搜档网
当前位置:搜档网 › 增温提高亚高山针叶林植物根系分泌物促进土壤氮循环

增温提高亚高山针叶林植物根系分泌物促进土壤氮循环

增温提高亚高山针叶林植物根系分泌物促进土壤氮循环
增温提高亚高山针叶林植物根系分泌物促进土壤氮循环

Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming

H U A J U N Y I N*?,Y U F E I L I*?,J U A N X I A O*?,Z H E N F E N G X U?,X I N Y I N C H E N G*?and

QING LIU*?

*Chengdu Institute of Biology,Chinese Academy of Sciences,P.O.Box416,Chengdu610041,China,?Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization,Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province,Chinese Academy of Sciences,Chengdu610041,China,?Institute of Ecology&Forestry,Sichuan Agricultural University,Chengdu611130,China

Abstract

Despite the perceived importance of exudation to forest ecosystem function,few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes.In this study,we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature(ambient temperature and infrared heater warming)and two nitrogen levels(unfertilized and25g N mà2aà1).Here,we show that the trees exposed to an elevated temperature increased their exudation rates I(l g C gà1root biomass hà1),II(l g C cmà1root length hà1)and III(l g C cmà2root area hà1)in the unfertilized plots.The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation.More-over,these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N(R2=0.790;P=0.038),which was coupled with stimulated microbial activ-ity and accelerated N transformations in the unfertilized soils.In contrast,the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity,indicating that the stimu-latory effects of experimental warming on root exudation depend on soil fertility.Collectively,our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation.Accordingly,the underlying mechanisms by which plant root-microbe interactions in?uence soil organic matter decomposition and N cycling should be incorporated into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests.

Keywords:exudation,N transformation,nutrient availability,subalpine coniferous forest,warming

Received7January2013and accepted24January2013

Introduction

The boreal forest has been indicated as one of the ter-restrial ecosystems that may have a larger sink strength than expected,but uncertainty regarding the persis-tence of the sink has hindered efforts to predict biotic feedback to climate change(Lindroth et al.,1998). Numerous studies have reported that an elevated tem-perature increases tree seedling carbon(C)assimilation rates(Saxe et al.,2001;Wang et al.,2003),plant growth and biomass accumulation(Xu&Juma,1994;Zhao& Liu,2009)and forest net primary productivity(NPP) (Scheller&Mladenoff,2005;Hudson&Henry,2009). Nutrient availability,mainly N,is the primary limiting factor for plant growth and productivity in boreal forest ecosystems,and thus,any continued enhancement of forest NPP will require either increases in the availabil-ity of resources or physiological adjustments that allow increased uptake of these resources(Phillips et al., 2011).

Many studies have reported an increased below-ground C allocation and?ne root production in trees that are exposed to an elevated temperature(Majdi& Ohrvik,2004;Bai et al.,2010),indicating that the trees are likely increasing their allocation to roots to explore the soil for nutrients such as N(Johnson,2006).How-ever,since most limiting nutrients are locked up in soil organic matter,merely increasing the amounts of roots will be insuf?cient to sustain enhanced uptake rates. Rather,trees will need to stimulate soil microbes to release extracellular enzymes to access nutrients bound up in soil organic matter(SOM)(Phillips,2007;Drake et al.,2011;Bengtson et al.,2012).

Correspondence:Qing Liu,tel.00862885229115,

fax00862885222753,e-mail:liuqing@https://www.sodocs.net/doc/cf13759261.html,

2158?2013Blackwell Publishing Ltd Global Change Biology(2013)19,2158–2167,doi:10.1111/gcb.12161

Microbial activity is generally limited by the avail-ability of labile C in soil.Trees are known to stimulate microbial activity and nutrient availability by releasing root exudates(Phillips et al.,2009).Most exudates are low molecular weight organic compounds that increase nutrients due to their chelating properties or preferen-tial use as substrates by soil microbes(Smith,1976; Phillips et al.,2012).In response to exudates,increases in microbial activity and population growth may stimu-late a microbial demand for nutrients,which can be met by increasing the enzyme synthesis and the depo-lymerization of N from SOM(Dijkstra et al.,2009).The stimulation of SOM decomposition and accelerated N cycling caused by inputs of labile C substrates has been recently invoked as an important mechanism to explain the long-term enhancement of forest productivity under elevated CO2(i.e.,Rhizo-Accelerated Mineraliza-tion and Priming or RAMP hypothesis;see Phillips et al.,2012).In recent studies,we also have invoked dif-ferences in root exudation to explain the changes in rhizosphere effects and soil N transformations between tree species under experimental warming(Yin et al., 2012a,b).Despite the perceived importance of root exu-dation to ecosystem function(Fransson&Johansson, 2010),there have been few measurements of the exuda-tion rates from?eld-grown plants or mature trees exposed to experimental warming.Thus,it is unknown how this widely hypothesized but rarely quanti?ed process will in?uence SOM decomposition and N cycling through the release of exudation under global warming(Phillips et al.,2012).

Hence,in this study,we conducted an experiment to examine plant root-microbe interactions in the soils of Picea asperata plots under experimental warming and varying N availability.The P.asperata species was chosen because it is widely distributed and important in the subalpine coniferous ecosystems in western,Sichuan.Moreover,P.asperata primarily functions as a keystone species in reforestation after logging.We predicted that P.asperata species growing under experimental warming would exude increased C into the soils and that the enhanced rates of exuda-tion would be associated with the increased enzyme activity and stimulated soil N transformations.We also predicted that the strength of these warming effects would be reduced for the plots fertilized with inorganic N.To test this hypothesis,we measured differences in root exudation rates,soil N transforma-tions and the associated enzyme activity in experi-mental plots exposed to elevated temperature and/or N fertilization.To our knowledge,this study is the ?rst study to investigate the interactive effects of experimental warming and N fertilization on root exudation and their impacts on soil N cycling.Materials and methods

Experimental design

The experiment was conducted at the Maoxian Ecological Station of the Chinese Academy of Sciences,Sichuan Province, China(31°41′N,103°53′E,1820m a.s.l.),where the mean annual temperature,precipitation and evaporation are8.9°C, 920mm,and796mm,respectively.Our experiment followed Wan et al.(2002)in using165915cm infrared heaters(Kalgo Electronics Inc.,Bethlehem,PA,USA)to generate an arti?-cially warmed environment.There were?ve pairs of292m plots(a warmed plot and a control plot),and each292m plot was divided into four191m subplots.The indigenous soil of all subplots was replaced,to a depth of50cm,by sieved topsoil from a coniferous forest.The soil was classi?ed as a mountain brown soil series(Chinese taxonomy).The soil properties,determined in March2007,were as follows:pH, 5.55;total N,4.5g kgà1;soil organic C,78g kgà1;and bulk density,0.89g cmà3.The warmed plot was heated by an infrared heater suspended 1.5m above the middle of the plots.The infrared heater had a radiation output of approxi-mately100W mà2,and its warming effect on the soil temper-ature was spatially uniform within the warmed plots.One ‘dummy’heater with the same shape and size as the infrared heater was suspended1.5m above each control plot to simu-late the shading effects of the infrared heater in the warmed plots.

Uniform4year old P.asperata seedlings from a local nurs-ery were selected based on plant height and stem base diame-ter.The average height and stem base diameter of the P.asperata seedlings were13.42?0.57cm and 3.12?0.45mm,respectively.In March2007,twenty healthy seed-lings were planted randomly in separate subplots within each plot.The seedlings that were grown in two of the diagonal subplots of each plot were watered weekly with200ml of 2.7m M ammonium nitrate solution(for a total equivalent to 25g N mà2aà1),and the seedlings in the other two subplots were watered with the equivalent amount of water.Nitrogen amounts were based on our previous studies(Yao&Liu, 2007;Zhao&Liu,2009).The fertilizer was prevented from moving between subplots by a70cm deep vertical polyvinyl chloride board.Arti?cial warming and nitrogen addition were conducted from April2007to the present.To disrupt the potential effects of soil water on soil processes,the warmed plots were watered as frequently as needed and were moni-tored with a hand-held probe(IMKO,Ettlingen,Germany). Moreover,all of the litter within the plots was removed once a month to examine the pure effects of the tree species on the soil processes via the roots and root exudation.The four treat-ments in this study were as follows:(1)unwarmed unfertil-ized(W0F0);(2)warmed unfertilized(W1F0);(3)unwarmed fertilized(W0F1);and(4)warmed fertilized(W1F1). Microclimate monitoring

Air temperature(at the height of20cm above the ground) and relative humidity were measured using DS1923G

?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

ENHANCED EXUDATION S TIMULATES N TRANSFORMATI ON2159

temperature/humidity iButton data loggers,and soil tempera-tures(5cm depth)were measured using DS1921G Thermo-chron iButton data loggers(DS1921G-F5,Maxim Integrated Products;Dallas Semiconductor Inc.,Sunnyvale,CA,USA)in ?ve pairs of plots at60min intervals during the experimental period.The soil moisture was measured gravimetrically in soil core samples(0–10cm)that were collected once or twice a month from April2010to December2011.The soil samples were dried at105°C for12h and were then weighed.The soil moisture was expressed as a percentage of dry soil on a mass basis.

Exudation measurements

Exudates were collected in May,late July and October of2011 using a modi?ed culture-based cuvette system developed especially for root exudation collection in the?eld(Phillips et al.,2008).The terminal?ne roots(2mm average diameter with laterals)that were attached to the coniferous trees were excavated from the topsoil(0–10cm).The soil particles adher-ing to the roots were carefully rinsed off with puri?ed water from a squirt bottle,and?ne forceps were used to dislodge SOM aggregates.The intact roots were placed into glass cuvettes,?lled with glass beads(c.1mm diameter)and sealed with a special rubber septum.The rubber septum had a small slit cut into it to accommodate the protruding root.The cuvettes(including the controls with beads only)were cov-ered in foil and reburied in the excavated area in the soil.After a2-day equilibration period,a fresh nutrient solution(0.5m M NH4NO3,0.1M m KH2PO4,0.2M m K2SO4,0.2m M MgSO4, 0.3m M CaCl2)was?ushed through each cuvette to remove soluble C.After24h,‘trap solutions’containing exudates were collected from each cuvette with an automatic electric vacuum pump and were then placed on ice and?ltered through sterile0.22l m syringe?lters within2–5h of collec-tion.A detailed description of this method is available in Phillips et al.(2008).

