搜档网
当前位置:搜档网 › 理论力学(周衍柏 第二版)第3章习题解答

理论力学(周衍柏 第二版)第3章习题解答

理论力学(周衍柏  第二版)第3章习题解答
理论力学(周衍柏  第二版)第3章习题解答

理论力学习题

班级姓名学号 第一章静力学公理与受力分析(1) 一.是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。() 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。() 3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。() 4、凡是受两个力作用的刚体都是二力构件。() 5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。()二.选择题 1、在下述公理、法则、原理中,只适于刚体的有() ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体)

f(杆AC、CD、整体 )e(杆AC、CB、整体) 四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

班级 姓名 学号 第一章 静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑 接触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体

胡汉才编著《理论力学》课后习题答案第5章习题解答

5-1 凸轮以匀角速度ω绕O 轴转动,杆AB 的A 端搁在凸轮上。图示瞬时AB 杆处于水平位置,OA 为铅直。试求该瞬时AB 杆的角速度的大小及转向。 解: r e a v v v += 其中,22e r v e -=ω e v v e a ωφ==tg 所以 l e l v a AB ωω== (逆时针) 5-2. 平底顶杆凸轮机构如图所示,顶杆AB 可沿导轨上下移动,偏心圆盘绕轴O 转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R ,偏心距e OC =,凸轮绕轴O 转动的角速度为ω,OC 与水平线成夹角?。求当?=0?时,顶杆的速度。 (1)运动分析 轮心C 为动点,动系固结于AB ;牵连运动为上下直线平移,相对运动为与平底平行直线,绝对运动为绕O 圆周运动。

(2)速度分析,如图b 所示 5-3. 曲柄CE 在图示瞬时以ω0绕轴E 转动,并带动直角曲杆ABD 在图示平面内运动。若d 为已知,试求曲杆ABD 的角速度。 解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。 2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1 ωω== A O v BC O (顺时针) 5-4. 在图示平面机构中,已知:AB OO =1,cm 31===r B O OA ,摇杆D O 2在 D 点与套在A E 杆上的套筒铰接。OA 以匀角速度rad/s 20=ω转动, cm 332==l D O 。试求:当?=30?时,D O 2的角速度和角加速度。

理论力学课后习题答案分析

第五章 Lt 习题5-2.重为G的物体放在倾角为a的斜面上,摩擦系数为 所需拉力T的最小值是多少,这时的角9多大? 解:(1)研究重物,受力分析(支承面约束用全反力R表 示), (2)由力三角形得 sin(a +甲」gin[(90J - a + (a + 6)] 千曲")& 皿0 -

??0=甲聽=arctgf T=Gsin(tt +(pJ

习题5-6.欲转动一放在V形槽中的钢棒料,需作用一矩M=15N.m勺力偶,已知棒料重400N,直径为25cm;求棒料与槽间的摩擦系数f。 解:(1)研究钢棒料,受力分析(支承面约束用全反力R表示),画受力图: (2)由力三角形得: R广护血(4亍-趴)& =0co昭5—忙) (3)列平衡方程: Vm o (F) = 0: - M+K血礼x/*+&$in化xr = O 由⑵、(3)得: M=FT[sin(45tf -(p H) + cos(45J -(p fl)]xrx sin(p w =JP>sin(p… x2sin45L,cos(p K 化35° (4)求摩擦系数: Wr =04243

习题5-7. 尖劈顶重装置如图所示,尖劈 A 的顶角为a ,在B块上受重物Q的作用, A、B块间的摩擦系数为f (其他有滚珠处表示光滑);求:(1)顶起重 物所需力P之值;(2)取支力P后能保证自锁的顶角a之值。 解:(1)研究整体,受力分析,画受力图: 列平衡方程 审":-S+JV X=O ■^ = Q 由力三角形得 P 二JV 勰(a+w)二伽(d +v)^?r(ff+) 1 (2)研究尖 劈

