搜档网
当前位置:搜档网 › 磁感应强度与磁场强度的区别

磁感应强度与磁场强度的区别

磁感应强度与磁场强度的区别
磁感应强度与磁场强度的区别

磁感应强度:又称磁通密度,单位体积/面积里的磁通量,用于描述磁场的能量的强度的物理量,是一个矢量,符号是B,单位是特(斯拉)(T)。

磁场强度,是在研究磁介质、推导有磁介质的安培环路定理时引入的辅助物理量,无物理意义,是一个矢量,符号是H,单位是按(培)/米(A/m)。

H=B/(真空磁导率)-M,B=(真空磁导率)*(1+相对磁导率)*H=(磁导率)*H

事实上,电场中也有电场强度E和点磁感应强度D。其中,E与B的地位相当。D=(电导率)*E

是磁体周围空间存在的特殊物质产生的特殊物质,没有磁场强度的具体概念!但它的大小应该是用磁场线疏密表示的!一般只会考磁感线的概念..说到磁场强度应该只有大小不包括方向

磁感应强度是矢量,它是磁场本身的性质B=F/IL

还有就是电磁感应部分又叫磁通密度,B=Ф/s 表示单位面积磁感线条数一般解题都是匀强磁场,这两者都可以用B表示。磁感应强度描述磁场的物理量,又叫磁通密度,是矢量,符号是B,单位是特(T)。磁场的特性是对运动电荷、电流有作用力,我们可根据这种作用来定义磁感应强度。

B在磁场中的地位是与电场强度E在电场中所处的地位相对应的。

磁场强度符号是H,是在研究磁介质时引入的一个辅助矢量,并无确切的物理意义,磁感应强度,用来描述磁场的强度。就如同电场强度是描述电场强度的物理。

原本应以此类推称磁感应强度为磁场强度,然而,历史上早已用磁场强度定义了其他物理量,所以不称其为磁场强度,而改称为磁感应强度。

磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。因此,磁场的强弱可以有两种表示方法:

在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。

具体的,B决定了运动电荷所受到的洛仑兹力,因而,B的概念叫H更形象一些。在工程中,B也被称作磁通密度(单位Wb/m2)。在各向同性的磁介质中,B与H 的比值即介质的绝对磁导率

磁场强度H和磁感应强度B的区别,联系和物理意义.

设想你暂时只知道磁场是由磁铁产生, 也知道牛顿力学, 但尚不知道怎么物理上定义“ 磁场” 。 有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“ 电流也产生磁场” 的结论。 进一步,你通过力学(如平行电流线,扭转力矩等的测量,你发现 1. 长直导线外,到导线距离相等的点,磁针感受到的“ 磁场” 强度相同 2. 距离不同的点, “ 磁场” 强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量 H , 2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。 注意这时候不需要用到真空磁导率μ0,因为你只要知道电流 I 就足以定义 H 这个物理量, 没有理由知道μ0这回事儿。 现在,你有了 H ,有了“ 电流能够产生磁场” 这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。 对于一定速度的粒子, 加上刚才的磁场, 通过几何轨道, 牛顿力学, 你可以测出粒子受的力。你发现受的力和电荷数 q 以及速度成正比,也和 H 成正比,但是力 F 并不直接等于 qvH , 而是还差一个因子:F=A*q*vⅹ H , A 只是个待定因子,暂未赋予物理意义。 这个公式多了个外加因子,不好看。现在你开始考虑构建“ 磁导率” 这个概念,因为 H 只是电流外加给的磁场, 你希望通过粒子受力, 直接定义一个粒子感受到的磁场——叫它 B , 使得 F= qvⅹ B 成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场 H 使得粒子受力的响应(如偏转也越大;磁导率如果为零, 那么多大的磁场也不会使得粒子有偏转等力学反应, 磁导率如果近乎无限大, 你只要加一丁点外磁场 H ,粒子就已经偏转的不亦乐乎了。 你开始管这个磁导率叫μ,并且定义μ=B/H。其中 H 是(通过电流外来的, B 是使得粒子偏转的响应。这样,磁导率 =粒子的响应 /外加的场。这个式子有着深刻背