The exudates were collected randomly from two to three roots in?ve subplots of each treatment.For each sampling period,the exudates were collected over three consecutive days and from different plants on each sampling date.All of the roots were harvested following the?nal exudation collec-tion of each root and were then scanned so that the morpho-logical variables(i.e.,?ne root length,surface area,root tips, etc.)could be quanti?ed.All of the scanned images were visu-ally inspected,calibrated using materials of known size,and analyzed using WinRhizo software(Regents Instruments Inc., Qu e bec,Canada).

The?ltered trap solutions were analyzed for organic C on a TOC analyzer(Multi N/C2100;Analytic Jena,Jena, Germany).The control cuvettes(beads only)were used to account for C contamination resulting from nonexudates sources.The exudation rates were calculated as the mass of C (l g)?ushed from each root system(minus the average C con-centration in the control cuvettes)over the24h incubation period.The exudation rates I(l g C gà1root biomass hà1),II (l g C cmà1root length hà1),and III(l g C cmà2root area hà1)were calculated by dividing the total amount of C ?ushed from the root system by the total?ne root biomass,

the root length,and the root area,respectively,within each cuvette.

Growth characteristics analysis

Five soil samples were taken from the topsoil(0–15cm)with a 5-cm-diameter polyvinyl chloride core within each subplot.

The?ne roots(2mm)were carefully separated with?ne forceps,and the separated?ne roots were carefully washed and then analyzed with the WinRHIZO image analysis system (Regent Instruments Inc.,Sainte Foy,Qu e bec,Canada),which was used to measure the root length and the diameter of each root.The roots were rinsed free of soil,and0.5g samples of white,young roots were used immediately to assay?ne root activity(FRV)using the triphenyltetrazolium chloride(TTC) method,as described by Basile et al.(2007).Ectomycorrhizal infection was analyzed by counting the total number of mycorrhizal tips per seedling and by calculating the extent of the infection as the percentage of root tips that were mycorrhi-zal(Dehlin et al.,2004).Moreover,?ve randomly selected seedlings from each treatment were harvested in early August 2010and were then divided into leaf,stem,and root compo-nents.All of the plant parts were dried to a constant mass at 70°C before measuring the dry weight.Total biomass,coarse root biomass,?ne root biomass,and the coarse root/?ne root mass ratio were calculated based on the measured data.

Soil enzyme activity and N transformation assay

The soil samples were collected from the topsoil(0–15cm)in early May,mid-July,and late September of2011.The soils were sampled within1week of an exudation measurement.

Three cores(3cm in diameter,15cm deep)were randomly taken from each subplot.The collected soil cores were mixed to obtain one composite fresh sample for each subplot,and the samples were immediately delivered on ice to the labora-tory.Each composite sample was passed through a sieve (2mm diameter),and any visible living plant material was manually removed from the sieved soil.The sieved soils were kept in the refrigerator at4°C and were processed within 1week for enzyme analysis.

We measured the activities of two extracellular enzymes involved in the depolymerization of N from SOM.Urease is a hydrolytic enzyme involved in the hydrolysis of urea-type substrates.Given the chemistry of urea and its mass in the soil,N released from SOM by urease is considered to be a moderately fast cycling pool of N(Zhan et al.,2010).In con-trast,phenol oxidase is a lignolytic enzyme involved in the degradation of recalcitrant SOM,and an enzyme that is often used as a sentinel of SOM decomposition(Sinsabaugh,2010).

As lignin,tannins,and polyphenols may bind N,N released from SOM by phenol oxidase is considered to be a relatively slow cycling pool of N(Phillips et al.,2011).

Soil urease activity was measured as described previously by Kandeler&Gerber(1988).Five grams of soil was placed in a50mL Erlenmeyer?ask,1mL of toluene was added to the soil in the?ask,and the contents were allowed to stand for approximately15min until the toluene had completely ?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

2160H.YIN et al.

penetrated the soil.Then,a20-mL potassium citrate-citric acid buffer(pH6.7)and10mL of a10%urea solution were added to the sample.The?asks were stoppered,shaken and then incubated at37°C for24h.A control,in which10mL of dis-tilled water was substituted for the urea,was examined simul-taneously.After incubation,the contents of the?asks were ?ltered.The amount of ammonia released by hydrolysis of the urea was determined from the?ltrate using the colorimetric indophenol blue method.The unit of urease activity was reported as mg of NH4+-N released per kg dry soil per24h. Polyphenol oxidase was analyzed with pyrogallic acid as a substrate.The mixture of1g soil and10mL of1%pyrogallic acid was incubated at30°C.A4-mL disodium hydrogen phosphate-citric acid buffer(pH4.5)was added after2h incu-bation,and purpurogallin was extracted with ether.The sam-ple was then measured using a spectrophotometer set of a wavelength of430nm.The polyphenol oxidase activity was expressed as mg purpurogallin per g dry soil per2h(Zhou, 1987).All of the determinations of enzymatic activity were performed in triplicates,and all of the values reported are the averages of three trials performed on oven-dried soil(105°C). The rates of net N mineralization and net nitri?cation in May,July,and September were measured using the covered core incubation method(Adams et al.,1989).We selected these dates to coincide with a subset of the exudation sampling dates.The incubations were performed using perforated PVC tubes(15cm in height and6cm in diameter).Para?lm was used to cover the top of each tube to avoid leaching of nitrate. This technique prevents the plant’s uptake of mineralized nutrients but allows uptake by the microorganisms.The soil samples were transported to the laboratory in a cool box and were analyzed for ammonium and nitrate as the initial sample to measure net mineralization and net nitri?cation rates.The soil samples in the buried bags were retrieved after30days of incubation and were analyzed as the?nal sample.The differ-ence between the initial and?nal inorganic N concentrations (NH4+-N and NO3à-N)was used to calculate the net N miner-alization rates.The difference between the initial and?nal NO3à-N concentrations was used to calculate the net nitri?ca-tion rates.

The gross nitri?cation and denitri?cation rates were measured using a Barometric Process Separation(BaPS) instrument(UMS GmbH Inc.,Munich,Germany)through lab-oratory incubations,as described by Sun et al.(2009).Within each subplot,three intact soil cores were collected using soil containers with a diameter of5.6cm and a height of4.1cm. The soil containers were transported to the laboratory in cool-ers and were processed immediately.The BaPS instrument was closed so that it was gas-tight,and the samples were incu-bated for at least24h at25.0°C.

Statistical analyses

Analyses were performed with the software Statistical Pack-age for the Social Sciences(SPSS)software,version11.0(SPSS Inc.,Chicago,IL,USA).All of the response variables were averaged within each subplot,and the subplots were consid-ered to be the experimental units.Before analysis,all of the data were tested for the assumptions of ANOVA.If the data were heterogeneous,they were ln-transformed before analy-sis.A repeated measures ANOVA was used to assess the effects of warming,N fertilization and their interactions on all of the response variables.Because of our interests in the role of N in mediating warming effects,a one-way ANOVA was also per-formed to assess the effects of warming on root and soil vari-ables at a given nutrient level and sampling date.We used linear regression to examine the relationship between the exu-dation rate and the extracellular enzyme activity and soil N transformation.Given the limited number of soil samples, data from all of the experimental plots were analyzed across the sampling dates.The statistical tests were considered sig-ni?cant at the P<0.05level.

Results

Warming effects of the infrared heaters

As expected,the infrared heaters caused warming within the experimental plots.During the experimental time period,the daily air temperature(at20cm above-ground)and soil temperature(at5cm depth)within the warmed plots were increased,on average,by1.8°C and3.6°C,respectively,compared to the control plots (Fig.1a and b).The mean relative humidity of the air was slightly lower in the warmed plots(85.1%)relative to the control plots(94.5%)(Fig.1c).Moreover,there was no signi?cant difference in the soil water content between the control plots(25.7%)and the warmed plots (24.6%)(Fig.1d).

Warming and N fertilization effects on exudation

Our results showed that experimental warming had signi?cant effects on root exudation rates I,II,and III (Table1).Over the sampling dates,experimental warming signi?cantly increased root exudation rates I (l g C gà1root biomass hà1),II(l g C cmà1root length hà1),and III(l g C cmà2root area hà1)in unfer-tilized plots(Fig.2),with an average exudation rate increase of78.1%,68.6%,and55.0%,respectively (Fig.2d).In contrast,experimental warming induced a small but nonsigni?cant decrease in root exudation rates I,II,and III,with an average decrease of30.6%, 28.4%,and24.2%,respectively(Fig.2d).There were no signi?cant effects of N fertilization on root exudation rates I,II,and III,and there were no warming9N fertilization interactions(Table1).

Growth traits response to treatments

Experimental warming signi?cantly decreased the coarse root/?ne root mass ratio(C/F)for the P.asperata seedlings,which may have resulted from relatively more biomass partitioning to?ne roots in response

?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

ENHANCED EXUDATION S TIMULATES N TRANSFORMATI ON2161

to experimental warming in the unfertilized plots (Fig.3d).In contrast,experimental warming markedly increased the ?ne root activity (FRV),?ne root length

0510********

35

Warmed plots Control plots Tair

51015202530

Warmed plots Control plots Tsoil

204060801001201-Mar 31-Mar 30-Apr 30-May 26-Jul 25-Aug 24-Sep 24-Oct 23-Nov 23-Dec 22-Jan 21-Feb 22-Mar 21-Apr 21-May

Date

Warmed plots Control plots RH

Apr MayJun Jul AugSep Oct NovDec Feb Mar Apr MayJun Jul AugSep Oct

Warmed plots Control plots

(a)

(b)

(c)

(d)

Seasonal transitions and average differences in (a)daily air temperature at 20cm above ground,(b)daily mean soil temperature (5cm depth),(c)mean air relative humidity,and (d)soil water content (0–10cm)between the warmed plots (solid the control plots (dotted line ).The lower gray lines (symbol a,b,and c represent the daily mean differences in air tem-perature,soil temperature,and air relative humidity,respectively,the warmed plots and the control plots.The scales of the are 30-day intervals (a –c)from 1March 2010to 25May 2011.

