搜档网
当前位置:搜档网 › 三角和反三角函数图像

三角和反三角函数图像

三角和反三角函数图像
三角和反三角函数图像

三角、反三角函数图像

六个三角函数值在每个象限的符号:

sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:

23

arcsinx arccosx

arctanx arccotx

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

反三角函数

反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。 三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数,而不是 。 为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

反三角函数的概念和性质

反三角函数的概念和性质 一.基本知识: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系; 2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- C)sin[arcsin(-)]=-(D)arctg(tgπ)=π

解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。 例二.下列函数中,存在反函数的是(D)。 (A)y=sin x, x∈[-π, 0] (B)y=sin x, x∈[, ] (C)y=sin x, x∈[,] (D)y=sin x, x∈[,] 解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。 例三. arcsin(sin10)等于(C)。 (A)2π-10 (B)10-2π(C)3π-10 (D)10-3π 解:本题是判断哪个角度的正弦值与sin10相等,且该角度在[-, ]上。 由于sin(3π-10)=sin(π-10)=sin10, 且3π-10∈[-, ], 所以选C。( 例四.求出下列函数的反函数,并求其定义域和值域。 (1)f (x)=2sin2x, x∈[, ];(2)f (x)=+arccos2x. 解:(1) x∈[, ], 2x∈[, ], 2x-π∈[-, ], -2≤y≤2

三角、反三角函数图像与性质与三角公式

三角、反三角函数图像 ( 附:资料全部来自网络, 仅对排版做了改动, 以方便打印及翻阅, 其中可能出现错误,阅者请自行注意。 ) 1. 六个三角函数值在每个象限的符号: sin α· csc α cos α· sec α tan α· cot α 2. 三角函数的图像和性质: y=sinx y -5 - 2 1 2 -7 o -4 -3 -2 -3 - 2 -1 2 3 7 2 5 2 2 3 4 2 2 x y=cosx y -5 - 2 1 -32 - -4 -7 -2 -3 o 2 2 -1 y y=tanx 3 3 7 2 2 2 5 4 2 2 y y=cotx x - 3 - - 2 2 o 3 2 2 x - - 2 o 3 2 x 2 2 函数 y=sinx y=cosx y=tanx { x | x ∈ R 且 定义域 R R x ≠ k π+,k ∈ Z } [ -1,1] 2 [ -1,1]x=2k π+ 时 x=2k π时 y max =1 2 R y max =1 x=2k π +π时 值域 无最大值 y min =-1 无最小值 x=2k π-时 y min =-1 2 y=cotx { x | x ∈ R 且 x ≠ k π∈,kZ } R 无最大值 无最小值 周期性 周期为 2π 周期为 2π 周期为 π 周期为 π 奇偶性 奇函数 偶函数 奇函数 奇函数 1 / 5

在[ 2kπ-,2kπ+ ]在[ 2kπ-π,2kπ] 在 (k π- , 在 (k π,kπ+π)内上都是增函数;都是减函数 22 在[ 2kπ,2kπ+π]2 (k ∈ Z) 上都是增函数;在 单调性 2上都是减函数k π+ )内都是增 [ 2kπ+,2k(k ∈ Z)2 π+ π] 函数 (k ∈ Z) 23 上都是减函数(k ∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx 名称反正弦函数 y=sinx(x ∈ 〔- ,〕的反函 2 2 定义 数,叫做反正弦函 数,记作 x=arsiny arcsinx 表示属于 理解 [ -, ] 22 x 的 且正弦值等于 角 定义域[ -1, 1] 值域[ -,] 性 22 单调性 在〔 -1, 1〕上是增 质函数 奇偶性 arcsin(-x)=-arcsinx 周期性都不是周期函数反余弦函数 y=cosx(x ∈ 〔0, π〕)的反 函数,叫做反余 弦函数,记作 x=arccosy arccosx 表示属于 [ 0,π],且 余弦值等于 x 的 角 [-1, 1] [0,π] 在[ -1,1]上 是减函数 arccos(- x)= π- ar ccosx arccotx 反正切函数反余切函数 y=tanx(x ∈ (-, y=cotx(x ∈(0, π )) 的反函数,叫做 2 反余切函数,记 2 )的反函数,叫作 x=arccoty 做反正切函数,记作 x=arctany arctanx表示属于arccotx 表示属于 (-,),且正切值 (0,π)且余切值等 于 x 的角 22 等于 x 的角 (-∞,+∞)(-∞, +∞) (-,)(0,π) 2 2 在(-∞, +∞)上是增在(-∞,+∞)上是 数减函数 arctan(-x)=-arctanx arccot(- x)= π- arc cotx 2/ 5