磁感应强度B与磁场强度H的区别和联系

磁感应强度B与磁场强度H的区别和联系 给B和H的关系正名,希望读者耐心看完。设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。你开始管这个磁导率叫μ,并且定义μ=B/H。其中H是(通过电流)外来的,B是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,你发现,粒子处于真空中的时候,这个μ是一个与任何你能想到的物理量都无关的常数,这正是真空磁导率。目前你已经很有成就了:你通过得到了一个外磁场H,并在真空环境下,把这个磁场作用于带q电荷的粒子,你测量粒子受力F= qvⅹB,并且把测量力F和速度v得到的B值与测量电流I得到的H值相除,你便得到了真空磁导率。现在你已经知道了,H与B单位的不同,仅仅是由于你最开始研究力学用的单位,和开始研究电荷、电流的单位的不同,导致的一种单位换算。H从I得来,B从F得来,所以看到的是“施H”与“受B”的关系。(实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以你看到的μ0是个漂亮的严格值,而真空介电常数作为另一种线性响应确是一个长长的实验数字)。既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在你为了简化,将二者单位化为相同单位:B=H;这样你就得到了电磁学里更常用的高斯单位制。如果需要换算,随时添加磁导率即可。你开始进一步研究了。你已经研究了电流产生磁场的效应,以及单个粒子在磁场中的运动。那么,有着大量粒子的各种材料介质,从铁块,到石墨,到玻璃,它们对于磁场的相应是如何呢?现在你通过电流I,把磁场H加到某种材料当中,你所要研究的粒子,不再活在真空,而在材料里活动,它可以是金属里本身自带的电子,也可以是通过外界射束打入的。这都无妨,只需记住现在你要研究的粒子不再在真空,而在介质里。一个粒子受到的力学上的响应,当然是与这个点的总磁场有关。因此,B的意义就变得丰富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。我们管产生的额外磁场大小叫做M。与磁导

磁场强度与磁感应强度之间关系

B与H的关系正名,虽然发在数学吧,但就是就是我在网上目前瞧到唯一没有根本错误的解释。希望读者耐心瞧完。 设想您暂时只知道磁场就是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。 有一天,您用电流做实验。您惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。 进一步,您通过力学(如平行电流线,扭转力矩等)的测量,您发现1、长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2、距离不同的点, “磁场”强度随着距离成反比。这样,您便想要通过力学测量与电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,您就得到了安培环路定理的一般积分形式。 注意这时候不需要用到真空磁导率μ0,因为您只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。 现在,您有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。您心满意足,转移了研究兴趣,开始研究带电粒子的受力。 对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,您可以测出粒子受的力。您发现受的力与电荷数q以及速度成正比,也与H成正比,但就是力F并不直接等于qvH,而就是还差一个因子:F=A*q*vⅹH,A只就是个待定因子,暂未赋予物理意义。 这个公式多了个外加因子,不好瞧。现在您开始考虑构建“磁导率”这个概念,因为H只就是电流外加给的磁场,您希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在您理解的磁导率,就就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,您只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。 您开始管这个磁导率叫μ,并且定义μ=B/H。其中H就是(通过电流)外来的,B就是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正就是理论物理里线性响应理论的雏形。此外,您发现,粒子处于真空中的时候,这个μ就是一个富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再就是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。 2楼 我们管产生的额外磁场大小叫做M。与磁导率一样,为了研究这个额外的磁场M与外加场H

磁感应强度

1 磁感应强度 (flux density):表示磁场内某点的磁场强弱和方向的物理量,单位是特斯拉(T),用符号B表示。其大小可用通电导体在磁场中受力的大小来衡量,即(该导体与磁场方向垂直),其方向与产生磁场的电流的方向遵循右螺旋关系。磁感应强度也叫磁通密度。 2 磁场强度 (magnetizing force):磁场强度H与磁感应强度B的关系是(μ为磁导率),是一种引用的物理量,用来表示磁场与电流之间的关系。 3 磁通 (flux):磁感应强度与垂直于磁场方向的面积的乘积叫做磁通,单位是韦伯(Wb)。 4 磁导率 (permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。物质按导磁性能的不同分为磁性物质(或称铁磁物质,如铁、钴、镍及其合金)和非磁性物质(如铜、铝、橡胶等绝缘材料及空气)。非磁性物质的磁导率近似等于真空的磁导率,而铁磁性物质的磁导率远大于真空的磁导率,即>>。 5 磁滞 (hysteresis):铁磁体在反复磁化的过程中,其磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。 6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。 7 基本磁化曲线 (fundamental magnetization curve):铁磁体磁滞回线的形状与磁感应强度(或磁场强度)的最大值有关,在绘制磁滞回线时,如果对磁感应强度(或磁场强度)最大值取不同的数值,就得到一系列的磁滞回线,连接这些回线顶点的曲线叫基本磁化曲线。 8 磁饱和(magnetic saturation):在磁化曲线中,当磁场强度增加到一定值以后,磁场强度继续增加,而磁感应强度却增加得很少的现象。 9 磁滞损耗 (hysteresis loss):放在交变磁场中的铁磁体,因磁滞现象而产生一些能量损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。 10 磁路 (magnetic circuit):为了使较小的电流产生较大的磁通,常将铁磁性材料做成一定形状的铁心,磁通的绝大部分经过铁心闭合,这种由铁心(含气隙)构成的磁通的通路,称为磁路。 11 磁通势 (magnetomotive force):线圈的匝数N与电流I的乘积称为磁通势F。 12 磁阻 (reluctance):磁阻定义为,其中为磁路的平均长度,S为磁路