T a b l e 1R e s u l t s o f t h e r e p e a t e d m e a s u r e s A N O V A s h o w i n g t h e P v a l u e s f o r t h e r e s p o n s e s o f r o o t e x u d a t i o n r a t e s I (l g C g à1r o o t b i o m a s s h à1),I I (l g C c m à1r o o t l e n g t h h à1),a n d I I I (l g C c m à2r o o t a r e a h à1),n e t m i n e r a l i z a t i o n ,n e t n i t r i ?c a t i o n ,g r o s s n i t r i ?c a t i o n ,d e n i t r i ?c a t i o n ,u r e a s e a n d p o l y p h e n o l o x i d a s e t o e x p e r i m e n t a l w a r m i n g (W ),N f e r t i l -i z a t i o n (F ),a n d s a m p l i n g d a t e s (D ).P v a l u e s l e s s t h a n 0.05a r e i n b o l d

F a c t o r

E x u d a t i o n I E x u d a t i o n I I E x u d a t i o n I I I N e t m i n e r a l i z a t i o n N e t n i t r i ?c a t i o n G r o s s n i t r i ?c a t i o n D e n i t r i ?c a t i o n U r e a s e P o l y p h e n o l o x i d a s e

D 0.001<0.0010.0350.2140.0070.2070.0280.5450.078D 9W 0.0250.0120.0860.7140.0250.3640.0420.1260.271D 9F 0.0680.0070.0430.1480.2190.0750.7630.2310.265D 9W 9T S 0.2150.1920.3250.3620.3980.1080.0670.4780.279W 0.0290.0230.0390.0250.0480.0370.0050.0250.005F 0.0520.0570.0680.9630.0390.1230.2490.034<0.001W 9F

0.0740.2160.0590.8260.7530.4820.9360.0040.021

?2013Blackwell Publishing Ltd,Global Change Biology ,19,2158–2167

2162H.YIN et al.

(FRL),?ne root biomass,ectomycorrhizal infection (EMI),and total biomass in the unfertilized plots,with average increases of 19.8%,66.0%,62.1%,56.7.0%,and 26.4%in FRV,FRL,?ne root biomass,EMI and total biomass,respectively (Fig.3).In the fertilized plots,however,experimental warming had no signi?cant effects on any root variable (Fig.3).Moreover,N fertil-ization signi?cantly increased the total biomass of the P.asperata seedlings in the unwarmed plots but not in the warmed plots (Fig.3f).

Soil N transformation response to treatments

Consistent with the response of root exudation,experi-mental warming signi?cantly increased the rates of net mineralization,net nitri?cation,gross nitri?cation,and denitri?cation on all of the sampling dates in the unfer-tilized plots,with the exception of May,during which there were no signi?cant differences between the treat-ments for gross nitri?cation rates (P =0.654;Fig.4).Moreover,the net mineralization rates were positively correlated with root exudation rate II (l g C cm à1root length h à1)(R 2=0.699;Fig.6a).In contrast,there were no signi?cant warming effects on any response vari-able of N transformations in the fertilized plots among the sampling dates (Fig.4).The net nitri?cation and denitri?cation rates signi?cantly varied among three sampling dates (P =0.007and 0.028,respectively;Table 1).

Soil enzyme activity response to treatments

Warming and N fertilization had signi?cant effects on the extracellular activities of the two enzymes (Table 1;P <0.05).The soil enzyme activities in the unfertilized plots responded more strongly to experimental warm-ing compared with the enzyme activities in the fertil-ized plots.Over the sampling dates,warming markedly increased polyphenol oxidase activity by 38%in the unfertilized plots,but it was increased by only 11.2%in the fertilized plots (Fig.5b).In contrast,N fertilization signi?cantly reduced the polyphenol oxidase activity by 32.5%in May and by 36.4%in September.In addi-tion,the urease activity was strongly correlated with the root exudation rate II (l g C cm à1root length h à1)(R 2=0.786;Fig.6b).

Unlike the warming effects on polyphenol oxidase activity,the warming effects on urease activity only occurred in May,which signi?cantly increased activi-ties by 34.1%in the unfertilized soils,whereas there were no considerable warming effects on the urease activity in the fertilized plots in May or in the unfertil-ized or the fertilized plots in September.Similarly,N fertilization also signi?cantly reduced the urease

W0F1

W1F1

(a) Exudation rates I

*

*

*

*

*

May

Jul Oct

*

*

Fertilized plot

**

*

Exudation rate I Exudation rate II Exudation rate III

?2013Blackwell Publishing Ltd,Global Change Biology ,19,2158–2167

ENHANCED EXUDATION S TIMULATES N TRANSFORMATI ON 2163

May July September

*

**

W0F0W1F0W0F1

W1F1

*

(a)

*

*

*

*

(c)

May July September

*

*

*

?2013Blackwell Publishing Ltd,Global Change Biology ,19,2158–2167

2164H.YIN et al.

activity over the two sampling dates(Fig.5b;Table1). In addition,signi?cant combination effects of warming and N fertilization were observed in the polyphenol oxidase and urease activities in the soil(Table1). Discussion

The degree to which root exudation in?uences nutrient cycling in forest soils is poorly understood because associated ecological processes mediated by roots are believed to be temporally and spatially heterogeneous due to biotic(e.g.,plant growth,litter input,tree age, and belowground C?ux)and abiotic factors(e.g.,soil moisture,fertility,pH,and nutrient availability)(Bader &Cheng,2007).Therefore,the in?uences of tree species on soil processes and functions may be masked by the pedology of the site,edaphic and environmental vari-ability,and management effects.In this study,all of the experimental seedlings were grown in a common soil with similar?eld management,and the litter within the subplots was removed periodically to disrupt the effects of litter input on the soils.The differences in root exudation and associated soil processes between treat-ments were therefore assumed to re?ect the potential effects of a plant’s intrinsic physiological adjustment in response to different environmental changes. Warming and N effects on root exudation

Recent recognition of the importance of plant root–microbial–soil interactions has highlighted the need for more information on the mechanisms by which trees allocate C and cycle nutrients under environmental change,and these interactions have major conse-quences for the functioning of terrestrial ecosystems in response to global climate change.There have been sev-eral reports of CO2-induced changes in the root exuda-tion rates of trees(Johansson et al.,2009;Phillips et al., 2009;Fransson&Johansson,2010),but there have been few reports of the response of root exudation to experi-mental warming in trees.In this study,our results indi-cated that the exudation rates from P.asperata seedlings are signi?cantly increased by experimental warming but such effects strongly depend on N availability (Fig.2).The belowground C allocation and root mor-phological traits are thought to be the two primary aspects controlling root exudates(Badri&Vivanco, 2009),and based on ancillary data,several possible underlying mechanisms may explain the stimulatory effects of experimental warming on exudation.

It is possible that greater root exudation in the low-N soils resulted from the warming-induced changes in root morphological traits.In our study,the root length of the P.asperata seedlings was signi?cantly enhanced

W0F0W1F0

W0F1W1F1

(a)

*

*

May September

?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

ENHANCED EXUDATION S TIMULATES N TRANSFORMATI ON2165

by warming in the unfertilized plots(Fig.3b).A host of studies have demonstrated that plant root length is pos-itively correlated with root-released C(Xu&Juma, 1994;Darwent,2003).Additionally,the FRV and ecto-mycorrhizal infection of the P.asperata seedlings grown in the unfertilized soils was remarkably higher in the warmed plots relative to the control plots(Fig.3a and e).As a result,the capacity for enzyme synthesis,the nutrient uptake mechanisms and the respiration rate of the roots can differ for those trees grown under warm-ing conditions,and these differences can strongly in?u-ence the quantity and chemical quality of root exudation(Drake et al.,2011;Phillips et al.,2012).

In addition to altered root morphological traits,the increased root exudation at the elevated temperature might be associated with warming-induced changes in belowground C allocation.An important compensatory adjustment by plants exposed to environmental changes is the altered allocation patterns of C to below-ground tissues(Reich et al.,2006).Numerous growth chamber experiments and?eld experiments have reported an increased belowground production of C in trees that were exposed to an elevated temperature (Yin&Liu,2008;Hollister&Flaherty,2010).In this study,our results indicated that the C/F ratio of the P.asperata seedlings was signi?cantly decreased by experimental warming,resulting in increased C parti-tioning to the?ne roots in response to experimental warming,presumably so that the roots could forage for growth-limiting nutrients(Fig.3c and d).Collectively, these alterations will have profound impacts on the quantity and chemical quality of root exudates and C substrate inputs into the soils.However,the degree to which such factors mediate root exudates of tree spe-cies and feedbacks to soil ecological processes is unknown.Further examination of root exudation in response to environmental changes,with more detailed characterization of root morphological and physiologi-cal traits and belowground C allocation would be a worthwhile focus of future studies.

Ecological consequences of enhanced exudation Understanding the mechanism by which potential changes in root-derived C affect the microbial regula-tion of soil N cycling and nutrient availability under experimental warming is critical for predicting biotic feedbacks to climate change.In the present study,our results indicated that increases in the?ux of labile C from the roots to the soil under experimental warming conditions stimulated the rates of soil N transformation in the unfertilized plots(Fig.4),a mechanism that may contribute to continuous stimulation of plant growth or forest productivity under global warming.Increases in

the inputs of root-derived C can signi?cantly stimulate microbial activity and SOM decomposition via rhizo-sphere priming effect(Dijkstra et al.,2009).Here,we show that the increased labile C ef?ux from the warmed trees stimulated the soil transformation rates and the activity of two extracellular enzymes involved in the breakdown of organic N in the unfertilized plots.

Importantly,the soil urease activity(an indicator of moderately fast N turnover)and the net mineralization rates were positively correlated with the measured rates of exudation(Fig.6).We interpret these results as strong evidence of the in?uencing of the root-derived C on the microbial regulation of soil N cycling,i.e.,soil heterotrophic microbes such as actinomycetes used energy derived from the exudates to synthesize extra-cellular enzymes to release N from SOM(Bengtson et al.,2012;Phillips et al.,2012).This was not the case in the N-fertilized plots,in which the root exudation,the soil extracellular enzymes and the soil N transforma-tion did not respond strongly to the experimental warming.A possible explanation is that the soil microbes in the high-N soils use C-rich exudates for growth rather than for the production of enzymes to acquire N(Drake et al.,2011).This dramatic contrast between the fertilized and the unfertilized treatments provides evidence that enhanced exudation is a mecha-nism that trees employ to increase the soil N transfor-mation and nutrient availability(Phillips et al.,2011).

