗磨损,抗疲劳,抗腐蚀,抗氧化特性。离子注入不仅可以提高材料表面性能,延长材料使用寿命,还可以节约贵金属资源,具有很好的经济效益和应用前景。 【关键词】离子注入技术;材料表面改性;研究方法 1.前言 20世纪70年代,离子注入应用于材料表面改性并逐渐发展成一种新颖有效的材料表面改性方法。它是把工作(金属,合金,陶瓷等)放在离子注入机的真空靶室中,通过加高电压,把所需元素的离子注入到工件表层的一种工艺。材料经离子注入后,在其零点几微米的表层中增加注入元素和辐照损伤,从而使材料的物理化学性能发生显著变化。 大量实验证实,离子注入能使金属和合金的摩擦因素,耐磨性,抗氧化性,抗腐蚀性,耐疲劳性以及某些材料的超导性能,催化性能,光学性能等发生显著变化,能够大大提高材料的性能和使用寿命。离子注入在工业中应用能取得很好的效益,除延长工件的使用寿命外,还由于离子注入仅用较少量的合金元素,就可以得到较高的表面合金浓度,因而可以节约贵重金属[1]。 2.离子注入特点 与通常的冶金方法不同,离子注入是用高能量的离子注入来获得表面合金层的,因而有其特点: (1)离子注入是一个非热平衡过程,注入离子的能量很高,可以高出热平衡能量的2-3个数量级。因此,原则上周期表中的任何元素都可以注入任何基体材料。 (2)注入元素的种类,能量,剂量均可选择,用这种方法形成的表面合金,不受扩散和溶解度的经典热力学参数的限制,即可得到用其他方法难以获得的新合金相。 (3)离子注入层相对基体材料没有明显的界面,因此表面不存在粘附破裂或

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

络合态重金属解决方案

含EDTA的重金属废水解决方案 重金属废水主要来自矿山排水、有色金属冶炼厂除尘排水、有色金属加工厂酸洗水、电镀厂镀件洗涤水、钢铁厂酸洗排水,以及电解、农药、医药、烟草、油漆、颜料等工业生产。废水中的重金属并不是以单一的重金属离子形式存在,而是与一些络合物(如EDTA, DTPA, NTA)结合在一起。EDTA (乙二胺四乙酸)是螯合剂的代表性物质,此外,EDTA对土壤重金属的去除效果明显高于等量的水和阳离子表面活性剂,是目前应用最普遍的重金属污染土壤的修复剂,但这些含EDTA的重金属萃取液将会进入水体.由于 EDTA的强络合性和难生物降解性,在水体中易与碱金属、稀土元素和过渡金属等形成稳定的络合物,成为重金属离子很好的保护伞,増加了处理含 EDTA的重金属废水的难度。重金属去除剂具有在相对低的pH条件下使金属高度分离、形成的金属螯合物易于脱水和稳定等特点。因此,用重金属去除剂去除废水中溶解性重金属离子是一种有效的方法。 传统的工业处理方法是往废水中添加碱(一般是氢氧化钙、石灰石、生石灰等)提高其PH值,使镍离子、铜离子等重金属离子生成难溶性的氢氧化物沉淀,从而降低废水中重金属离子含量而达到国家规定的排放标准。但是此种方法也存在较大的弊端:1、产生较大两的污泥,密度低,含水率高,污泥处置费用较为昂贵;2、还有些金属氢氧化物沉淀是两性的,在弱酸性或者其他条件下,沉淀会溶解,重金属再次进入废水中;3、有些有机重金属废水含有大量的螯合物、络合剂、配合物等大分子有机物,这些络合剂与重金属螯合形成的物质很稳定,抑制金属氢氧化物沉淀的形成。 河北美星环保科技有限公司研发出第三代重金属去除剂产品,其具有以下特点:1、重金属去除剂能够处理EDTA重金属废水中的重金属离子.在没有EDTA 的条件下, Cd2+ ,Cu2+和Pb2+的去除率达到100%,而Zn2+的除率则比较低。 2、随着c(EDTA)的增加,废水中重金属离子的去除率下降;随着重金属去除剂的增加,废水中重金属离子的去除率上升.在相同重金属去除剂用量条件下,对废水中Cd2+,Cu2+和Pb2+的去除率Zn 高。 3、EDTA能够有效地萃取尾矿砂中的重金属,特别是对Cd和Pb具有很高的萃取率.工程实例进一步表明,重金属去除