磁场强度 H 和磁感应强度 B 的区别,联系和物理意义

设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。 有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。 进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同 2.距离不同的点,“磁场”强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。 注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。 现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。 对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。 这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。 你开始管这个磁导率叫μ,并且定义μ=B/H。其中H是(通过电流)外来的,B是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,你发现,粒子处于真空中的时候,这个μ是一个与任何你能想到的物理量都无关的常数,这正是真空磁导率。 目前你已经很有成就了:你通过得到了一个外磁场H,并在真空环境下,把这个磁场作用于带q电荷的粒子,你测量粒子受力F= qvⅹB,并且把测量力F和速度v得到的B值与测量电流I得到的H值相除,你便得到了真空磁导率。 现在你已经知道了,H与B单位的不同,仅仅是由于你最开始研究力学用的单位,和开始研究电荷、电流的单位的不同,导致的一种单位换算。H从I得来,B从F 得来,所以看到的是“施H”与“受B”的关系。(实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以你看到的μ0是个漂亮的严格值,而真空介电常数作为另一种线性响应确是一个长长的实验数字)。 既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在你为了简化,将二者单位化为相同单位:B=H;这样你就得到了电磁学里更常用的高斯单位制。如果需要换算,随时添加磁导率即可。 你开始进一步研究了。你已经研究了电流产生磁场的效应,以及单个粒子在磁场中的运动。那么,有着大量粒子的各种材料介质,从铁块,到石墨,到玻璃,它们对于磁场的相应是如

磁感应强度和磁导率

磁感应强度B 磁感应强度B可以这样定义,足够小的电流元Idl(I为导线回路中的恒定电流,dl为导线回路中沿电流方向所取的失量线元)在磁场中所受的力最大方向时,所受到的最大力dFmax与Idl的比值: B=dFmax/Idl 恒定磁场中各点的磁感应强度B都具有确定值,它由磁场本身决定,与电流元Idl 大小无关。电流会在其周围产生磁场。一个线圈绕得很紧密的载流螺绕环,总匝数N匝,电流I,利用安培环路定律可以求出螺绕环内离环心O半径r处P点的磁场的磁感应强度B0 B0=μ0NI/2πr 式中:μ0真空磁导率μ0=4πe-7 (N/A^2);N总匝数;I电流,安A。 在SI中,磁感应强度B单位特[斯拉]T,1T=1N/A·m=1Wb/m^2。磁感应强度B的概念比较复杂,有各种定义方法,感兴趣的话可参阅相关参考书1T=10000Gs(高斯) 磁场强度H 磁场强度H与电场中的电位移矢量D相似。 真空中原来的磁场的磁感应强度B0,由于引入磁介质而产生附加磁场,其磁感应强度B’,则磁介质总的磁感应强度B是B0和B’的矢量和,即 B=B0+B’ B与B0的大小比称相对磁导率μr= B/B0 。对于铁磁质磁性很强的材料μr远远大于1。不同的物质对磁场的影响非常大,因此引出了一个辅助矢量——磁场强度H。磁介质内磁场强度H沿闭合路径的环流等于闭合路径包围的所有传导电流的代数和(存在磁介质时的环路安培定理)。 ∮LH·dl=∑LI0i 象电流互感器之类的螺绕环磁场强度H H=NI/2πr r 为到磁环中心的半径。

磁感应强度矢量B与磁场强度矢量H的关系: B=μ0H+μ0M μ0真空磁导率;M磁化强度表示磁介质的磁化程度。试验表明,在各向同性均匀磁介质中,M与H成正比,即 M=χmH 真空中没有介质时,M=0,得出: B0=μ0H M磁化强度表示磁介质的磁化程度,μ0真空磁导率 试验表明,在各向同性均匀磁介质中,B与H成正比,即 B=μ0(1+χm)H=μH 设μr=(1+χm),为相对磁导率 螺绕环中有磁介质的载流螺绕环,磁介质内的磁感应强度B B=μH=μ0μrNI/2πr μr磁介质相对磁导率,μ0真空磁导率。 磁场强度H单位是安/米(A/m)。在磁路设计中H矢量有广泛的应用。在互感器中就是励磁安匝与平均磁路长度的比值H=I·n /L ,一般使用安匝每厘米(A/cm)单位。磁性材料刚开始时O点随着电流nI变大,磁感应强度B也开始缓慢变大,当到a点时电时,B开始急剧变大,当到b点,B增加开始变慢,当到c点H再变大时,B几乎不再变大,我们说材料被磁化到了饱和。达到饱和之后,无论H 怎样增大,材料的磁感应强度也不再增大。此时的磁感应强度称为饱和磁感应强度,用Bs来表示。B-H关系画成曲线,就是材料B-H磁化曲线。饱和磁感应强度是磁性材料的一个重要指标。 在SI中,磁场强度H单位是安[培]每米(A/m)。在磁路设计中H矢量有广泛的应用。 磁导率μ 在各向同性的均匀磁介质中,B与H成正比关系: B=μH