理论力学第三章习题解析

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一端 在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 图 题1.3.1 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与 z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两种 情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h ,底 边的长度为a 。底边上两个原子的质量为1m ,顶点上的为2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则Ox , Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

理论力学选择题集锦(含答案)

.. . .. . . 《理论力学》 1-1. 两个力,它们的大小相等、方向相反和作用线沿同一直线。这是 (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力 (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是 (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用围 (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上; (D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动围 (A)必须在同一刚体; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体。 1-6. 作用与反作用公理的适用围是 (A)只适用于刚体的部; (B)只适用于平衡刚体的部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。

1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平 衡的 (A) 必要条件,但不是充分条件; (B) 充分条件,但不是必要条件; (C) 必要条件和充分条件; (D) 非必要条件,也不是充分条件。 1-8. 刚化公理适用于 (A) 任何受力情况下的变形体; (B) 只适用于处于平衡状态下的变形体; (C) 任何受力情况下的物体系统; (D) 处于平衡状态下的物体和物体系统都适用。 1-9. 图示A 、B 两物体,自重不计,分别以光滑面相靠或用铰链C 相联接,受两等值、反向 且共线的力F 1、F 2的作用。以下四种由A 、B 所组成的系统中,哪些是平衡的? 1-10. 图示各杆自重不计,以下四种情况中,哪一种情况的BD 杆不是二力构件? 1-11.图示ACD 杆与BC 杆,在C 点处用光滑铰链连接,A 、B 均为固定铰支座。若以整体 为研究对象,以下四个受力图中哪一个是正确的。 1-12.图示无重直角刚杆ACB ,B 端为固定铰支座,A 端靠在一光滑半圆面上,以下四图中 哪一个是ACB 杆的正确受力图。 B (A) 2 F 1 (B) C B (C) B (D) (A)

理论力学第三章习题

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一 端在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 A G θ图 题1.3.1y x o 2N 1 N B θ θ θ 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两 种情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h , 底边的长度为a 。底边上两个原子的质量为1m ,顶点上的为 2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则 Ox ,Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) y z x o 1m 2 m 图 题2.6.3 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

理论力学题库第3章

理论力学题库——第三章 一、填空题 1.刚体作定轴转动时有个独立变量,作平面平行运动时有个独立 变量。 2.作用在刚体上的力可沿其作用线移动而(“改变”或“不改变”) 作用效果,故在刚体力学中,力被称为矢量。 3.作用在刚体上的两个力,若大小相等、方向相反,不作用在同一条直线 上,则称为。 4.刚体以一定角速度作平面平行运动时,在任一时刻刚体上恒有一点速度 为零,这点称为。 5.刚体作定点转动时,用于确定转动轴在空间的取向及刚体绕该轴线所转 过的角度的三个独立变化的角度称为,其中?称为角,ψ称为角,θ称为角。 6.描述刚体的转动惯量与回转半径关系的表达式是。 7.刚体作平面平行运动时,任一瞬间速度为零的点称为,它 在刚体上的轨迹称为,在固定平面上的轨迹称 为。 8.平面任意力系向作用面内任意一点简化的结果可以归结为两个 基本物理量,主矢和主矩。 9.用钢楔劈物,接触面间的摩擦角为?f。劈入后欲使楔不滑出,则钢楔两 侧面的夹角θ需满足的条件为θ≦2?f。 10.刚体绕O Z 轴转动,在垂直于转动轴的某平面上有A,B两点, 已知O Z A=2O Z B,某瞬时a A =10m/s2,方向如图所示。则此时B点 加速度的大小为5m/s2;与O z B成60度角。 11.如图,杆AB绕A轴以?=5t(?以rad计,t以s计)的规律转 动,上一小环M将杆AB和半径为R(以m计)的固定大圆环连 在一起,若以O1为原点,逆时针为正向,则用自然法表示的点M 的运动方程为s=πR/2+10Rt 。 12. 两全同的三棱柱,倾角为θ,静止地置于光滑的水平地面上, 将质量相等的圆盘与滑块分别置于两三棱柱斜面上的A处,皆从 静止释放,且圆盘为纯滚动,都由三棱柱的A处运动到B处, 则此两种情况下两个三棱柱的水平位移_相等_(填写相等或不相 等),因为两个系统在水平方向质心位置守恒。 13.二力构件是指其所受两个力大小相等、方向相反,并且作用在一条直线上是最简单的平衡力系。 14. 若刚体在三个力作用下平衡,其中两个力的作用线汇交于一点,则第三个力