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

离子液体及其在化学中的应用

离子液体及其在化学中的应用 随着科技发展和环保意识的增强,清洁、低耗、高效的化学化工反应是发展的必然趋势.由于绝大多数化学反应需要在溶剂中进行,而有机溶剂的用量大、挥发性强是造成化学化工污染的主要原因之一.寻找对环境友好、有利于反应控制的介质和溶剂是目前化学化工需要解决的迫切问题之一.室温离子液体适应这种需要,正在快速为是继超临界CO2之后的新一代绿色溶剂。 一离子液体及其特点 离子液体[1]是指在室温或接近室温呈液态的离子型化合物,也称为低温熔融盐.常见的阳离子有季铵、季、咪唑盐和吡作为离子化合物,离子液体熔点较低的主要原因是:结构的不对称性使离子难以规则紧密地堆积,难以形成晶体或固体. 与传统的溶剂相比,离子液体具有以下3个显著的特性: 1 在室温下,离子液体蒸汽压几乎为零,并且不燃烧、不爆炸、毒性低,溶解性能强,可以较好地溶解多数有机物、无机物和金属配合物.多数离子液体在300e仍能保持液态,因而离子液体液态温度范围大,既可室温使用,也可以高温使用.离子液体作为溶剂,不仅不会造成溶剂损耗和环境污染,而且使用温度范围大,适用范围广.

2) 离子液体具有良好的导电性和较宽的电化学稳定电位窗.离子液体的电化学稳定电位窗比传统溶剂大得多,多数为4V左右,而水在酸性条件下为1.3V,在碱性条件下只有0.4V.因此使离子液体在电化学研究中有着广泛的用途. 3) 离子液体具有可调节的酸碱性,作为反应介质使用极为方便.例如,将Lewis酸AlCl3加入到离子液体氯化1-丁基-3-甲基咪唑中,当AlCl3的摩尔分数x<0.5时,体系呈碱性;当x=0.5时,呈体系呈中性;当x>0.5时,体系表现强酸性[4].同时,还发现离子液体存在/潜酸性0和/超酸性0.例如,把弱碱吡咯或N,N)二甲基苯胺加到中性的离子液体1-丁基 -甲基咪唑四氯铝酸盐中,体系表现出很强的潜酸性[5],如果把无机酸溶于上述离子液体中可观察到超强酸性[6]. 二离子液体在化学中的应用 由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中 .1 用作反应溶剂 2.1.1 氢化反应离子液体作为氢化反应的溶剂已有大量的报道[7~9],对于氢化反应,用离子液体替代普通溶剂的优点是:反应速率提高数倍,离子液体和催化剂的混合液可以重复利用.研究表明,离子液体在氢化反应中发挥了溶剂和催化剂的双重