It must be noted,however,that other physiological adjustments by trees exposed to experimental warming, such as fungal rhizomorph production and the alloca-tion of C to ectomycorrhizal fungi(EMF),can also stim-ulate soil N cycling.Although the available data on EMF growth was limited in this study,our preliminary experiments indicated that the EMF infection of the P.asperata seedlings in the unfertilized plots was signif-icantly increased by experimental warming(Fig.3d).

EMF have broad enzymatic capabilities,decompose labile and recalcitrant components of soil organic mat-ter,access organic sources of N and transfer large amounts of N to host plants(Hobbie&Hobbie,2006;

H€o gberg&Read,2006).Such changes would presum-ably accelerate the N release from SOM pools.How-ever,the degree to which EMF mediates the exudation rates and priming effects in tree species exposed to experimental warming warrants further study.

In conclusion,this study demonstrates that the increase in the release of root exudation from trees under experimental warming is an important physio-logical adjustment that stimulates N cycling and nutri-ent availability in low fertility soil.Although we fully recognize the obvious limitations of our experimental systems because all of the data came from small plants growing in disturbed soils,our results are robust in ?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

2166H.YIN et al.

terms of the direction of treatment effects.Thus,our results provide evidence that the degree to which trees sequester C under global warming may depend on the magnitude and ecological consequences of changes in C released to the soil via root exudation.Accordingly, the underlying mechanisms by which plant root-microbe interactions in?uence soil organic matter decomposition and N cycling should be incorporated into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests. Acknowledgments

We thank Jinsong Chen for assisting with the statistics,and Yan Zou and Bing Xia for their technical assistance in the laboratory. We also thank the staff in the Maoxian Mountain Ecosystem of CERN Research Station for their kind help with?eld investiga-tions.This study was supported jointly by the National Natural Science Foundation of China(No.31270552),the strategic Prior-ity Research Program of the Chinese Academy of Sciences (No.XDA01050303)and the National Key Technology R&D Program(No.2011BAC09B04).

References

Adams MA,Polglase PJ,Attiwill PM,Weston CJ(1989)In situ studies of nitrogen mineralization and uptake in forest soils:some comments on methodology.Soil Biology and Biochemistry,21,423–429.

Bader NE,Cheng WX(2007)Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration.Soil Biology and Biochemistry,39,600–606.

Badri DV,Vivanco JM(2009)Regulation and function of root exudates.Plant,Cell and Environment,32,666–681.

Bai W,Wan S,Niu S et al.(2010)Increased temperature and precipitation interact to affect root production,mortality,and turnover in a temperate steppe:implications for ecosystem C cycling.Global Change Biology,16,1306–1316.

Basile B,Bryla DR,Salsman ML,Marsal J,Cirillo C,Johnson RS,Dejong TM(2007) Growth patterns and morphology of?ne roots of size-controlling and invigorating peach rootstocks.Tree Physiology,27,231–241.

Bengtson P,Barker J,Grayston SJ(2012)Evidence of a strong coupling between root exudation,C and N availability,and stimulated SOM.Ecology and Evolution,2, 1843–1852.

Darwent MJ(2003)Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration.Journal of Experimental Botany,54,325–334. Dehlin H,Nilsson M-C,Wardle DA,Shevtsova A(2004)Effects of shading and humus fertility on growth,competition,and ectomycorrhizal colonization of bor-eal forest tree seedlings.Canadian Journal of Forest Research,34,2573–2586. Dijkstra FA,Bader NE,Johnson DW,Cheng WX(2009)Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability?Soil Biology Biochemistry,41,1080–1087.

Drake JE,Gallet-Budynek A,Hofmockel KS et al.(2011)Increases in the?ux of car-bon belowground stimulate nitrogen uptake and sustain the long-term enhance-ment of forest productivity under elevated CO2.Ecology Letters,14,349–357. Fransson PMA,Johansson EM(2010)Elevated CO2and nitrogen in?uence exudation of soluble organic compounds by ectomycorrhizal root systems.FEMS Microbial Ecology,71,186–196.

Hobbie JE,Hobbie EA(2006)N-15in symbiotic fungi and plants estimates nitrogen and carbon?ux rates in Arctic tundra.Ecology,87,816–822.

H€o gberg P,Read DJ(2006)Towards a more plant physiological perspective on soil ecology.Trends in Ecology and Evolution,21,548–554.

Hollister RD,Flaherty KJ(2010)Above-and below-ground plant biomass response to experimental warming in northern Alaska.Vegetation Science,13,378–387. Hudson JMG,Henry GHR(2009)Increased plant biomass in a High Arctic heath community from1981to2008.Ecology,90,2657–2663.Johansson EM,Fransson PMA,Finlay RD,van Hees PAW(2009)Quantitative analy-sis of soluble exudates produced by ectomyrorrhizal roots as a response to ambi-ent and elevated CO2.Soil Biology and Biochemistry,41,1111–1116.

Johnson DW(2006)Progressive N limitation in forests:review and implications for long-term responses to elevated CO2.Ecology,87,64–75.

Kandeler E,Gerber H(1988)Short-term assay of soil urease activity using colorimet-ric determination of ammonium.Biology and Fertility of Soils,6,68–72.

Lindroth A,Grelle A,Moren A-S(1998)Long-term measurements of boreal forest car-bon balance reveal large temperature sensitivity.Global Change Biology,4,443–450. Majdi H,Ohrvik J(2004)Interactive effects of soil warming and fertilization on root production,mortality,and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology,10,182–188.

Phillips RP(2007)Towards a rhizo-centric view of plant-microbial feedbacks under elevated atmospheric CO2.New Phytologist,173,664–667.

Phillips RP,Erlitz Y,Bier R,Bernhardt ES(2008)New approach for capturing soluble root exudates in forest soils.Functional Ecology,22,990–999.

Phillips RP,Bernhardt ES,Schlesinger WH(2009)Elevated CO2increases root exuda-tion from loblolly pine(Pinus taeda)seedlings as an N-mediated response.Tree Physiology,29,1513–1523.

Phillips RP,Finzi AC,Bernhardt ES(2011)Enhanced root exudation induces micro-bial feedbacks to N cycling in a pine forest under long-term CO2fumigation.Ecol-ogy Letters,14,187–194.

Phillips RP,Meier IC,Bernhardt ES,Grandy AS,Wickings K,Finzi AC(2012)Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.Ecology Letters,15,1042–1049.

Reich PB,Hobbie SE,Lee T(2006)Nitrogen limitation constrains sustainability of eco-system response to CO2.Nature,440,922–925.

Saxe H,Cannell MGR,Johnsen B,Ryan MG,Vourlitis G(2001)Tree and forest func-tioning in response to global warming.New Phytologist,149,369–399.

Scheller RM,Mladenoff DJ(2005)A spatially dynamic simulation of the effects of cli-mate change,harvesting,wind,and tree species migration on the forest composi-tion,and biomass in northern Wisconsin,USA.Global Change Biology,11,307–321. Schimel JP,Bennett J(2004)Nitrogen mineralization:challenges of a changing para-digm.Ecology,85,591–602.

Sinsabaugh RL(2010)Phenol oxidase,peroxidase and organic matter dynamics of soil.Soil Biology and Biochemistry,42,391–404.

Smith WH(1976)Character and signi?cance of forest tree root exudates.Ecology,57, 324–331.

Sun G,Luo P,Wu N,Qiu PF,Gao YH,Chen H,Shi FS(2009)Stellera chamaejasme L.

increases soil N availability,turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China.Soil Biology and Biochemistry,41,86–91.

Wan S,Luo Y,Wallace L(2002)Changes in microclimate induced by experimental warming and clipping in tallgrass prairie.Global Change Biology,8,754–768. Wang KY,Kellom€a ki S,Zha T(2003)Modi?cations in photosynthetic pigments and chlorophyll?uorescence in20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation.Photosynthetica,41,167–175.

Xu JG,Juma NG(1994)Relations of shoot C,root C and root length with root-released

C of two barley cultivars and the decomposition of root-released C in soil.Cana-

dian Journal of Soil Science,74,17–22.

Yao XQ,Liu Q(2007)Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply.Plant Physiol-ogy,129,364–374.

Yin HJ,Liu Q(2008)Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light con-ditions.Ecological Research,23,459–469.

Yin HJ,Chen Z,Liu Q(2012a)Effects of experimental warming on soil N transforma-tions of two coniferous species,Eastern Tibetan Plateau,China.Soil Biology and Biochemistry,50,77–84.

Yin HJ,Xu ZF,Chen Z,Wei YY,Liu Q(2012b)Nitrogen transformation in the rhizo-spheres of two subalpine coniferous species under experimental warming.Applied Soil Ecology,59,60–67.

Zhan XH,Wu WZ,Zhou LX,Liang JR,Jiang TH(2010)Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities.Journal of Environ-mental Sciences,22,607–614.

Zhao CZ,Liu Q(2009)Growth and photosynthetic responses to two coniferous spe-cies experimental warming and nitrogen fertilization.Canada Journal of Forest Research,39,1–11.

Zhou LK(1987)The Science of Soil Enzyme.The Science Press,Beijing,China,pp.

267–270.