理论力学题库第五章

理论力学题库——第五章 一、填空题 1.限制力学体系中各质点自由运动得条件称为。质点始终不能脱 离得约束称为约束,若质点被约束在某一曲面上,但在某一方向 上可以脱离,这种约束称为约束。 2.受有理想约束得力学体系平衡得充要条件就是,此即 原理。 3.基本形式得拉格朗日方程为,保守力系得拉格朗 日方程为。 4.若作用在力学体系上得所有约束力在任意虚位移中所作得虚功之与为零, 则这种约束称为约束。 5.哈密顿正则方程得具体形式就是与。 5-1、n个质点组成得系统如有k个约束,则只有3n - k个坐标就是独立得、 5-2、可积分得运动约束与几何约束在物理实质上没有区别,合称为完整约束、 5-3自由度可定义为:系统广义坐标得独立变分数目,即可以独立变化得坐标变更数、 5-4、广义坐标就就是确定力学体系空间位置得一组独立坐标。 5-5、虚位移就就是假想得、符合约束条件得、无限小得、即时得位置变更。 5-6、稳定约束情况下某点得虚位移必在该点曲面得切平面上。 5-7、理想、完整、稳定约束体系平衡得充要条件就是主动力虚功之与为零、 5-8、有效力(主动力 + 惯性力)得总虚功等于零。 5-9、广义动量得时间变化率等于广义力(或:主动力+拉氏力)。 5-10、简正坐标能够使系统得动能与势能分别用广义速度与广义坐标得平方项表示。 5-11、勒让德变换就就是将一组独立变数变为另一组独立变数得变换。 5-12、勒让德变换可表述为:新函数等于不要得变量乘以原函数对该变量得偏微商得与 ,再减去原函数。 5-13、广义能量积分就就是t为循环坐标时得循环积分。 5-14、泊松定理可表述为:若就是正则方程得初积分,则也就是正则方程得初积分、 5-15、哈密顿正则方程得泊松括号表示为: ;。 5-16、哈密顿原理可表述为:在相同始终位置与等时变分条件下,保守、完整力系所可能做得

理论力学课后习题第三章解答

理论力学课后习题第三章解答 3.1解 如题3.1.1图。 均质棒受到碗的弹力分别为,棒自身重力为。棒与水平方向的夹角为。设棒的长度为。 由于棒处于平衡状态,所以棒沿轴和轴的和外力为零。沿过点且与 轴平行的合力矩为0。即: ① ② ③ 由①②③式得: ④ 又由于 即 ⑤ 将⑤代入④得: 图 题1.3.11N ,2N G θl x y A z 0sin 2cos 21=-=∑θθN N F x 0cos 2sin 21=-+=∑G N N F y θθ0cos 2 2 =-=∑θl G c N M i ()θ θ2 2cos 1cos 22-=c l ,cos 2c r =θr c 2cos = θ

3.2解 如题3.2.1图所示, 均质棒分别受到光滑墙的弹力,光滑棱角的弹力,及重力。由于棒处于平衡状态,所以沿方向的合力矩为零。即 ① 由①②式得: 所以 ()c r c l 2224-=o 图 题1.3.21N 2N G y 0cos 2=-=∑G N F y θ0cos 2 2cos 2 =-=∑θθl G d N M z l d = θ3cos 31 arccos ? ? ? ??=l d θ