金属离子与蛋白质的相互作用

金属离子与血清白蛋白的相互作用 一、实验目的: 测定过渡金属离子对蛋白质功能的影响 二、实验原理: 金属离子在许多生命过程中发挥关键作用,研究金属离子与蛋白质的结合作用是生命科学的重要内容,是化学和生命科学研究的前沿领域。血清白蛋白是哺乳动物血浆中含量最丰富的蛋白质,它能够储存和转运众多的内源性和外源性物质。由于血清白蛋白在生理上的重要性和易于分离、提纯,从上世纪50年度(国内80年代末)开始,人们对血清白蛋白与金属离子(和药物分子等)的相互作用展开了大量研究,以期在分子水平上揭示相关生命过程的奥秘。 许多蛋白质含有金属离子,金属离子对蛋白质发挥生物学功能起着关键性的作用。在人体基因组编码的蛋白质中,超过30%的蛋白质含有一个或多个金属离子;所有酶中,超过40%的蛋白质含有金属离子,它们在生命活动过程中发挥着各样的生物学功能。许多人类的疾病与金属离子-蛋白质的异常相互作用相关。 目前用于研究金属离子与蛋白质相互作用的研究方法主要有:(1)紫外-可见吸收光谱法;(2)荧光光谱法;(3)平衡透析法;(4)毛细管电泳法;(5)电泳法等。 (一)紫外-可见光谱法 蛋白质通常有3个明显不同的紫外吸收带:(1)210nm以下的吸收来自肽键的吸收以及许多构象因素;(2)210-250nm为芳香族和其他残基的吸收、某些氢键的吸收、与其他构象和螺旋相关的相互作用等多种因素;(3)250-290nm附近为芳香族的残基,其中酪氨酸残基在278nm(Tyr,260-290nm)附近有强吸收,色氨酸残基(Trp)在290nm附近有强吸收,而苯丙氨酸(Phe,250-260nm)的吸收较弱。外界因素如溶剂极性以及pH等会影响吸收光谱。 当金属离子与蛋白质结合时,蛋白质或金属离子吸收光谱的强度或者谱带位置会发生变化,可分为两种情况:(1)蛋白质微扰的金属离子光谱变化,可以推断金属离子的配位环境;(2)金属离子微扰的蛋白质光谱变化,可以推断生色基微环境及蛋白质结构的变化。通过对光谱的比较分析和计算,可以推断金属离子与蛋白质的结合情况。若蛋白质的吸收峰增强,则可认为小分子进入蛋白质的疏

不同金属离子对酶活性的影响

金属离子对酶活性的影响 实验目的:1、了解金属离子对酶活性的影响; 2、掌握不同金属离子对酶活性作用结果的测量方法 实验原理: 酸性磷酸酯酶广泛分布于动物和植物中,植物的种子、霉菌、肝脏和人体的前列腺中。它对生物体核苷酸、磷蛋白和磷脂的代谢,骨的生成和磷酸的利用,都起着重要作用。磷酸酶是一种能够将对应底物去磷酸化的酶,通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。 本实验选用绿豆芽作材料,从中提取酸性磷酸酯酶。以人工合成的对硝基苯磷酸酯(NPP)作底物,水解产生对硝基苯酚和磷酸。在碱性溶液中,对硝基酚盐离子在405nm处光吸收强烈,而底物没有这种特性。凡是能提高酶活性的物质统称为酶的激活剂。无机离子和一些金属离子对酶有激活作用,可以作为酶的激活剂。其中钾离子是酸性磷酸酯酶的一种激活剂,它在酶与底物之间起了桥梁作用,形成了酶—金属离子—底物三元复合物,从而更有利于底物与酶的活性中心部位的结合。而氯离子和钠离子对酸性磷酸酯酶的活性

没有什么影响.一些重金属离子如铜离子,对酶活性具有抑制作用。 实验用品: 1、仪器:恒温水浴箱、试管架、试管、分光光度计、 比色皿、吸头、滴管、移液枪、移液管 2、试剂:1.2mmol/L NPP 100ml 、0.3mol/L NaOH 250ml 、酸性磷酸酯酶、pH5.0的柠檬酸缓冲液 1000ml 、2mmol/L FeSO4 、2mmol/LCuSO4、 MnCl22mmol/L 、MgSO42mmol/L、 KCl 2mmol/L EDTA、实验步骤: 调零FeSO 4 CuSO 4 MnCl 2 MgSO 4 EDTA KCl 空白 对照 0 1 2 3 4 5 6 7 NPP (ml) 1 1 1 1 1 1 1 1 酶液 (ml) 1 1 1 1 1 1 1 1 金属离 子(m l) 1 1 1 1 1 1 1 1