磁场强度与磁感应强度

B=F/IL=F/qv=E/Lv =Φ/S F:洛伦兹力或者安培力 q:电荷量 v:速度 E:感应电动势 Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量 S:面积 描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。 在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。这个物理量之所以叫做磁感应强度。 点电荷q以速度v在磁场中运动时受到力F的作用。在磁场给定的条件下,F的大小与电荷运动的方向有关。当v 沿某个特殊方向或与之反向时,受力为零;当v与此特殊方向垂直时受力最大,为fm。fm与|q|及v成正比,比值与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义为:由正电荷所受最大力fm的方向转向电荷运动方向v 时,右手螺旋前进的方向。定义了B之后,运动电荷在磁场B 中所受的力可表为f =qv×B,此即洛伦兹力公式。 除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力dF=Idl×B来定义B,也就是我们常用的公式:F=ILB 在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N 为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 磁场强度是作用于磁路单位长度上的磁通势,用H表示,单位是安/米,磁场强度是矢量,它的大小只与电流的大小和导体的几何形状以及位置有关,而与导体周围物质的磁导率无关。 磁感应强度是描述磁场在某一点的磁场强弱和方向的物理量,用B表示,单位是特斯拉,磁感应强度是矢量,他的大小不仅决定于电流的大小及导体的几何形状,而且还与导体周围的物质的磁导率有关。 磁场中某点的磁感应强度的大小就等于该点的磁场强度和物质的磁导率的乘积,即B=μH。 师:电场中,比值F/q由谁确定?它反映了什么? 生:由电场确定,反映了电场的强弱。

磁场强度与磁感应强度之间关系

B和H的关系正名,虽然发在数学吧,但是是我在网上目前看到唯一没有根本错误的解释。希望读者耐心看完。 设想你暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”。 有一天,你用电流做实验。你惊讶的发现:通了电的导线能使它附近的小磁针扭转,从而得出了“电流也产生磁场”的结论。 进一步,你通过力学(如平行电流线,扭转力矩等)的测量,你发现1.长直导线外,到导线距离相等的点,磁针感受到的“磁场”强度相同2.距离不同的点,“磁场”强度随着距离成反比。这样,你便想要通过力学测量和电流强度定义一个物理量H,2*pi*r*H=I。对形状稍稍推广,你就得到了安培环路定理的一般积分形式。 注意这时候不需要用到真空磁导率μ0,因为你只要知道电流I就足以定义H这个物理量,没有理由知道μ0这回事儿。 现在,你有了H,有了“电流能够产生磁场”这个概念,有了安培环路定理。你心满意足,转移了研究兴趣,开始研究带电粒子的受力。 对于一定速度的粒子,加上刚才的磁场,通过几何轨道,牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。 这个公式多了个外加因子,不好看。现在你开始考虑构建“磁导率”这个概念,因为H只是电流外加给的磁场,你希望通过粒子受力,直接定义一个粒子感受到的磁场——叫它B,使得F= qvⅹB成立。现在你理解的磁导率,就是一个粒子对外界磁场的受力响应程度:磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零,那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎了。 你开始管这个磁导率叫μ,并且定义μ=B/H。其中H是(通过电流)外来的,B是使得粒子偏转的响应。这样,磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,你发现,粒子处于真空中的时候,这个μ是一个富了,它代表在该点处的总磁场。为什么说“总”磁场呢?考虑空间里的一点,没有材料的时候磁场值为H。现在有了材料,这一点处于材料中,外加场H穿进材料后,材料受H影响产生了一些附加场,在该点处的磁场不再是H了。受外界磁场影响使得材料里也有内部额外磁场的过程,我们叫它“磁化”。我们希望一件事物更加具体,就说把它具体化,希望一个企业有规模,就说把它规模化,同样希望一块材料里面有更多额外磁场,就说把它“磁化”。 2楼