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

三角和反三角函数图像性质总结

反三角函数的图像和性质 yx,arccos yx,arctanyx,arcsin ,1,1,1,1,,,,R 定义域 ,,,,,,,, ,,,,值域 [0,π] ,,,,2222,,,, 在上单调递增在上单调递减 ,1,1,1,1,,,,在R上单调递增单调性 无减区间无减区间无增区间 3奇偶性奇函数非奇非偶函数奇函数 32, 32,,21212,-1 图象 -22468-224682O11 -1,-1-,2-2 -22468-1 -1O2-2 -1 arcsin()arcsin,,,xxarccos()arccos,,,xx,arctan()arctan,,,xx 运算公x,,[1,1]x,,[1,1] xR,式1 运算公,,,, arccos(cos),[0,]xxx,,, arctan(tan),(,)xxx,,,arcsin(sin),[,]xxx,,,2222式2 运算公 sin(arcsin),[1,1]xxx,,,cos(arccos),[1,1]xxx,,,tan(arctan),xxxR,, 式3 , arctancotxarcx,,运算公,2 arcsinarccos,[1,1]xxx,,,,2式4 xR, 三角函数的图像和性质 4 yx,cosy,tanx yx,sin kZ,343 3222 1一个周11(((113,,2,,,期的图-22468,-22468(-4-2246823,,O,2,O2O--12-12-1-1-1 22像 -2-2 -2

-3,,,x|x,k,,k,Z ,定义域 R R ,,2,, [1,1],[1,1], 值域 R 奇偶性奇函数偶函数奇函数 , 2,2,周期 对 ,直线xk,kZ, ,,,称直线,无 xk,,kZ,2 轴对 称对 性称k,,(,0)k,,kZ, 点,kZ, 点(,0)k,(,0)点,kZ, ,22中 心 ,,,,,在上 [2,2]kk,,[2,22]kk,,,,,,,,,上在,上在(,)kk,,,,2222单调性 ,,3,在上,,[2,2]kk,,,,,[2,2]kk,,在上无减区间 22

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

角、反三角函数图像及性质与三角公式

三角、反三角函数图像 (附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。) 1.六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 2.三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x∈R 且x≠kπ+2 π ,k∈Z } {x |x∈R 且x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ-2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数

单调性 在 [2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数 (k∈Z) 在[2kπ -π, 2kπ]上都是增 函数;在[2kπ, 2kπ+π]上都是 减函数(k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是 增函数(k∈Z) 在(kπ,kπ+π) 内都是减函数 (k∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx arccotx 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈ 〔- 2 π , 2 π 〕的反 函数,叫做反正弦 函数,记作 x=arsiny y=cosx(x∈ 〔0,π〕)的反函 数,叫做反余弦 函数,记作 x=arccosy y=tanx(x∈(- 2 π , 2 π )的反函数,叫 做反正切函数,记作 x=arctany y=cotx(x∈(0, π))的反函数, 叫做反余切函 数,记作 x=arccoty 理解 arcsinx表示属于 [- 2 π , 2 π ] 且正弦值等于x的 角 arccosx表示属 于[0,π],且 余弦值等于x的 角 arctanx表示属于 (- 2 π , 2 π ),且正切 值等于x的角 arccotx表示属 于(0,π)且余切 值等于x的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- 2 π , 2 π ][0,π](- 2 π , 2 π )(0,π)单调性 在〔-1,1〕上是增 函数 在[-1,1]上是 减函数 在(-∞,+∞)上是增 数 在(-∞,+∞)上 是减函数

反三角函数及性质

函数y=sinx,x∈[-π/2,π/2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x∈R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx,x∈[-π/2,π/2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1,1],值域[-π/2,π/2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx,注意x的取值范围:x∈[-1,1] 导函数: ,导函数不能取|x|=1 , 反正弦恒等式 sin(arcsinx)=x,x∈[-1,1] (arcsinx)'=1/√(1-x^2) arcsinx=-arcsin(-x) arcsin(sinx)=x ,x属于[0,π/2]

反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,则arccos(b) = a; 它的值是以弧度表达的角度。定义域:【-1,1】。 由于是多值函数,往往取它的单值支,值域为【0,π】,记作y=arccosx,我们称它叫做反三角函数中的反余弦函数的主值, arctan x 反三角函数中的反正切。意思为:tan(a) = b; 等价于 arctan(b) = a 定义域 :{x∣x∈R} ,值域:y∈(-π/2,π/2) 计算性质: tan(arctana)=a arctan(-x)=-arctanx arctan A + arctan B=arctan(A+B)/(1-AB) arctan A - arctan B=arctan(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x→0时,arctanx~x

反三角函数的概念和性质

反三角函数的概念和性质

反三角函数的概念和性质 一.基本知识: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系; 2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;