螯合剂种类总结及其在不同pH下的对金属离子的螯合能力比较

螯合剂的种类及其在不同pH值条件下螯合剂的螯合常数 一、螯合剂与螯合物 具有可供配位孤电子对的分子、原子或离子的化合物能够与具有空轨道的金属离子形成配位键,该化合物称为络合物,如能与配位金属离子形成环状结构的化合物称为螯合剂,形成的络合物称为螯合物。螯合剂中至少含有一对孤电子对,而金属离子必须有空的价电子轨道,孤电子对填充入金属离子空轨道,电子对属2个原子共享,形成配位键,中心金属离子空轨道杂化。不同的提供孤电子对的配位体分别与不同金属离子形成正四面体、正六面体、正八面体的螯合物。 1.类型 1.1无机类螯合剂 聚磷酸盐螯合剂: 主要是三聚磷酸钠(STPP)、六偏磷酸钠、焦磷酸钠为主,含磷酸基空间配位基团。 特点:高温下会发生水解而分解,使螯合能力减弱或丧失。而且其螯合能力受pH值影响较大,一般只适合在碱性条件下作螯合剂。 1.2有机类螯合剂 形态分析表明螯合剂提取的重金属主要来源于可交换态或酸溶态、还原态和氧化态。1.21羧酸型 (1)氨基羧酸类:含羧基和胺(氨基)配位基团, 如乙二胺四乙酸(EDTA),氨基三乙酸(又称次氮基三乙酸NTA),二亚乙基三胺五乙酸(DTPA)及其盐等。如:EDTA的4个酸和2个胺(—NRR′)的部分都可作为配体的齿,两个氮原子和四个氧原子可提供形成配位键的电子对。 特点:络合能力强,络合稳定常数大,耐碱性好,但分散力弱且不易被生物降解。(2)羟基羧酸类含羟基、羧基配位基团 这类羧酸主要是柠檬酸(CA)、酒石酸(TA)和葡萄糖酸(GA)。 特点:可生物降解,在酸性条件下羟基与羧基不会离解为氧负离子,因而络合能力很弱,不适宜在酸性介质中应用。 (3)羟氨基羧酸类 这类酸用作螯合剂的典型代表是羟乙基乙二胺三乙酸(HEDTA)和二羟乙基甘氨酸