磁通量、磁感应强度与磁场强度

磁通量、磁感应强度与磁场强度 1.磁通量 定义:设在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个平面的磁通量,简称磁通。 公式:Φ=BS,适用条件是B与S平面垂直。如中间图,当S与B的垂面存在夹角θ时, Φ=B·S·COSθ。 单位:在国际单位制中,磁通量的单位是韦伯Weber,符号是Wb,1Wb=1T*m2;=1V*S,是标量,但有正负,正负仅代表穿向。 意义:磁通量的意义可以用磁感线形象地加以说明.我们知道在同一磁场的图示中,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大。因此,B越大,S越大,穿过这个面的磁感线净条数就越多,磁通量就越大。过一个平面若有方向相反的两个磁通量,这时的合磁通为相反方向磁通量的代数和(即相反合磁通抵消以后剩余的磁通量)。磁通密度是通过垂直于磁场方向的单位面积的磁通量,它等于该处磁场磁感应强度的大小B。磁通密度精确地描述了磁力线的疏密。 磁场的高斯定理指出,通过任意闭合曲面的磁通量为零,即它表明磁场是无源的,不存在发出或会聚磁力线的源头或尾闾,亦即不存在孤立的磁单极。以上公式中的B既可以是电流产生的磁场,也可以是变化电场产生的磁场,或两者之和。 2.磁感应强度 定义:磁感应强度(magnetic flux density),描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。这个物理量之所以叫做磁感应强度,而没有叫做磁场强度,是由于历史上磁场强度一词已用来表示另外一个物理量了,区别:磁感应强度是个相互作用力,是两个参考点A与B之间的应力关系,而磁场强度是主体单方的量,不管B方有没有参与,这个量是不变的。

大学物理磁感应强度--作业

《大学物理》作业 磁感应强度 班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________ 一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一磁场的磁感应强度为k c j b i a B ++=(T ),则通过一半径为R ,开口向z 正方向的 半球壳表面的磁通量的大小是: (A) Wb 2a R π (B) Wb 2b R π (C) Wb 2c R π (D) Wb 2abc R π [ C ] 解:如图所示,半径为R 的半球面1S 和半径为R 的圆平面2S 组成一个封闭曲面S 。由磁场的高斯定律0d =???s B 知: c S k s k c j b i a s B s B s s s 22 2 1 d )(d d -=?++-=?-=?=Φ??? c R 2 π-= 故选C 2.边长l 为的正方形线圈,分别用图示的两种方式通以电流I (其中ab ,cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为: (A) 0,021==B B (B) l I B B πμ02122,0= = (C) 0,22201== B l I B πμ (D) l I B l I B πμπμ020122,22== [ C ] 解:根据直电流产生的磁场的公式有: l I l I l I u B πμπμθθπ0 0120122) 2 222(2) sin (sin 2 44=+=-? ? = 对于第二种情况,电流I 流入b 后分流,两支路电流相等,在中心处产生的磁感应强度 大小相等,方向相反,所以:02=B 故选C 3.下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系? d d

磁场强度_百度文库.

2、什么叫磁场强度(H? 1820年,丹麦科学家奥斯特(H. C. Oersted发现通有电流的导线可以使其附近的 磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成 反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为 1A/m(安/米,国际单位制SI;在CGS单位制(厘米-克-秒中,为纪念奥斯特对电磁学的 贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为 1Oe(奥斯特, 1Oe=1/(4π×103 A/m。磁场强度通常用H表示。 如果单位磁极所受的力正好是1达因(dyn;1dyn=10-5N,那么这点的场强度H就是1奥斯特(Oe。常用表示单位为安/米(A /m 4、什么叫磁感应强度(B,什么叫磁通密度(B,B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场 又称退磁场---关于退磁场的概念,见9 Q,介质内部的磁场强度并不等于H,而是表现 为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质 的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制(1-1 B=H+4πM (CGS单位制 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs。 对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M几乎 等于0,故在这些介质中磁场强度H与磁感应强度B相等。