3.3解 如题3.3.1图所示。 棒受到重力。棒受到的重力。设均质棒的线密度为。 由题意可知,整个均质棒沿轴方向的合力矩为零。 3.4解 如题3. 4.1图。 轴竖直向下,相同的球、、互切,、切于点。设球的重力大小 图 题1.3.32 AB i G ag ρ=1i G bg ρ=2ρz ()BH BF G OD G M z --?=∑2 1sin θ=0sin cos 2sin 2=?? ? ??--θθρθρa b gb a ga ab a b 2tan 22 +=θ图 题1.3.4Ox A B C B C D

理论力学第五章课后习题解答

理论力学第五章课后习题解答 5.1解 如题5.1.1图 杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。杆的自由度为1,由平衡条件: 即 mg y =0① 变换方程 y =2rcos sin -= rsin2① 故 ① 代回①式即 因在约束下是任意的,要使上式成立必须有: rcos2-=0 ① 又由于 题5.1.1图 α=δω0=∑i i r F δδ?c αααsin 2 l ααsin 2l -=c y δδααα?? ? ? ? -cos 2 12cos 2l r 0cos 21cos 2=?? ? ??-δαααl r δαααcos 2l α α cos 2cos 4r l =

cos = 故 cos2= 代回①式得 5.2解 如题5.2.1图 三球受理想约束,球的位置可以由确定,自由度数为1,故。 得 αr c 2α2 2222r r c -() c r c l 2 224- = 题5.2.1图 α()αβsin sin 21r l r x +-=-=()0sin sin 232=+==x r l r x αβ()()()β α αcos 2cos cos cos 321r a r l y r l y r l y -+=+=+=

由虚功原理 故 ① 因在约束条件下是任意的,要使上式成立,必须 故 ① 又由 得: ① 由①①可得 5.3解 如题5.3.1图, ()()()δαδα δββ αδαδαδαδαδαδ?++-=+-=+-=sin 2sin sin sin 321r r l y r l y r l y 01 =?=∑=i n i i r F δδω()()()0sin 2sin sin sin 0 332211=?++-+-+-=++δαδα δβ β αδααδααδαδδδr r l r l r l y P y P y P δα()0sin 2sin 3=++-δα δβ β αr r l ()α β δβδαsin 3sin 2r l r +=()αδαβδβδcos cos 21r l r x +-=-=()α β δβδαcos cos 2r l r +=αβtan 3tan = 题5.31图

理论力学习题答案第三章

第三章思考题解答 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。 答物体上各质点所受重力的合力作用点即为物体的重心。当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。 答 当物体为均质时,几何中心与质心重合;当物体的大 小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故 ()()i i i i i i O F O O r F r M ?'-'=?'= ∑∑'()∑∑?'-?'=i i i i i F O O F r ∑?'+=i i o F O O M 即o o M M ≠' 主矢不变,表明刚体的平动效应不变,主矩随简化中心的 位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。设O 和O '对质心C 的位矢分别为C r 和C r ',则C r '=C r +O O ',把O 点的主矢∑=i i F F ,主矩o M 移 到C 点得力系对重心的主矩 ∑?+=i i C o C F r M M 把O '为简化中心得到的主矢∑= i i F F 和主矩o ' M 移到 C 点可得 ∑?+'=i i C o C F r M M ()∑?'-'+=i i C o F O O r M ∑?+=i i C o F r M 简化中心的改变引起主矩的改变并不影响刚体的运动。事实上,简化中心的选取不过人为的手段,不会影响力系的物理效应。 3.5 答 不等。如题3-5图示, l 题3-5图 dx l m dm = 绕Oz 轴的转动惯量 2 22434 2 4131487?? ? ??+≠==? -l m ml ml dx l m x I l l z 这表明平行轴中没有一条是过质心的,则平行轴定理 2md I I c +=是不适应的 不能,如3-5题。但平行轴定理修改后可用于不过质心的二平行轴。如题3-6图所示, B l 题3-6图