离子液体的发展与应用

绿色化学又称环境无害化学、环境友好化学、清洁化学。绿色化学即用化学的技术和方法去减少或停止那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用与产生,使污染消除在生产的源头,并使整个合成过程和生产过程对环境友好。绿色化学是当今国际化学科学研究的前沿学科之一,是一门具有明确社会需求和科学目标的新型交叉学科。由于绿色化学化工所追求的目标是淘汰有毒原材料,探求新的合成路线,采用无污染的反应途径和工艺,能最大限度地减少“三废”,并实行“原材料筛选-产品生成-产品使用循环再利用”全过程控制;绿色化学技术的发展和应用不但能提高生产效率和优化产品,而且能同时提高资源和能源的利用率,减轻污染负荷,改善环境质量,从而大幅度地提高生产过程中的社会和经济效益,成为实现经济和社会可持续发展的途径之一。因此,绿色化学与技术的推广应用必然带来一场新的产业革命。这个绿色浪潮将使环境变得经济性,而不再仅是使经济性成为技术创新的主要推动力。 美国科学家、绿色化学的倡导者阿纳斯塔斯(Anastas P.T.)和韦纳(Waner J.C.)提出绿色化学的12条原则,这些原则在许多论述中被多次引用,其内容:(1)防止废物的生成比在其生成后处理更好;(2)设计的合成方法应使生产过程中所采用的原料最大量地进入产品之中;(3)设计合成方法时,只要可能,不论原料、中间产物和最终产品,均应对人体健康和环境无毒、无害;(4)设计的化学产品应在保持原有功效的同时,尽量无毒或毒性很小;(5)应尽可能避免使用溶剂、分离试剂等助剂,如不可避免,也要选用无毒无害的助剂;(6)合成方法必须考虑反应过程中能耗对成本与环境的影响,应设法降低能耗,最好采用在常温常压下的合成方法;(7)在技术可行和经济合理的前提下,采用可再生资源代替消耗性资源;(8)在可能的条件下,尽量不产生衍生物;(9)合成方法中采用高选择性的催化剂比使用化学计量助剂更优越;(10)化工产品要设计成在终结其使用功能后,不会永存于环境中,要能分解成可降解的无害物质;(11)进一步发展分析方法,对危险物质在生成前实行在线监测和控制;(12)一个化学过程中使用的物质或物质的形态,应考虑尽量减小实验事故的潜在危险,如气体释放,爆炸和着火等[1]。 绿色化学发展至今已经取得了很大的进展,笔者主要通过对离子液体的讨论来对绿色化学的进展进行综述。 1离子液体的发展 离子液体是由特定阳离子和阴离子构成的在室温或近于室温下呈液态的物质,其主要的特点是:几乎没有蒸气压,不挥发,无色,无嗅;具有较大的稳定温度范围,较好的化学稳定性及较宽的电化学稳定电位窗口;通过阴阳离子的设计可调节其对无机物、水、有机物及聚合物的溶解性,且其酸度可调至超强酸。离子液体良好的环境友好性和可设计性,使得其作为新型的反应介质正在成为研究热点[2~3]。与传统溶剂相比,用离子液体作有机化学反应的介质,可获得更高的选择性和更快的反应速率,同时还具有反应条件温和、环境友好的特点[4~6]。多种重要的有机合成反应,如加成反应、聚合反应、氧化还原反应、烷基化反应、酰基化反应、酯化反应等均可在离子液体介质中进行,避免了其它有毒溶剂及催化剂的使用。反应中离子液体可循环使用,且效率无明显下降。因此,离子液体越来越受到大家的重视,2007年发表和待发表的各研究小组以总结自己离子液体工作为主的评述就有10余篇[7~18],说明大家都在思考离子液体的明天。 1.1离子液体改变了载体模板的概念 以离子液体为“载体”实现多相催化剂的液相化近年来受到高度重视,热点之一就是担载金属催化剂向可溶性纳米粒子催化剂方向的发展。此前很多 离子液体的发展与应用 李长途 (吉林石化公司海特化工厂吉林132000)

离子注入金属表面改性技术

摘要本文综述了金属表面改性离子注入法的机理、特点和应用。并介绍了等离子体浸没式离子注入(PIII)方法,及其相对于传统方法的特点。 Abstract Mechanism, characteristics and application of ion implantation for surface modification of metals are reviewed in this paper. Besides, a promising ion implantation technique—plasma immersion ion implantation(PIII)—is introduced. Especially, its advantages, relative to conventional techniques, are discussed. 关键词金属表面改性离子注入等离子体浸没式离子注入 Keywords surface modification of metal, plasma immersion ion implantation(PIII), ion implantation 前言 金属材料的表面性能在生产中起到至关重要的作用,特别是有的工作环境要求材料高负荷、高转速、高寿命、耐高温、低损耗。离子注入技术应运而生。近几十年来,离子注入在金属和半导体材料的研究、应用发展迅速,并在向绝缘材料和聚合物领域扩展。注人原子原则上可以是元素周期表中的任何元素;被注人基体原则上可以是任何材料;离子注人将引起金属表层的成分和结构的变化以及原子环境和电子组态等微观状态的扰动,因此导致金属各种物理、化学、机械性能的变化。得到理想的材料表面性能。 离子注入金属表面改性的机理 高速离子注入金属后,与金属中的原子、电子发生碰撞。如果晶格原子从碰撞中获得足够的能量,则被撞击原子将越过势垒而离开晶格位置进入原子间隙成为间隙原子;如果反冲原子获得的反冲能量远远超过移位阀功,它会继续与晶格原子碰撞,产生新的反冲原子,发生“级联碰撞”。在级联碰撞中,金属原来的晶格位置上会出现许多“空位”,形成辐射损伤;离子注入金属表面后,有助于析出金属化合物和合金相、形成离散强化相、位错网;灵活地引入各种强化因子,即掺杂强化和固溶强化。 离子注入技术的特点 离子注入技术主要有以下几个特点: 1)进入金属晶格的离子浓度不受热力学平衡条件的限制; 2)注入是无热过程,可在室温或地温下进行;不引起金属热变形; 3)注入离子在基体中与基体原子混合,没有明显的界面,注入层不会像镀 层或涂层那样发生脱落现象; 4)可以进行新材料的开发;注入离子在基体中进行原子级混合,可以形成 固溶体、化合物或新型合金。