磁感应强度B与磁场强度H的区别,联系与物理意义

磁感应强度B与磁场强度H的区别,联系与物理意义 从前学普物的时候,提到了磁感应强度B与磁场强度H这两个概念。因为一直疏于思考,没有仔细想过两者的异同。教材里说,H是人为引入的定义,没有物理意义,也没有多想,全盘接受。至于教材提到的关于H与B谁更基本的争论,我只记住了这个事实,并没有想为什么,很是惭愧,更没有想过为什么这么称呼它们。过去的一年里,逐渐理解固体里的故事,现在回想起来,才理顺清楚它们的意义。 简言之,H是外场,B总场,它们单位不同仅仅是由于来源不同:前者通过电流的磁效应得到,后者通过带电粒子在磁场中的运动定义。B比H更加基本,是由于电流本身就是带电粒子的运动产生,所以粒子模型比电流模型更加基本。 想我们处于19世纪,暂时只知道磁场是由磁铁产生,也知道牛顿力学,但尚不知道怎么物理上定义“磁场”的大小。 1.H来源于Ampere定律。Ampere通做电流做实验,发现长直导线外,到导线距离相等的点,“磁场”大小相同;距离不同的点,“磁场”强度随着距离成反比。这里所谓的“磁场”大小是通过小磁针扭转力矩等力学方式得到的。这样,通过力学测量和已有的电流强度的定义,即可定义一个物理量H,满足2*pi*R*H=I。推广后就是Ampere环路定律。 此时无需真空磁导率μ0,因为只要知道电流I就能定义H这个物理量。 2.B来源于带电粒子的受力。对于一定速度的粒子,加上H磁场,通过轨道测量以及牛顿力学,你可以测出粒子受的力。你发现受的力和电荷数q以及速度成正比,也和H成正比,但是力F并不直接等于qvH,而是还差一个因子:F=A*q*vⅹH,A只是个待定因子,暂未赋予物理意义。 3.磁导率如何引入。这样,H是电流外加给的磁场,通过粒子受力,直接定义一个粒子感受到的磁场,叫它B,为了使得F= qvⅹB成立。即,外施H场,粒子运动感受到的却是B场,这就可以定义磁导率miu =B/H,“率”即比例的意思。磁导率,就是粒子运动(受力)与外界磁的比例,描述前者随着后者的响应。磁导率大,那么同样大的外加磁场H使得粒子受力的响应(如偏转)也越大;磁导率如果为零(不导磁),那么多大的磁场也不会使得粒子有偏转等力学反应,磁导率如果近乎无限大,你只要加一丁点外磁场H,粒子就已经偏转的不亦乐乎。 磁导率=粒子的响应/外加的场。这个式子有着深刻背景,正是理论物理里线性响应理论的雏形。此外,粒子处于真空中的时候,这个miu是一个与任何物理量都无关的常数,这正是真空磁导率。 4.小结。H与B单位的不同,仅仅是由于最开始研究力学用的单位,和开始研究电荷、电流的单位完全独立,导致的一种单位换算。H从I得来,B从F得来,所以看到的是“施H”与“受B”的关系。实际过程还要复杂些,因为先研究的是电场的情形,然后导出了磁场下的情况,所以我们看到的μ0是个漂亮的严格值,而真空介电常数,另一种线性响应确实是一个长长的实验数字。 5.方便的高斯制。既然知道了B与H单位不同只是由于电流和牛顿力学导致的,现在为了

磁感应强度 几种常见的磁场

磁感应强度几种常见的磁场 【自主学习】 1.磁感应强度:将一小段通电直导线垂直磁场放置时,其受到的磁场力F与电流强度I成____ 、与导线的长度l成________,其中F/Il是与通电导线长度和电流强度都___________的物理量,它反映了该处磁场的________________,定义F/Il为该处的___________.其单位为_______,方向为该点的磁感线的_________,也是小磁针在该处静止时N极的____________。 2.安培力的计算公式:(B⊥I) 3.磁场的叠加:磁感强度是矢量,空间某点的磁场的叠加遵循。4.安培分子电流假说:安培的分子电流假说是用来解释磁铁为什么能产生磁场的,在这个假说中安培认为:原子和分子等物质微粒内部,存在一种___________(也叫做分子电流),每一个__________产生的磁场使物体微粒成为一个________,安培分子电流假说指出,磁铁的磁场和电流的磁场一样,都是由电荷的_______产生的. 5.磁通量:在匀强磁场中,如果有一个与磁感应强度B垂直的平面,其面积为S,定义φ=________为穿过这个平面的磁通量,单位是,简称,符号为。如果平面与磁感应强度方向不垂直时:①考虑到磁感应强度是矢量,可以分解为平行于平面的分量和垂直于平面的分量,由于平行于平面的分量并不穿过平面,所以磁通量数值上等于垂直于平面的分量与面积的乘积,φ = B sinα·S = BS sinα;②磁感应强度不分解,将平面的面积做投影,磁通量数值上等于磁感应强度与投影面积的乘积,φ= B⊥S= BS sinα。不管用哪种方法来计算磁通量的值,必须保证φ= BS中的磁感应强度与平面垂直。 6.磁通密度:穿过单位面积的磁通量称为磁通密度,根据这一定义,磁通密度与磁感应强度数值上是等价的,即B=_______。磁感线越密处(磁通密度越大),磁场的磁感应强度越大,磁感线越稀疏处,(磁通密度越小),磁场的磁感应强度越小。 【范例精析】 〖例1〗一小段通电直导线放在空间某个区域中不受到安培作用,能否说导线所在的区域的磁感应强度为零? 〖说明〗在电场中某点电荷不受电场力,可以肯定该点的电场强度等于零;磁场力比电场力复杂,通电导线与磁感线平行时是不受到安培力的,真是由于这一缘故,我们不能从安培力为零来推证磁感应强度也一定为零. 〖例2〗试比较电场强度的定义E = F/q和磁感应强度的定义B = F/Il有什么相似之处。 〖说明〗物理学中用比值法来定义的物理量很多,例如:物质的密度、物质的比热容、电容器的电容、导体的电阻等等,凡是用比值来定义的物理量遵循同样的规律,比值与分子、分母所代表的物理量的具体大小无关,因此不能单纯从数学角度来理解这些物理概念,如不能理解为电场强度E与试探电荷受到的电场力F成正比,与试探电荷的电量成反比。