胡汉才编著《理论力学》课后习题答案第3章习题解答

3-3在图示刚架中,已知kN/m 3=m q ,2 6=F kN ,m kN 10?=M ,不计刚架自重。求固定端A 处的约束力。 m kN 12kN 60?===A Ay Ax M F F ,, 3-4杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。对于给定的θ角,试求平衡时的β角。 A θ 3 l G β G θB B F A R F 3 2l O 解:解法一:AB 为三力汇交平衡,如图所示ΔAOG 中 βsin l AO =, θ-?=∠90AOG ,β-?=∠90OAG ,βθ+=∠AGO 由正弦定理:) 90sin(3)sin(sin θβθβ-?= +l l ,)cos 31)sin(sin θβθβ=+l 即 βθβθθβsin cos cos sin cos sin 3+= 即 θβtan tan 2= )tan 2 1arctan(θβ= 解法二:: 0=∑x F ,0sin R =-θG F A (1) 0=∑y F ,0cos R =-θG F B (2) 0)(=∑F A M ,0sin )sin(3 R =++-ββθl F l G B (3) 解(1)、(2)、(3)联立,得 )tan 2 1 arctan(θβ= 3-5 由AC 和CD 构成的组合梁通过铰链C 连接。支承和受力如图所示。已知均布载荷强度 kN/m 10=q ,力偶矩m kN 40?=M ,不计梁重。

kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;; 解:取CD 段为研究对象,受力如图所示。 0)(=∑F C M ,024=--q M F D ;kN 15=D F 取图整体为研究对象,受力如图所示。 0)(=∑F A M ,01682=--+q M F F D B ;kN 40=B F 0=∑y F ,04=+-+D B Ay F q F F ;kN 15-=Ay F 0=∑x F ,0=Ax F 3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。已知起重机重P1 = 50kN ,重心在铅直线EC 上,起重载荷P2 = 10kN 。如不计梁重,求支座A 、B 和D 三处的约束反力。 解:(1)取起重机为研究对象,受力如图。 0)(=∑F F M ,0512P R =--W F F G ,kN 50R =G F (2)取CD 为研究对象,受力如图

理论力学(机械工业出版社)第三章空间力系习题解答.

习 题 3-1 在边长为a 的正六面体上作用有三个力,如图3-26所示,已知:F 1=6kN ,F 2=2kN ,F 3=4kN 。试求各力在三个坐标轴上的投影。 图3-26 kN 60 1111====F F F F z y x 0kN 245cos kN 245cos 2222== ?=-=?-=z y x F F F F F kN 3 3 433kN 3 3 433kN 3 34333 33 33 3==-=-===F F F F F F z y x 3-2 如图3-27所示,已知六面体尺寸为400 mm ×300 mm ×300mm ,正面有力F 1=100N ,中间有力F 2=200N ,顶面有力偶M =20N ·m 作用。试求各力及力偶对z 轴之矩的和。 图3-27 203.034 44.045cos 2 1-?+??-=∑F F M z m N 125.72034 240220?-=-+ -= 3-3如图3-28所示,水平轮上A 点作用一力F =1kN ,方向与轮面成a=60°的角,且在过A 点与轮缘相切的铅垂面内,而点A 与轮心O '的连线与通过O '点平行于y 轴的直线成b=45°角, h =r=1m 。试求力F 在三个坐标轴上的投影和对三个坐标轴之矩。 图3-28 N 354N 225045sin 60cos 1000sin cos ==????==βαF F x N 354N 225045sin 60cos 1000cos cos -=-=????-=-=βαF F y