矿物药中金属离子的药用机理

矿物药中金属离子的药用机理 矿物药是中药中一种药物概念,其中的金属离子起主要的药物作用,概括起来有一下两个方面: 1)金属离子与中药有效成分反应的减毒增效的机理; 2)金属离子与体内生物分子(如氨基酸、蛋白质)的作用机理。 首先中药复方由多种草药和矿物药等成份按照“君臣佐使”的原则配伍,可以达到增效减毒的目的。就是考虑到疾病的复杂性,试图用多种作用机理不同的药物成份同时作用于多个靶点,达到增强疗效,减少副作用的目的。通过对矿物药进行炒炭、酒炙、醋炙、盐炙、蜜炙、煅制、蒸制、复制、制霜等多种炮制方法以达到其减毒增效的目的。如芒硝粗制品含Pb,一般要用萝卜汁,经过滤、重结晶后,达到除去杂质、缓和药性、增强降气消导的目的。天然朱砂含Hg,不纯净,尤其含Pb量常高达0.1%。杂质中还含有游离汞和可溶性汞盐,后者毒性极大。经水飞后重金属Pb、可溶性汞盐和游离汞绝大部分被 除去,从而降低了毒性。雄黄含硫,有时含有砷的氧化物As2O3,其对中枢神经系统、心血管系统和胃肠系统均有毒性,易致死[7]。经水飞法处理后的雄黄,可溶性砷盐、游离砷及其他金属元素含量降低。硇砂生品有毒,具有腐蚀性,经提净法炮制后,使药物纯净,毒性降低。硇砂除主要成分外,尚含微量有毒元素钡、铅、砷、汞及硫化物等,炮制后含量降低。某些药物在高温下有利于钙的游离,从而释放出可溶性的钙离子,由于钙离子能促进血液凝固,因此中药炒炭后,产生的可溶性钙离子就有可能缩短血液凝固时间,而起到止血作用。 其次,矿物药中许多中金顺离子对集体有很大的毒害作用。矿物类中药中可含有铅、汞、砷等重金属成分,过量应用会导致药源性铅、汞和砷等重金属中毒。矿物类中药有些是天然的或粗制的金属 矿物结晶,有些是经冶炼、升华的精制品。一些常见含有汞、砷、铅、铜等重金属成分的单味中药或与其他中药配制的复方中成药,广泛用于治疗皮肤病、癫痫、肿瘤、关节炎等疑难杂症,若使用不当,可引起重金属中毒。 一些微量元素与人的生存和健康息息相关,其摄入过量、不足或缺乏都会不同程度地引起人体生理异常或发生疾病。微量元素最突出的作用是与生命活力