?2013Blackwell Publishing Ltd,Global Change Biology,19,2158–2167

ENHANCED EXUDATION S TIMULATES N TRANSFORMATI ON2167

第四章【植物与土壤】第1-3节:参考答案

参考答案 例1:D 例2:(1)①② (2)不合理地上环境没有提供独立的、相同的生长空间 (3)甲、乙两种植物地上部分是否会争夺空气中的资源。 (4)水分和无机盐。 例3:C 例4:砂土类土壤黏土类土壤壤土类土壤。 例5:D 例6:(1)A根毛区;B伸长区;C分生区;D根冠。 (2)①的名称是根毛,它是由根毛区成熟的表皮细胞向外突起而形成的,其作用是增大根与土壤 的接触面积,利于吸收土壤中的水分和无机盐。 (3)保护分裂增大根毛区 (4)根毛区分生区 例7:B 例8:(1)D (2)验证植物生长是否需要无机盐。 (3)植物的生长需要无机盐。 (4)植物的生长需要无机盐。 (5)由于谷粒自身含有无机盐,因此在实验开始时应切去谷粒,从而避免植物自身的无机盐对实 验结果造成干扰。 1-5 CABCD 6-10 ABCCB 11-15 DCADC 16.(1)A与D B与C(2)探究光照强弱对两组植物生长影响(3)不合理甲、乙两盆植物土壤中都含有包括镁离子在内的各种无机盐 17.(1)少(2)A 18.(1)吸水A(2)乙小于失水 19.(1)没有控制变量,植物种类、浇水量、每天浇水次数应相同。(2)C 20.(1)1 (2)水、空气 (3)根部不能进行呼吸作用(4)样本数量少 21.(1)对照铬对玉米生长是否有影响? (2)控制变量。 (3)该含铬溶液影响玉米幼苗正常生长。 22.(1)A瓶中的泥土经过强热,B瓶中的泥土未经过强热 A (2)A瓶中无变化,B瓶中澄清的石灰水变浑浊。 (3)若泥土中有微生物存在,微生物呼吸作用会产生二氧化碳,能使澄清的石灰水变浑浊。23.(1)对照实验变量。 (2)有利于植物的生长。 (3)用不同的植物进行重复实验。 (4)_蚂蚁筑巢前后土壤发生了怎样的变化?蚁巢中什么成分促进了植物的生长。 24.(1)同一植物在相同的生育期,对不同的无机盐的需求量不同。 (2)同一植物在不同的生育期对同一无机盐的需求量是不同的。 (3)不同的植物对无机盐的需求量是不同的。 1

植物全磷、全氮、全钾的测定方法

一、植物全氮测定 (一)H2SO4-H2O2消煮法 1、适用范围 本方法不包括硝态氮的植物全氮测定,适合于含硝态氮低的植物样品的测定。 2、方法提要 植物中的氮、磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾的定量。采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。 3、试剂 (1)硫酸(化学纯,比重1.84); (2)30% H2O2(分析纯)。 4、主要仪器设备。消煮炉,定氮蒸馏器。 5、操作步骤 称取植物样品(0.5mm)0.3~0.5g(称准至0.0002g)装入100ml开氏瓶或消煮管的底部,加浓H2SO45ml,摇匀(最好放置过夜),在电炉或消煮炉上先小火加热,待H2SO4发白烟后再升高温度,当溶液呈均匀的棕黑色时取下。稍冷后加班10滴H2O2(3),再加热至微沸,消煮约7~10min,稍冷后重复加H2O2,,再消煮。如此重复数次,每次添加的H2O2应逐次减少, 消煮至溶液呈无色或清亮后,再加热10min,除去剩余的H2O2。取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用无磷钾的干滤纸过滤,或放置澄清后吸取清液测定氮、磷、钾。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 6、注释 (1)所用的H2O2应不含氮和磷。H2O2在保存中可能自动分解,加热和光照能促使其分解,故应保存于阴凉处。在H2O2中加入少量 H2SO4酸化,可防止H2O2分解。 (2)称样量决定于NPK含量,健状茎叶称0.5g,种子0.3g,老熟茎叶可称1g,若新鲜茎叶样,可按干样的5倍称样。称样量大时,可适当增加浓H2SO4用量。 (3)加H2O2时应直接滴入瓶底液中,如滴在瓶劲内壁上,将不起氧化作用,若遗留下来还会影响磷的显色。 (二)水杨酸-锌粉还原- H2SO4-加速剂消煮法 1、适用范围 包括销态氮的植物全氮测定,适合于硝态氮含量较高的植物样品的测定。 2、方法原理 样品中的硝态氮在室温下与硫酸介质中的水杨酸作用,生成硝基水杨酸,再用硫代硫酸钠及锌粉使硝基水杨酸还原为氨基水杨酸.然后按 H2SO4-加速剂消煮法进行消煮法进行消煮样品,使样品中全部氮转化为铵盐。 3、试剂 (1)固体Na2S2O3; (2)还原锌粉(AR); (3)水杨酸-硫酸:30g水杨酸溶于1L浓硫酸中。也可以该用含苯酚的浓硫酸:40g苯酚溶于1L浓硫酸中。 4、仪器设备。同上。 5、操作步骤 称取磨细烘干样品(过0.25mm筛)0.1000~0.2000g或新鲜茎叶样品1.000~2.000g,置于100ml开氏瓶或消煮管中,先用水湿润内样品(烘干样),然后加水杨酸-硫酸10ml,摇匀后室温放置30min,加入Na2S2O3约1.5g,锌粉0.4g和水10ml,放置10 min,待还原反应完成后,加入混合加速剂2g,按土壤全氮测定方法进行消煮, 消煮完毕,取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用于滤纸过滤,或放置澄清后吸取清液测定氮。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 (三)消煮液中铵的定量(凯氏法) 1、适用范围。适合于各种植物样品消煮液中氮的定量。 2、方法原理

第三章植物与土壤 知识点

科学八年级第4册第3章知识点提要 1、土壤的成分包括动物、植物、微生物等生物成分和矿物质(无机物)、腐殖质(有机物)、空气、水分等非生物成分。土壤中的有机物包括死亡的生物提(遗体)和生物的排泄物(遗物)。土壤中的微生物包括细菌、真菌和放线菌等。 2、土壤是在物理、化学和生物等因素共同作用下风化形成的。 3、影响土壤结构的主要因素是矿物质颗粒的大小和比例,土壤中矿物质颗粒根据大小分砂粒、粉砂粒和黏粒三种。根据土壤中三种颗粒的比例不同,将土壤分为砂土类土壤、 黏土类土壤和壤土类土壤三种。其中土壤通气性最强的是砂土类土壤,最弱的是 黏土类土壤;透水性最强的是砂土类土壤,最弱的是黏土类土壤;保水性最强的是黏土类土壤,最弱的是砂土类土壤。三种土壤中最适宜植物生长的是壤土类土壤,因为通气透水、保水保肥,该土壤中空气与水分的比例接近1:1 ,而在砂土类土壤中,空气的比例远远大于水分,黏土类土壤中,空气的比例远远小于水分。黏土类土壤最容易搓成条,因为其粉粒、黏粒多,黏性强,这样的土壤保水保肥能力强,但通气透水能力弱。 4、一棵植物体上所有根的总和叫根系,其中有明显主、侧根之分的叫直根系,没有明显主、侧根之分的叫须根系。植物的根系往往比地上部分的分布范围要略大,这有利于固定植物体和从土壤中吸收水分和无机盐。根在土壤中的分布与土壤结构、肥力、通气状况和水分状况等有关。双子叶植物的根系一般是直根系,单子叶植物的根系一般是须根系。 5、植物吸收水分和无机盐的主要器官是根,根上吸收水分和无机盐的主要部位是根尖的根毛区。植物的根尖分为四个部分,分别是根毛区、伸长区、分生区和根冠,其作用分别是吸收水分和无机盐、使根伸长、细胞分裂和保护根尖。 6、根毛是根尖表皮细胞的一部分向外突起形成,其作用是扩大了根尖与土壤的接触面积有利于根毛区从土壤中吸收水分和无机盐,根尖之所以是吸收水分和无机盐的主要部位,是因为根尖根毛区细胞液泡大,与土壤的接触面积大。移栽时要带土是为了保护根尖根毛。 7、植物细胞吸水的原理是根毛细胞的细胞液浓度大于周围土壤溶液的浓度。盐碱地不能种植农作物是因为盐碱地的土壤溶液浓度大于根毛细胞的细胞液浓度,导致根毛细胞不能从土壤中吸水,植物脱水而死,一次性施过量的化肥导致作物“烧苗”是土壤溶液浓度大于根毛细胞的细胞液浓度,导致根毛细胞不能从土壤中吸水,植物脱水而死。在探究细胞吸水的原理的实验中,加浓盐水的玻璃管中液面上升,而加清水的玻璃管中的液面下降。 8、植物需要量最大的无机盐是N 、P 和K ,其中主要针对叶起作用的是N ,对茎和根起作用的是K ,对花、果实和种子起作用的是P 。合理施肥的其中一个要求是针对不同作物应适当多施不同种类的化肥,如叶菜类可适当多施N 肥(青菜、包心菜等),

浙教版八年级下册科学第4章 植物与土壤 知识点归纳

第1、2节土壤的成分各种各样的土壤 A.土壤中的生命和非生命物质 B.从岩石到土壤 1.引起岩石风化的因素: 1)物理因素——风、流水、温度等 2)化学因素——化学物质的溶蚀作用 3)生物因素 2.岩石变为土壤:岩石在长期的风吹雨打、冷热交替和生物的作用下,逐渐风化成石 砾和砂粒等矿物质颗粒,最后经过各种生物和气候的长期作用形成土壤 C.土壤的结构和类型 1.土壤的结构 1)土壤主要由矿物质、腐殖质、水和空气等物质以及多种生物组成,这些成分之间 相互影响,使土壤形成一定的结构 2)矿物质颗粒的多少和排列方式是影响土壤结构最重要的因素 3)土壤的矿物质颗粒有粗有细,粗的叫砂粒,细的叫黏粒,介于两者之间的叫粉砂 粒

2.土壤的类型 1)砂土类土壤:砂粒多,黏粒少,土壤颗粒较粗 2)黏土类土壤:黏粒、粉砂多,土壤颗粒较细 3)壤土类土壤:砂粒、黏粒粉砂大致等量,土壤质地较均匀 D.土壤的性状与植物的生长 2.壤土类土壤的矿物质颗粒、空气、水和有机质等组成比例合理,土壤黏性适度,通 气、透水、保水和保肥能力强,是适合大部分植物生长的土壤 第3节植物的根与物质吸收 A.植物的根系 1.植物根的分类 1)主根:由胚根直接生长形成的根,数量只有一条,向下生长 2)侧根:从主根上依次生出的根,与主根相比,又细又短,但数量众多 3)不定根:从植物的茎或叶上长出的根 2.植物根系的分类 1)直根系:有明显的主根和侧根之分,大多数双子叶植物的根系为直根系 2)须根系:没有明显的主根和侧根之分,大多数单子叶植物的根系为须根系