1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[- ,], ∴ (A)(B)(D)都不正确。 例二.下列函数中,存在反函数的是(D)。 (A)y=sin x, x∈[-π, 0](B)y=sin x, x∈[, ] (C)y=sin x, x∈[,] (D)y=sin x, x∈[,] 解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。 例三. arcsin(sin10)等于(C)。 (A)2π-10 (B)10-2π(C)3π-10 (D)10-3π 解:本题是判断哪个角度的正弦值与sin10相

三角函数与反三角函数图像性质、知识点总结

三角函数 1.特殊锐角( 0°, 30°, 45°, 60°, 90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l ,圆心角为 a (rad ), 半径为 R,面积为 S 角a 的弧度数公式2π×(a /360 °) ①360°=2π rad 角度与弧度的换算②1°=π/180rad ③1 rad= 180°/π=57° 18′≈ 57.3 ° 弧长公式l a R 扇形的面积公式s1lR 2 3.诱导公式:(奇变偶不变,符号看象限)所谓 奇偶指是整数 k 的奇偶性( k· /2+ a) 所谓符号看象限是看原函数的象限(将a 看做锐角, k· /2+ a 之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了 学习指导参考

4. 三角函数的图像和性质: (其中 k z ) ①: 三角 函数 函 数 图 象 定义域 值域 周期 奇偶性 单 调 性 对 称 y sin x R [-1,1] 2 奇 2k , 2k 2 2 2k , 2k 2 2 对称轴 : x k 2 y cosx R [-1,1] 2 偶 2k ,2 k 2k ,2 k 对称轴 : x k y tanx y cotx x k x k 2 R R 奇 非奇非偶 k , k k , k 2 2 对称中心: ( k 2 , 0) 性 对称中心 : ( k , 0) 对称中心 : ( k + 2 , 0) 零值点 x k x k 2 最 x k , y max 1 x 2k , y max 1 ; 2 值 x k , y min 1 y 2k , y min 1 x k x 2 k

三角和反三角函数图像

三角和反三角函数图像-CAL-FENGHAI.-(YICAI)-Company One1

2 三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

3 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ-2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

反三角函数知识梳理

反三角函数知识梳理 1、函数sin ,[,]22 y x x ππ=∈-的反函数叫做反正弦函数,记作arcsin ,[1,1]y x x =∈- 函数arcsin y x =的定义域为[-1,1],值域为[,]22 ππ-,,在[-1,1]上单调递增; 是奇函数,所以arcsin()sin ([1,1])x arc x x -=-∈- 注“arcsin x ”的意义: 表示 [,]22 ππ-上的一个角,且这个角的正弦值为x ,即 sin(arcsin )([1,1])x x x =∈- 其图像是: 2、函数cos ,[0,]y x x π=∈的反函数叫做反余弦函数,记作arccos ,[1,1]y x x =∈- 函数的定义域为[-1,1],值域为[0,]π,在[-1,1]上单调递减;为非奇非偶的函数,其图像关于点(0,)2π中 心对称,所以arccos()arccos ([1,1])x x x π-=-∈- 注“arccos x ”的意义: 表示 [0,]π上的一个角,且这个角的余弦值为x ,即 cos(arccos )([1,1])x x x =∈- 其图像是: 3、、函数tan ,(,)22 y x x ππ=∈-的反函数叫做反正切函数,记作arctan ,y x x R =∈ 函数的定义域为R ,值域为(,)22 ππ-,,在R 上单调递增; 是奇函数,所以arctan()arctan ,()x x x R -=-∈ 注“arctan x ”的意义: 表示 (,)22 ππ-上的一个角,且这个角的正切值为x ,即 tan(arc n )()ta x x x R =∈ 注“arctan x ”的意义: 表示 (,)22ππ -上的一个角,且这个角的正切值为x ,即 tan(arctan )()x x x R =∈ 其图像是 由反三角函数的图像知 当0x >时,arcsin x ∈ ; 当0x <时,arcsin x ∈ 当0x >时,arccos x ∈ ;当0x <时,arccos x ∈ 当0x >时,arctan x ∈ ;当0x <时,arctan x ∈

三角和反三角函数图像+公式

三角和反三角函数图像 +公式 -CAL-FENGHAI.-(YICAI)-Company One1

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1 -1 y=sinx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π-3π-2π4π 3π 2π π -π o y x 1 -1 y=cosx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π -3π -2π4π 3π 2π π -π o y x y=tanx 3π 2 π π 2 - 3π 2 -π- π 2 o y x y=cotx 3π 2 π π 2 2π -π-π 2 o y x 函数y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且 x≠kπ+ 2 π ,k∈Z} {x|x∈R且 x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时 y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=- 1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π] 上都是减函数(k∈Z) 在[2kπ-π, 2kπ]上都是增 函数;在 [2kπ,2kπ+π] 上都是减函数 (k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是增 函数(k∈Z) 在(kπ,kπ+π)内 都是减函数 (k∈Z)

相关主题