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

离子液体的功能化及其应用

中国科学 B 辑 化学 2006, 36 (3): 181~196 181 离子液体的功能化及其应用 李雪辉① 赵东滨 ②③* 费兆福② * 王乐夫① (①华南理工大学化学工程系 广东省绿色化学产品技术重点实验室, 广州 510640; ②Swiss Federal Institute of Technology, Lausanne, EPFL, CH-1015 Lausanne, Switzerland; ③北京大学化学与分子工程学院, 北京 100871) 摘要 综述了近年来功能化离子液体的设计开发以及在多领域内的应用, 其中包括“双功能化“离子液体的设计和制备. 离子液体—— 以绿色介质出现的新材料, 其应用研究的潮流和趋势, 随着功能化研究的发展, 将超越绿色化学的领域, 为其在众多领域的应用开拓出更广阔的前景. 关键词 离子液体 功能化离子液体 双功能化离子液体 反应介质 不对称合成 纳米材料 多孔材料 润滑剂 烟道气脱硫 油品脱硫 收稿日期: 2005-07-27; 接受日期: 2005-11-27 *联系人, E-mail: dongbin.zhao@epfl.ch , zhaofu.fei@epfl.ch 1 引言 20世纪90年代后期兴起的绿色化学, 是从源头清除污染的一项措施, 它为人类解决化学工业对环境的污染, 实现经济和社会可持续发展提供了有效的手段[1]. 目前在化学工业中大量使用的有毒、易挥发的有机溶剂由始至终都违背着绿色化学的理念. 在寻找有机溶剂的替代品时, 人们发现离子液体具有高热稳定性、可忽略的蒸气压、宽的液态温度区间、可调控的对极性及非极性物质的良好溶解性[2], 它能够替代传统有机溶剂介质进行化学反应(特别是催化反应), 从而实现反应过程的绿色化, 因此离子液体的研究得到了迅猛的发展[3~14]. 咪唑类离子液体与过渡金属催化剂形成卡宾配合物[15,16], 以及离子液体稳定纳米粒子的实验证据[17], 为解释离子液体体现出和传统溶剂不同的特性提供了理论依据. 离子液 体的物理化学性质研究可为这些理论探讨提供基础数据, 目前已经成为离子液体研究领域的另一热点[18]. 现今越来越多的离子液体被商业化, 不断有新型离子液体诞生, 并在催化科学、材料科学、分离技术等领域里得到应用[19]. 按统计学推测, 根据阴阳离子的不同组合, 离子液体的种类可达到1018, 而目前有机溶剂却只有300~400种, 离子液体家族成员如此庞大的数量, 暗示着其开发应用的广阔前景. 以往大部分的离子液体研究集中在以咪唑为阳离子骨架, 带有饱和烷烃的离子液体上. 然而, 由于离子液体的诸多性质, 如熔点、黏度、密度以及溶解能力都能通过改变离子液体的结构而得到调整; 因此, 理论上我们可以通过这种做法来优化特定的反应. 寇元率先提出将离子液体功能化的思路: 将功能团引入到离子液体的阳离子或阴离子上, 这些功能团赋予了离子液体专一的特性而与溶解于其中的溶

离子注入技术的发展和在材料方面的应用

离子注入技术的发展 及其在材料方面的应用

摘要 离子注入是一项新兴的材料表面改性技术。它可以使材料表面的机械、物理、化学、电学等性能发生变化。有效地提高材料表面的硬度以及耐磨擦、耐磨损、抗腐蚀、抗疲劳等能力,延长材料使用寿命,增加经济收益。本文介绍了离子注入的基本原理以及技术特点,描述了离子注入在金属材料表面改性、半导体材料以及超导方面的技术应用,并展望了离子注入的应用前景。 关键词:离子注入;材料;表面改性;半导体;超导