B. 跟的吸水和失水 1. 根尖的结构和功能 2. 根毛细胞吸水和失水的原理 1) 根毛细胞液的溶质质量分数>土壤溶液的溶质质量分数→细胞吸水 2) 根毛细胞液的溶质质量分数<土壤溶液的溶质质量分数→细胞失水 3. 土壤中水分进入根部的途径 土壤水分→根毛细胞→皮层细胞→木质部细胞→植物体各部分 第4节植物的茎与物质运输 A. 茎的结构 1. 木质茎的结构 1) 表皮:细胞排列紧密,细胞间 隙小,起保护作用 2) 韧皮部:在茎横切面上呈筒状 根毛区:根毛区细胞是由伸长区细胞分化而来的,细胞壁薄,液泡较大,内涵丰富的细胞液,是根尖吸收水分和无机盐的主要部位 伸长区:细胞逐渐停止分裂,但能较快生长,使根不断地伸长生长 分生区:细胞壁薄,细胞核大,细胞质浓,细胞排列紧密,具有很强的分裂能力,外观呈黄色 根冠:细胞壁薄,外层排列比较疏松,内部细胞小,排列紧密。主要起保护作用

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

土壤取样方法

土壤取样的方法 如何正确判断整个区域的养分充裕状况呢,这需要做正确的取土样进行检测分析,采用统计学方法分析样本测试值的统计量,从而估计整个区域的养分状况。所以这个时候实地取出来的土样非常重要,如何采集的土样是比较具有代表性的呢,是能直接放映和代表整个区域的呢?取土的时候就需要注意一些事项: 1、选择取土区域: 选择样区时首先须考虑样区在整个区域中的典型性和代表性。区域生态系统包括地理景观等时空格局及各要素之间的相互作用过程,在以土壤养分循环为研究目的选择样区时,应以生态学和地理学的区域划分理论为基础,所确定的样区要能代表研究区域的完整地貌单元和生态群落结构.另外,人类活动也是影响区域生态系统中土壤养分循环过程的重要因子,选择样区时还须同时考虑社会经济因素的代表性.从气候特征、地形地貌、生态系统类型、社会经济因素等多个层面选择具有代表性的样区,是由样区研究结果向区域推断的首要条件。2、保证取土样的随机性: 在大尺度上,区域土壤养分受地带性规律和时间性节律的支配,但在小尺度上,由于受土壤母质及耕作施肥非均匀性的影响,它们却表现为/随机分布0的特点.从理论上讲,区域中的样区、样区中的采样单元、采样单元中的样点数都是越密越接近真实值,但在实践中却不可能做到.利用统计学原理的随机性原则,可以用样点来反映其代表的采样单元,以采样单元来反映代表的样区,以样区来反映代表的区域.在选定的样区内按统计学要求设置适当数目的采样单元,根据每个样点都有相同概率的原则进行随机采样. 3、保证取土样的重现性 重现性是指在已定的样区内多次重复采样,结果都能获得相同的规律性.要保证研究区域结果重现性,必须统一区域内各样区的采样标准和方法,并有足够密度的样点,尽可能消除采样方法引起的人为误差.为便于样区内重复采样与样品化验结果的正确分析,在整个采样过程中,有必要对各采样单元的地理位置、土地利用方式、农艺管理措施等实地情况进行详尽的记载,尽可能全面地考虑区域生态系统中影响土壤养分循环的因素. 4、保证取土样的时间统一 由于农业生态系统中的土壤和植物养分含量、植物生物量都存在季节性变化,各样区采样时间不一致易导致样区间结果缺乏可比性,也无法保证样区内土壤养分特征及循环规律与整个研究区域接近。保证各个样区采样时间的相对统一,是样区研究结果拓展到整个区域的关键之一。 土壤养分的状况对植物生长有着直接的关系,测土施肥方案的实施,也充分体现了土壤养分检测的重要性。目前德国STEPS有一款土壤养分速测仪,检测方便快捷,准确度高,是一个值得信赖的产品。 .

浙江农林大学 怎么样 在浙江临安的

浙江农林大学怎么样在浙江临安 的 [本段]浙江农林大学 浙江农林大学坐落于杭州西郊有:“国家卫生城市”,“国家环保模范城市”,“国家生态市”,“中国十佳可持续发展城市”之美誉的临安市,是浙江最早创办的高等学府,是浙江省省属重点建设大学。浙农林大校标以绿色为主色调,由“浙江农林大学”中英文字样、银杏叶、建校年份三部分组成。采用绿色和银杏叶寓意学校以农林为特色,以培养绿色科技人才、服务现代农业、致力生态文明建设为目标。浙江农林大学校徽校名中文全称浙江农林大学

校名中文简称浙农林大 校名英文全称ZHEJIANG A & F UNIVERSITY 校名英文简称ZAFU 校训求真,敬业 精神坚韧不拔,不断超越 学校层次定位教学研究型大学 学校级别浙江省属重点建设大学 发展战略生态育人,创新强校 学校服务定位三个面向:面向三农,面向基层,面向社会 [本段]学校概况 浙江农林大学创建于1958年,是浙江省属全日制本科院校,具有52年本科历史。经过52年的建设与发展,现已经成为一所以农林为特色,理学、工学、文学、管理学、农学、经济学、法学、医学等学科协调发展的省属综合性重点建设大学。浙江农林大学大门浙农林大以本科教育为主,积极发展研究生教育,

具有硕士和学士学位授予权,具有招收留学生和港澳台学生资格。校园占地面积2700余亩,校舍建筑面积近60万平方米。校园按照“崇尚自然,优化环境;因地制宜,特色鲜明;以人为本,天人合一”的理念规划与建设。校园与植物园两园合一,是一座集教学、科研、生物多样性保护等功能于一体的现代化生态校园。 [本段]历史沿革 1958年,中共浙江省委决定创办一所高等林业院校,定名“天目林学院”。当年6月,以省林业厅为主,建德地委抽调党政干部,一批知名教授和留学归国学者共同参与筹建。当时确定专业设置为林业、木材采伐与运输机械化、木材机械加工和林产化学加工工艺专业。招生规模400名。1959年7月,省委、省人委决定,温州林学院与天目林学院合并。1960年2月,省委决定,浙江农学院、天目林学院、舟山水产学院合并,成立浙江农业大学。1962年2月,省委

第三章植物与土壤目标检测题(DMF)

第三章植物与土壤目标检测题(2010 董明法) 八()班学号()姓名得分 一、选择题(每小题2分) 1.下列哪一项既是光合作用的原料又是呼吸作用的产物() A.氧和二氧化碳 B.氧和有机物 C.水和二氧化碳 D.水和有机物 2.堆在一起和蔬菜会生热,这直接来自于() A.光合作用 B.呼吸作用 C.吸收作用 D.蒸腾作用 3.你的身体时刻都在与周围空气进行气体交换,你呼出的气体在组成成分上的变化是() A.氧气含量增加,二氧化碳含量增加 B.氧气含量增加,二氧化碳含量减少C.氧气含量减少,二氧化碳含量增加 D.氧气含量减少,二氧化碳含量减少 4.农艺师利用光合作用的原理提高农作物产量的措施是() A.施农家肥 B.适时播种 C.合理密植 D.及时松土 5.在下列哪种条件下栽培番茄,对增产有利( ) A.日温15°C、夜温26°C B.昼夜恒温26°C C.日温26°C、夜温15°C D.昼夜恒温15°C 6.为验证光是植物生长发育的必要条件,设计如下实验:选择生长状况一致幼苗200株,随机均匀分为实验组和对照组,分别处理并预期结果。下面是关于实验组或对照组的处理方法和预期结果的几种组合,其中正确的是() ①实验组②对照组③黑暗中培养④在光下培养⑤生长良好⑥生长不良 A.②③⑤ B.①③⑥ C.①④⑤ D.②④⑥ 7.一位农民种植的某块农田小麦产量总比邻近地块的低。他怀疑该农田可能是缺少某种元素,为此将该块肥力均匀的农田分成面积相等的五小块,进行田间实验。除施肥不同外,其他田间管理措施相同。实验结果如下表: 从表中我们可判断,该农田最可能缺少的元素是() A. K B. N C. P D. S 8.在建始县花坪乡的关口村,由于那里特殊的地理位置,白天光照强、气温高,夜间气温较低,所产的关口葡萄特别甜。这是因为与别处相比() A.关口村的土地特别肥沃 B.关口村的葡萄品种与别处不一样 C.关口村的葡萄只进行光合作用,不进行呼吸作用 D.关口村的葡萄白天光合作用制造的有机物多,晚上呼吸作用消耗的有机物相对较少9.国家粮食部门明确规定,粮食储存到规定年限(一般是4--5年)后,不能再作粮食出售,其依据主要是因为粮食储存过久() A.种子的胚死亡而影响种子的萌发 B.呼吸作用消耗了大量的有机物而造成营养成分缺乏 C.种子生虫消耗了大量的有机物而无法食用 D.种子发霉易引起中毒 10.植物吸收水分的主要部位在() A.叶片 B.树皮 C.花瓣 D.根尖 11.某生物小组的同学在探究“水分进入植物体内的途径”后,得出了如下结论,你认为不正确的是()

八年级下第四章植物与土壤知识点总结

八年级下第四章植物与土壤知识点总结 一、土壤的成分 1、土壤生物:动物、植物、细菌、真菌等 2、土壤中的非生命物质: 空气、水、无机盐和有机物 (1)土壤中的水分:加热土壤,出现水珠 (2)测定土壤中空气的体积分数:取用的土壤体积为V 0;此块土壤 放入烧杯后缓慢加水,直至液面恰好浸没土壤,用去的水的体积 为V 1;取与土壤相同体积的铁块放入同样大小的烧杯中加水,直 至液面恰好浸没铁块,用去的水的体积为V 2。 这块土壤中空气的体积分数的算式为: (V 1-V 2)/ V 0 。 (3)土壤中的有机物:先称取一定量的干燥土壤,然后用酒精灯加热(放石 棉网上),现象:土壤颜色发生明显变化,燃烧过后,再称量土壤, 发现质量变少。 土壤中的有机物主要来源于生物的排泄物和死亡的生物体 土壤中的无机盐:过滤土壤浸出液,再在蒸发皿中加热蒸发,可见 很细的结晶物 注:①(1)图实验试管口略向下倾斜,防止水倒流使试管炸裂 ②有机物能燃烧,但不能溶于水;无机盐能溶于水,但不能燃烧 3、 土壤生物:动物、植物、细菌、真菌 土壤的组成 固体 土壤非生物 液体 空气 矿物质颗粒(无机盐):占固体体积的95% 腐殖质(有机物) 4、土壤的形成:主要包括地表岩石的风化和有机物积累两个部分。 岩石的风化:指岩石在风、流水、温度等物理因素和化学物质的 溶蚀作用和各种生物的作用下,不断碎裂的过程。 总结:岩石在长期的风吹雨打、冷热交替和生物的作用下,逐渐风化变成 石砾和砂粒等矿物质颗粒,最后经各种生物和气候的长期作用才形成了土壤。 二、各种各样的土壤 1、 三、植物的根与物质吸收 1、根系:一株植物所有的根合在一起。 直根系:有明显发达的主根和侧根之分的根系(如:大豆、青菜、棉花、菠菜等双子叶植物的根系) 须根系:没有明显主侧根之分的根系(如:水稻、小麦、蒜、葱等单子叶植物的根系) 土壤分类 土壤质地 土壤性状 砂土类土壤 砂粒多、黏粒少,土壤颗粒较细 输送,不易粘结;通气、透水性最好;保水保肥性差;易干旱,有机物分解快,易流失 黏土类土壤 黏粒、粉砂多,土壤颗粒较细 质地黏重,湿而黏,干而硬;保水、保肥性最好;通气透水性差; 壤土类土壤 砂粒、黏粒、粉砂大致等量,土壤质地较均匀 黏性适中,既通气透水,又保水保肥,最适于耕种