磁感应强度的概念_磁感应强度的磁感线_磁感应强度公式

磁感应强度的概念磁感应强度的磁感线磁感应强度公式 n 磁感应强度的概念 磁感应强度(magnetic flux density ),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T) 磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱 使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

磁感应强度的定义公式 磁感应强度公式B=F/ (IL ) 磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。 如果是电磁铁,那么B与I、匝数及有无铁芯有关。 物理网很多文章都建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。 R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I 来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下 B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运 算时遵循矢量运算法则(左手定则)。

描述磁感应强度的磁感线 在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。 磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。 磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S 极到N 极。 磁感线都有哪些性质呢? 1.磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 2.磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N; 3.磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。

磁感应强度 经典练习题(含 答案详解)

磁感应强度的方向 1.有关磁感应强度的方向,下列说法正确的是( ) A.B的方向就是小磁针N极所指的方向 B.B的方向与小磁针在任何情况下N极受力方向一致 C.B的方向与小磁针在任何情况下S极受力方向一致 D.B的方向就是通电导线的受力方向 答案 B 磁感应强度的大小 2.(2013·泰安一中高二检测)关于磁感应强度,下列说法正确的是( ) A.由B=可知,B与F成正比与IL成反比 B.磁场中某一点的磁感应强度由磁场本身决定的,其大小和方向是唯一确定的,与通电导线无关 C.通电导线受安培力不为零的地方一定存在磁场,通电导线不受安培力的地方一定不存在磁场(即B=0) D.通电导线放在磁场中的某点,那点就有磁感应强度,如果将通电导线拿走,那点的磁感应强度就为零 答案 B (时间:60分钟) 题组一 磁感应强度的方向 1.关于磁感强度,正确的说法是( ) A.根据定义,磁场中某点的磁感强度B的方向与导线放置的方向有关B.B是矢量,方向与F的方向一致 C.B是矢量,方向与小磁针在该点静止时S极所指的方向相反 D.在确定的磁场中,某点的磁感应强度方向与该点是否放小磁针无关答案 CD 2.关于磁感应强度的下列说法中,正确的是( )

A.磁感应强度的方向就是小磁针N极的受力方向 B.磁感应强度是标量 C.垂直磁场放置的通电导线的受力方向就是磁感应强度的方向 D.磁感应强度的大小、方向与放入磁场的通电导线的电流大小、导线长度、导线取向等均无关 答案 AD 题组二 对磁感应强度的定义式B=的理解 3.下列说法中正确的是( ) A.磁场中某点的磁感应强度可以这样测定:测出一小段通电导线受到的磁场力F,与该导线的长度L、以及通过的电流I,根据B=可算出该点的B B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=只是定义式,它的大小取决于场源以及磁场中的位置,与B、I、L以及通电电线在磁场中的方向无关 D.放置在磁场中的1 m长的导线,通以1 A的电流,受力为1 N,该处的磁感应强度大小为1 T. 答案 C 4.有一段直导线长1 cm,通过5 A电流,把它置于垂直于磁场中的某点时,受到的磁场力为0.1 N,则该点的磁感应强度的B值大小为( ) A.1 T B.5 T C.2 T D.2.5 T 答案 C 解析 根据B== T=2 T. 5.磁感应强度的单位是特斯拉(T),与它等价的是 ( ) A. B. C. D. 答案 A 解析 当导线与磁场方向垂直时,由公式B=知,磁感应强度B的单位由F、I、L的单位决定.在国际单位制中,磁感应强度的单位是特斯拉,简称T,1 T=1