一、绪论 离子注入技术于七十年代初首先成功地应用于半导体工业,成为制备大规模集成电路必不可少的手段之一。八十年代起人们把离子注入技术开始用于金属材料的表面改性。由于该项技术本身的独特优点、良好的改性效果以及潜在的巨大经济效益,近年来吸引了愈来愈多的研究者开始从事该项技术的开发研究。日前,随着应用围的日益扩大和理论研究的不断深入,离子注入技术日趋成熟。 近年来离子注入的方式也更加多样化,除了常规离子注入外,由此派生出的其它注入方法有:反冲注入、动态反冲注入、离子束混合等。注入方式的多样化完善了注入实验手段,使人们对各种具体情况可以选择恰当的注入方式,以满足不同的要求。 在实际应用中,很多方面都需要固体材料有较好的表面性能,如耐腐蚀性,抗磨损性,较高的硬度和抗氧化性等,而这些性能都直接与固体材料表面成分,结构组态,化台物相等有关,离于注入技术是最重要的手段之一。 离子注入技术应用于金属材料的改性,从碳素工具钢、硬质合金刚到人造或天然金刚石制造的量具、刃具、刀具、模具和工件等,通过表面改性,可提高使用寿命。经离子注入后,材料(或工件)韵表面硬度、耐磨损性能、抗腐蚀能力及使用寿命等,一般可提高几倍到十几倍。目前,离子注入已经发展成为一门核技术与金属学之间新兴的边缘学科——“离子注入冶金学” (Ion Implantation Metallurgy)。各发达国家都十分关注这门学科的发展和应用。 二、关于离子注入的简单介绍 (一)离子注入的定义 离子注入是利用某些杂质原子经离化后形成带电杂质离子,离子经过一定的电场加速,直接轰击靶材料实现掺杂或其他作用。一般的说,离子能量在1-5KeV 的称为离子镀;0.1-50KeV称作离子溅射;一般称10-几百KeV的称为离子注入。注入到材料中的离子具有很高的能量,足以使注入层的化学组分和原子结构发生变化,这样使得材料表面的机械、物理、化学、电学等性能也随之改变.从而达到材料表面改性的目的。 简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一

工业废水中金属离子的去除方法

1 化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH 值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al 等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH 值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH 值在7—9 之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。2氧化还原处理 化学还原法 电镀废水中的Cr 主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3 沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3 法、铁屑法、SO2 法等。 应用化学还原法处理含Cr 废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr 废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH 值至8 左右,使Fe 离子和Cr 离子产生氢氧化物沉淀。通入空气搅拌并加入氢氧化物不断反应,

离子液体应用及其发展

离子液体应用及其发展 罗树琴生化系化学教育2001541 摘要:离子液体也称为室温离子液体或低温盐,通常是指熔点低 于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。离子液体在各方面都有广泛应用前景,目前离子液体的制备和研究正在快速的发展,其应用前景也是相当广阔的。 关键字:离子液体应用发展及前景 离子液体也称为试问离子液体或低温盐,通常是指熔点低于100℃的有机盐。由于完全有例子组成,离子液体有许多不同于常规有机溶剂的性质。如熔点低,不挥发,液程范围宽,热稳定性好。溶解能力强,性质可调,不易燃,电化学窗口宽等。与传统的有机溶剂,水,超临界流体等相比,起黏度低,比热容大,有的对水对空气均稳定,故易于处理,制造较为容易,不太昂贵。是理想的绿色高效溶剂,研究其性质极其应用成了一项热门课题, 1.离子液体的性质 离子液体大多呈无色,完全由阴阳离子组成,但样离子较大,且是有机物。离子液体 1有酸碱性(主要由阳离子决定,可通过调节阳离子来改变其酸碱性), 2亲水性:含C越多亲水性越弱 3热稳定性:较高的稳定性与杂原子氢键,阴阳离子组成相关,其蒸汽压低(可忽略不计),不易挥发,可去取代有机溶剂。 4熔点低:熔点与阴阳离子组成有关,是随阳离子对称性增大而增大的 5溶解性好:可溶解有机物,无机物,聚合物等 6密度:和阴阳离子组成有关,阳离子增多密度变大 7生物降解性:其一降解,相当环保,是绿色的环保剂 8电化学窗口:其可产生5-7V的高电压, 2.离子液体的合成制备 2.1 常规合成法 2.1.1一步法:采用叔胺与卤代烃或脂类物质发生加成反应,或利用叔胺的碱性和酸性发生中和反应而一步生成目标离子液体的方法 2.1.2两步法:两步法的第一步是通过叔胺和卤代烃反应制备出

相关主题