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

浙江农林大学岩石与土壤复习资料(土壤学)重点

岩石与土壤学资料 第一章绪论 1.土壤概念 土壤是一种自然体,他是在母质、气候、生物、地形和时间5个自然因素综合作用下形成和发展起来的,并且也受人类活动的影响,有它本身的发展规律和特性。 2.土壤肥力 土壤肥力是指土壤能过够在多大程度上满足植物对于来自土壤的生活要素(即水分、养分、空气和热量)需求的能力。 3.土壤学在农业可持续发展中的地位和作用 (1)土壤是农业生产的场所。壤能持续协调地提供农作物生长所需的各种土壤肥力因素,保持农产品产 量与质量的稳定与提高。 1)营养库的作用 2)养分转化和循环的场所:无机养分的有机化,有机质的矿质化,养分元素的释放和散失,元素的结合,固定和归还 3)雨水的涵养作用占土壤水的1%-5% 4)生物的支撑作用:植物根系的机械支撑,土壤动物和微生物生存的场所 5)稳定和缓冲环境变化的作用:环境变化的缓冲功能,污染物的“过滤器”和“净化器” (2)土壤是陆地生态系统重要的组成部分。 (3)土壤是最珍贵的自然资源。 第二章矿物 1.矿物、岩石、风化作用的概念 1)矿物指地壳中的化学元素在各种地质作用下形成的相对稳定的自然产物。 2)在各种地质作用下形成的,由一种或多种矿物以一定的规律结合组成的矿物集合体叫做岩石。 3)受力影响引起岩石破碎和分解的作用称为风化作用 是母质、气候、生物、地形和时间5个自然因素 母质是土壤形成的物质基础,气候决定着成土过程的水热条件,生物是形成土壤的主导因子, 4.三大岩石的常见类型 岩浆岩:酸性岩类:花岗岩、流纹岩、石英斑岩中性岩类:闪长石、安山岩、粗面基性岩类:辉岩、辉长岩、橄榄岩、玄武岩火山碎屑岩:凝灰岩 沉积岩:碎屑岩:砾岩、砂岩、粉砂岩、粘土岩:页岩、泥岩、化学岩和生物化学岩:石灰岩、白云岩 变质岩:板岩、千枚岩、片岩、片麻岩、大理岩、石英岩 第三章土壤有机质 1.土壤有机质含义

第3章+植物与土壤基础知识答案

第3章植物与土壤基础知识 第1节土壤中有什么 1、土壤的层次结构:一般分枯枝落叶层、上土层和下土层,其中枯枝落叶层是小动物活动的主要场所;上土层植物根系大量分布。 2、土壤环境特点:主要指的是土壤的湿度、土壤疏松程度、土壤温度、光照和植物生长状况等环境因素。 3、在特定生态系统中数量较多的生物称优势物种。 4、在观察土壤生物的调查表格中,简要分析栏应着重分析土壤中生物,特别是优势物种的生活与 环境之间的相互关系。 5、我们把生活在土壤中的微生物、动物、和植物等称为土壤生物;其中微生物包括细菌、真菌、放线菌。土壤中含有的非生命物质有①空气;②水;③有机物(腐殖质);④无机盐(矿物质)。 6、在烧杯内盛一定量的水,将干燥的土壤块慢慢放入水中,你观察到的现象有气泡产生。 说明土壤中有空气;其作用是为植物根呼吸和微生物的生命活动提供氧气。 7、书本P77页图3-2测量土壤中空气的体积分数实验: (1)在烧杯中放入一块土壤(土壤的体积为V),缓慢注入水,直到水面把土壤全部浸没为止。记录在烧杯中所加的水的体积。记做V1. (2)用与土壤体积相等的铁块替代土壤,重复上述实验。记录所加水的体积记做V2。 (3) V1大于 V2(大于,小于或等于),因为土壤间隙中有空气。土壤中空气的体积分数约为(V1-V2)/V ;在土壤中,空气约占土壤体积的 15%~35% 。 8、取少许土壤,放入试管中,在酒精灯上加热,观察到的现象是试管壁上有小水珠;试管口冒出水雾;这个实验说明土壤中有水;它是植物生长的必要条件;(其中小部分水供给植物光合作用,大部分水供给植物蒸腾作用。 9、实验:给你一只坩埚、一把刻度尺、一只酒精灯和一台精确度足够的天平,你有办法测量土壤水分体积占土壤体积的体积分数吗? (1)选取一规则几何体状的土壤样本,用刻度尺测出其相关数据,算出土壤体积数V; (2)用天平称出其质量M ; (3)将土壤捣碎,放在坩埚上用酒精灯加热,让其水分充分汽化充分散失,再称其质量M1。 (4)将水分的质量换算成体积:V水= (M-M1)/ρ水; (5)土壤中水分的体积分数= (M-M1)/(ρ水V)。

第四章植物与土壤单元检测卷

第四章植物与土壤单元检测 一、选择题(每题2分,共40分) 1.一个塑料袋在土壤中的自然降解需200年时间,全国每天消耗塑料袋30亿个,制造塑料袋每日消耗石油13000吨,因此我国规定从今年6月1日起全国禁止生产销售超薄购物塑料袋,这一举措的主要目的是() A.保护环境、节约能源B.防治空气污染 C.治理水污染D.节约能源 2.下列实验中,哪一个实验可以更好地证明土壤中含有能燃烧的有机物() 3、我们行进在公园里时,经常发现草坪上有爱心提示牌:“请勿践踏,爱护我”。这是因为经常践踏 草坪会造成土壤板结,从而影响草的生长。其中的科学道理是() A.植物缺少无机盐,影响生长B.植物缺少水,影响光合作用 C.土壤缺少氧气,影响根的呼吸D.气孔关闭,影响蒸腾作用 4、小明参加了假期夏令营,学会了如何利用植物年轮辨认方向的野外生存能力,下列有关年轮的知识,错误的是( ) A、根据树木年轮的数目,可以推知它的年龄 B、树木的每个年轮只包括茎的木质部 C、从植物的年轮可让我们知道南北方向的差异 D、植物年轮是由植物的韧皮部形成的5.嘉兴素有“浙北粮仓”的美誉,水稻是嘉兴最重要的粮食作物。下列对于水稻的叙述,正确的是( ) A.茎能不断加粗B.根为直根系C.能开花结果D.种子中有两片子叶 6.古人云:“野火烧不尽,春风吹又生”。生活中人们也发现,将植物的枯枝落叶焚烧后的灰烬留在 土壤里,有利于植物的生长。这说明植物的生长需要() A.有机物 B.空气 C.二氧化碳 D.无机盐 7、在植树过程中,为了提高树苗成活率,王大爷应该采取的措施是() ①带土移栽;②去掉部分叶片移栽;③在烈日炎炎的中午移栽 A.①③B.①②C.②③D.①②③ 8.杜仲是一种常见的中药,树皮可入药,但剥树皮时不能切口太深,否则会影响数的生长,其原因是与破坏树茎部的()有关。 A.木质部 B.韧皮部 C.外树皮 D.形成层 9.有位科学家给一株黑麦创造了良好的条件,让黑麦的根能充分地生长.到它长出麦穗的时候,统计出这株黑麦的根系共有150亿条根毛,根毛全长约10000km,这么多的根毛的主要作用是()A.把植物体固定在土壤里B.扩大吸收面积 C.运输大量的水分D.储存大量的水分