磁感应强度与磁场强度

磁感应强度与磁场强度 近代物理早已证明,磁场与电场一样,都是一种特殊物质。虽然它们看不见摸不着,但它们都既能表现力的性质又能表现能的性质。电场力的性质可由电场强度(E )这个物质量完全描述;而磁场力的性质既可以用磁感应强度(B )这个物理量来描述,也可以用磁场强度(H )这个物理量来描述。在普通物理电磁学中,磁感应强度和磁场强度又同时出现,同时采用。为什么同一磁场的同一性质可用两种名称不同的物理量来描述?磁感应强度与磁场强度有什么不同,又有什么联系?又如,磁感应强度B 和磁场强度H ,到底哪一个是描述磁场的主要量?哪一个是辅助量?也曾议论纷纷,难以定论。这里我们只能对磁感应强度与磁场强度作一粗浅讨论。 不管怎样,磁感应强度B (以下简称B )与磁场强度H (以下简称H )是两个不尽相同的物理概念。这可从它们各自的意义看出。 B 的常见定义有两种。 (1)用磁场对运动电荷作用力的性质来描述磁场。当运动电荷q 0以速度v 通过磁场中某一确定点P 时,q 0会受到磁力F 的作用,而当q 0沿某特定方向通过P 点时,磁力F 却等于零,此方向称为零力线... 方向。运动电荷q 0在保持速度大小不变的情况下垂直于零力线方向通过P 点时,受磁力最大,且此最大磁力F max 与q 0的电量成正比。于是,定义B 的大小为B =F max q 0v ,B 的方向为F max ×v 的方向,具体可按右手螺旋法(见下图)决定。 (2)用电流元在磁场中受力特性来描述磁场。当我们把检验电流元Id l 出放在磁场中某一给定处时,电流元受到的磁力与自身的取向有关,在某特殊方向及与之相反的方向上, 电流元不受磁力,而将电流元转过π2 ,即电流元在垂直于上述特殊方向电流元受的磁力最 大。于是,定义磁场中某一点磁感应强度力小为B =F max Id l ,磁感应强度的方向为F max ×Id l 的方向。 总之不管是按第一种方法定义,还是按第二种方法定义磁强度B ,结果是一致的。磁场中某一点B 的方向实际上都是小磁针的北极在该点稳定时所指示的方向。 磁场强度H 也有两种定义方法。 (1)用磁场对“磁荷”的作用特性来描述磁场。1785年库仑仿照研究电场的方法,确立了磁库仑定律:两磁荷间引力和斥力大小与它们的磁荷强度乘积成正比,与它们之间的距 离平方成反比,即F =K q m1·q m2r 2 。由此定义磁场中某一点的磁场强度为:

磁场强度测量方法归类(1)

磁场强度测量方法归类 一、利用安培力计算公式F =BIL 测磁感应强度B 例1. 如图1所示,天平可用来测定磁感应强度,天平的右臂上挂有一矩形线圈,宽度为 l ,共N 匝,线圈下端悬在匀强磁场中,时,在天平左右两边加上质量分别为m m 12、边需再加砝码m ,天平重新平衡。由此可知( 图A. B. C. D. 磁感应强度的方向垂直纸面向外,大小为mg NIl 2。 有:m g m g NBIl 12=+,电流反向后有:B mg NIl = 2,正确答案为B 。 B B ,某课外活动兴趣小组由四个成员甲、乙、B 。假设该处的水流是南北 ) 测出两极间距离L 及与两极相连的测; 测出两极间距离L 及与两极相连的测量电势差的灵敏仪器的读数U ,则B U vL = ; C. 丙将两个电极沿垂直海平面方向插入水流中,测出两极间距离L 及与两极相连的测量

电势差的灵敏仪器的读数U ,则B U vL =; D. 丁将两个电极在水平面上沿任意方向插入水流中,测出两极间距离L 及与两极相连的测量电势差的灵敏仪器的读数U ,则B U vL = 。 分析与解:因需测量地磁场向下的分量B ,而水流方向为南北流向,相当于东西方向的导体切割磁感线,此时E BLv =,所以导体应在垂直于水流方向,即把电极在东西方向插入水中,测出两极距离L 和电压U ,可得B U vL = ,正确答案为B 。 三、利用产生感应电动势时回路的电量与磁感应强度的关系测磁感应强度B 例 3. 物理实验中,常用一种叫“冲击电流计”的仪器测定通过电路的电荷量。如图2所示,探测线圈和冲击电流计串联后,可用来测定磁场的磁感应强度。已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R ,把线圈放在被测匀强磁场中,开始线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,由上述数据可测出被测磁场的磁感应强度为( ) 图2 C. qR nS 2 D. qR S 2 ?Φ=2BS ,线圈产生的平均感I E R =,通过线圈的电量q I t =?,由以上各其原理如图3所示,一块导体高a 、b U ,试求

相关主题