浙江农林大学 林木育种 整理

林木育种学:又称林木改良,是应用林木遗传性原理,以生物统计学为工具,与森林生态学等其他学科密切相关,研究林木新品种选育和良种繁育的原理和技术的学科。 林木品种:指产品的数量和品质符合生产需要,能适应一定自然和栽培条件,特性明显,性状遗传稳定,由人工选育的林木群体。重点在:产品要求、栽培范围、遗传相对一致的、人工选育、群体。 遗传力:反应遗传变量占表型变量的比率。 配合力:是指一个亲本(纯系、自交系或品种)材料在由它所产生的杂种一代或后代的产量或其他性状表现中所起作用相对大小的度量。 一般配合力:指某一亲本在一系列杂交组合中,子代某一性状平均值与子代总平均值的差值。 特殊配合力:指亲本在特定的杂交组合中,子代某一性状平均值与子代总平均值及双亲一般配合力的差值。育种值:一般配合力的两倍。 遗传增益:将选择响应除以亲本群体的平均值所得的百分率。G=R/X×100% 遗传相关:同一批供试材料的两个形状间由于遗传原因所体现的相关,即这个性状基因型值间的相关。 家系:由同一植株上产生的全部种子,属于同一个家系 无性系:由同一植株通过营养繁殖所产生的群体,称为一个无性系。对繁殖成无性系的最初植株,称为无性系原株,无性繁殖出来的植株称为无性系分株 遗传资源:也称基因资源,指以种为单位的群体内的全部遗传物质,或种内基因组、基因型变异的总和。种质资源:选育新品种的基础材料,包括各种植物的的栽培种、野生种的繁殖材料以及利用上述繁殖材料人工创造的各种植物的遗传材料。 育种资源:是遗传资源的组成部分,指在选育优良品种中直接利用的繁殖材料,往往是根据品种选育目标调查、收集的资源。 生物多样性:指地球上所有生物及其所拥有的基因,以及生物与其生存环境构成的复杂生态系统。 引种:把一个树种从原分布范围引入新地区栽培的过程。 驯化:通过人为干预使物种适应新环境或将动植物从野生状态改变为家养或栽培的过程。 种源:繁殖材料的地理来源,即最初的原产地。 种源试验:不同种源在同一地区的栽培对比试验。 种源选择:通过种源试验,为某一造林生境筛选最佳种源的过程。 种子园:是用优树无性系或家系按设计要求营建、实行集约经营、以生产优良遗传品质和播种品质种子为目的的特种人工林。 种子区:生态条件和林木遗传特性基本类似的地域单元,也是用种的基本单位。 种子区区划:根据生态条件、遗传性及行政区界,对林木种子供应范围进行的区划。 优树:在某一或某些性状上远远超过同等立地条件下,同种、同龄树木的单株。 杂种优势:指杂种后代可能综合双亲优良性状,或在生长、繁殖、抗性、品质等方面超过亲本的现象。 无性繁殖:采集植株的部分器官、组织或细胞,在适当条件下使其再生为完整植株的过程。 无性系选育:选择优良个体,通过无性繁殖成无性系,从中选育出优良无性系并用于生产的过程。 无性系选择:通过无性系对比试验,评选出优良无性系的过程。无性系选择充分利用了植株的加性效应、显性效应和上位效应。无性系选择增益大,方法简单。 采穗圃:是专门生产林木优良种条的场地,也是良种基地之一。 种子园:种子园是以优树无性系或家系为材料建立起来的以生产优质种子为目的的园地。 实生种子园:从优树上采取种子,通过有性繁殖建立的种子园。 自交:同一无性系的不同分株间授粉,或同一株树的自花授粉。 杂交:不同树种或同一树种不同种源、家系、无性系间的交配。 远缘杂交:不同种间、属间甚至亲缘关系更远的物种之间的杂交。 遗传测定:对入选植株后代进行田间对比试验,根据其性状表现进行评定的过程。 无性系测定:通过某一亲本的无性系进行田间试验,测定其遗传优势的方法。

浙教版八下第四章植物与土壤复习提纲修正版

八年级下科学第四章植物与土壤复习提纲 班级 姓名 一、土壤的成分 1、土壤生物:动物、植物、细菌、真菌等 2、土壤中的非生命物质: 空气、水、无机盐和有机物 (1)土壤中的水分:加热土壤,出现水珠 (2)测定土壤中空气的体积分数:两个相同的烧杯内分别放入体积相同的 正方体铁块和土壤,慢慢向烧杯内注水,直到正好把它们浸没为止, 注水量的差值即为土壤中空气的体积 (3)土壤中的有机物:称取一定量干燥土壤,然后用酒精灯加热(放石 棉网上),现象:土壤颜色发生明显变化,燃烧过后,再称量土壤, 发现质量变少。 土壤中的无机盐:过滤土壤浸出液,再在蒸发皿中加热蒸发,可见 很细的结晶物 注:①(1)图实验试管口略向下倾斜,防止水倒流使试管爆裂 ②有机物能燃烧,但不能溶于水;无机盐能溶于水,但不能燃烧 3、 土壤生物:动物、植物、细菌、真菌 土壤的组成 固体 矿物质颗粒(无机盐):占固体体积的95% 土壤非生物 腐殖质(有机物) 液体:水 气体:空气 4、土壤的形成:主要包括地表岩石的风化和有机物积累两个部分。 岩石的风化:指岩石在风、流水、、温度等物理因素和化学物质的 溶蚀作用和各种生物的作用下,不断碎裂的过程。 总结:岩石在长期的风吹雨打、冷热交替和生物的作用下,逐渐风化变成 石砾和砂粒等矿物质颗粒,最后经各种生物和气候的长期作用才形成了土壤 二、各种各样的土壤 5、影响土壤结构的因素有矿物质颗粒、腐殖质、水和空气等;其中最重要的影响因素是矿物质颗粒的 多少和排列方式 6、土壤矿物质颗粒的分类:砂粒(最粗)、粉砂粒、黏粒(最细) 7、土壤的保水、保肥、通气、透水的能力主要与土壤中矿物质颗粒大小有关 8、 三、植物的根与物质吸收 9、根系:一株植物所有的根合在一起 直根系:有明显发达的主根和侧根之分的根系(如:大豆、青菜、菠菜等双子叶植物的根系) 土壤分类 土壤性状 砂土类土壤 通气、透水性最好;保水保肥性差; 黏土类土壤 保水、保肥性最好;通气透水性差; 壤土类土壤 黏性适中,既通气透水,又保水保肥,最适于耕种 (1)图 (3)图 (2)图 (4)图

土壤养分循环

第十章土壤养分循环 土壤养分循环:是指在生物参与下,营养元素从土壤到生物,再从生物回到土壤的循环过程,是一个复杂的生物地球化学过程。土壤元素通常可以反复的再循环和利用,典型的再循环过程包括: (1)生物从土壤中吸收养分 (2)生物的残体归还土壤 (3)在土壤微生物的作用下,分解生物残体,释放养分 (4)养分再次被生物吸收 一、土壤氮素循环 (一)氮素循环由两个重叠循环构成,一是大气层的气态氮循环,几乎所有的气态氮对大多数植物无效,只有若干种微生物或少数与微生物共生的植物可以固定大气中的有效氮。另一个是土壤氮的循环,即在土壤植物系统中,氮在动植物体、微生物体、土壤有机质、土壤矿物质各分室中的转化和迁移,包括有机氮的矿化和无机氮的生物固持作用、粘土对氨的固定和释放作用、硝化和反硝化作用、腐殖质形成和腐殖质稳定化作用。 (二)土壤的氮的获得(来源) 1土壤氮的获得(来源) (1)土壤母质中的矿质元素 (2)大气中分子氮的生物固定 大气和土壤空气中的分子态氮不能被植物直接吸收、同化,必须经生物固定为 有机氮化合物,直接或间接地进入土壤。 (3)雨水和灌溉水带入的氮 灌溉水带入土壤的氮主要是硝态氮形态,其数量因地区、季节和降雨量而异。 大气层发生自然雷电现象,可使氮氧化成NO2及NO等氮氧化物。 (4)施用有机肥和化学肥料 2土壤N存在形态 土壤无机态氮主要是铵态氮和硝态氮,是植物能直接吸收利用的有效态氮。有机态氮是土壤氮的主要存在形态,一般占土壤全量氮的95%以上,按其溶解度的大小及水解的难易分为水溶性有机氮、水解性有机氮和非水解性有机氮三类。 土壤溶液中的铵、交换性铵和硝态氮因能直接被植物根系所吸收,常总被称为速效态氮。 3土壤中氮的转化 (1)有机态氮的矿化过程 含氮的有机化合物,在多种微生物的作用下降解为简单的铵态氮的过程 矿化过程: 第一阶段:把复杂的含氮化合物的含氮化合物,如蛋白质、核酸、氨基糖及其多聚体等,经过微生物酶的系列作用下,逐级分解而形成简单的氨基化合物,称之为氨基化阶段。 然后在微生物作用下,各种简单的氨化物分解成氨,称为氨化作用,氨化作用可在不同条件下进行。 (2)硝化过程 有机氮矿化释放氨(氨、胺、酰胺)在土壤中转化为铵离子,铵离子通过微生物作

浙教版八年级下册第四章《植物与土壤》第4-6节测试科学试卷

浙教版八年级下册第四章《植物与土壤》第4-6节测试科学 试卷 学校:___________姓名:___________班级:___________考号:___________ 一、选择题 1.植物体内带动水和无机盐向上运输的动力来自() A.蒸腾作用B.光合作用C.呼吸作用D.吸收作用2.下列植物中茎的类型与其他三种不同的是() A.葡萄B.爬山虎C.牵牛花D.丝瓜 3.茎中贮藏营养物质的主要部位是() A.树皮B.维管束C.形成层D.髓 4.在植物体中,以下物质主要通过导管运输的是() A.氧气B.淀粉C.水D.二氧化碳5.位于我市城区古运河畔的三颗古槐,因年代久远而主干大都中空。为保护这一“活宝贝”,市政府特聘请专家进行抢救性保护。古槐主干中空部分缺失的主要是茎的()A.部分导管和筛管B.部分韧皮部 C.部分形成层D.部分木质部 6.下列哪种情况下保卫细胞关闭() A.光合作用旺盛时 B.呼吸作用旺盛时 C.夏日暴晒的中午 D.萎蔫植物吸足水后 7.如图是某小组进行实验时设置的装置图,能验证植物蒸腾作用散失水分的是() A.B.C. D.

8.水分从土壤溶液中进入植物体,再由植物体返回大自然的途径可以表示为()A.土壤中的水分→植物细胞→筛管→气孔→大自然 B.土壤中的水分→植物细胞→导管→气孔→大自然 C.土壤中的水分→导管→植物细胞→气孔→大自然 D.土壤中的水分→筛管→植物细胞→气孔→大自然 9.无论是在家园的花圃内,还是在大面积的农田里,或者是山林果园之中,下列物质都不会造成土壤污染的是() A.化学肥料和农药 B.未经处理的植物的枯枝败叶 C.未经处理的生活污水 D.未经处理的人畜粪便 10.下列有关植物蒸腾作用的叙述,错误的是() A.蒸腾作用越强,根对无机盐和水的吸收速度越快 B.多数植物的叶片通过下表皮散失的水分比上表皮多 C.蒸腾作用散失水分的“门户”是气孔 D.蒸腾作用的强弱受光照强度、环境温度等因素的影响 11.俗话说“树怕剥皮,不怕空心”,其道理是() A.树皮中有筛管,能运输水分 B.树皮中有导管,能运输水分 C.树皮中有筛管,能运输有机物 D.树皮中有导管,能运输有机物 12.相同环境中,两年生红富士苹果树的树干周长比国光苹果树长14%,主要原因是()A.两种植物茎的结构不同B.有机物和水分的运输管道不同 C.土壤中无机盐的作用不同D.茎的形成层细胞分裂速度不同13.将下面装置放到阳光下几个小时,出现的现象是() A.左端下降 B.右端下降

相关主题