N 866350060sin 1000sin -=-=??-=-=αF F z m N 25845cos 18661354cos ||||)(?-=???-?=?-?=βr F h F M z y x F m N 96645sin 18661354sin ||||)(?=???+?=?+?=βr F h F M z x y F m N 500160cos 1000cos )(?-=???-=?-=r F M z αF 3-4 曲拐手柄如图3-29所示,已知作用于手柄上的力 F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,a=30°。试求力F 对 x 、y 、z 轴之矩。 图3-29 N 2530sin 100sin sin 2=??==ααF F x N 3.43N 32530cos 30sin 100cos sin -=-=????-=-=ααF F y N 6.8635030cos 10030cos -=-=??-=?-=F F z 3 .03504.0325)(||||)(?-?-=+?-?-=CD AB F BC F M z y x F m N 3.43325?-=-= m N 104.025||)(?-=?-=?-=BC F M x y F m N 5.73.025)(||)(?-=?-=+?-=CD AB F M x z F 3-5 长方体的顶角A 和B 分别作用力F 1和F 2,如图3-30所示,已知:F 1=500N ,F 2=700N 。试求该力系向O 点简化的主矢和主矩。 图3-30 N 4.82114100520014 25 221R -=--=? -?-='F F F x N 2.561141501432R -=-=?-='F F y N 7.4101450510014 15 1 21R =+=? +?='F F F z N 3.10767.410)2.561()4.821(222R =+-+-='F

周衍柏理论力学教学总结

周衍柏理论力学教学总结 篇一:理论力学总结 理论力学总结 姓名:黄亚敏班级0911物理学学号:20XX110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。 初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么 ?didt??did?d?dt ????j , ? djdt ? ?djd?d?dt ?????i?,即曲线上的某点p的沿位矢方向的坐标i对 时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后

来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算 ?? 因为我开始的错误理解是:i与时间没有关系,因为在直角坐标系中,并没有对i求??? 导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,?? 单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这????? ?里的单位矢量i,j是一个变量。求得的速度加速度表达式为v??ri??rj,??? 2??????)ja?(??r?r?)i?(r??2r ,还可以用自然坐标算出加速度,表达式简单一些,但前 ??ds? v?vi?i dt 提是要清楚曲线的曲率半径?,才会简化加速度表达式,为 ?? 2?2?dvdsdsdidv?v? a??i??i?j2 dtdtdtdtdt? ,

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解: R v R v A A == ω R v R v B B 22== ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v A B

周衍柏《理论力学》教案分析力学

第五章分析力学 本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程. 第一节约束和广义坐标 一、约束的概念和分类 加于力学体系的限制条件叫约束. 按不同的标准有不同的分类: 按约束是否与时间有关分类:稳定约束、不稳定约束; 按质点能否脱离约束分类:可解约束、不可解约束; 按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束). 本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系. 二、广义坐标 1、自由度 描述一个力学体系所需要的独立坐标的个数叫体系的自由度. 设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K) 2、广义坐标 描述力学体系的独立坐标叫广义坐标.例如:作圆周运动的质点只

须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点, 由极角θ和描述,自由度为2. 第二节虚功原理 本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理. 一、实位移与虚位移 质点由于运动实际上所发生的位移叫实位 移;在某一时刻,在约束允许的情况下,质点可 能发生的位移叫虚位移. 如果约束为固定约束,则实位移是虚位移中 一的个;若约束不固定,实位移与虚位移无共同之处.例如图 5.2.1 中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移 不一致. 二、理想约束 设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功. 若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束.光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束. 三、虚功原理 1、文字叙述和数学表示: 受理想约束的力学体系,平衡的充要条件是:作用于力学体系的

理论力学课后习题及答案解析..

第一章 习题4-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力 偶,大小是260Nm,转向是逆时针。 习题4-3.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是: 取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 1word版本可编辑.欢迎下载支持.

2word 版本可编辑.欢迎下载支持. 如图所示; 将R B 向下平移一段距离d ,使满足: 最后简化为一个力R ,大小等于R B 。 其几何意义是:R 的大小等于载荷分布的 矩形面积,作用点通过矩形的形心。 (2) 取A 点为简化中心,平行力系的主矢是: 平行力系对A 点的主矩是: 向A 点简化的结果是一个力R A 和一个力偶M A ,且: 如图所示; 将R A 向右平移一段距离d ,使满足: 最后简化为一个力R ,大小等于R A 。其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。解:(1) 研究AB杆,受力分析,画受力图:列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 3word版本可编辑.欢迎下载支持.

列平衡方程: 解方程组: 反力的实际方向如图示。校核: 结果正确。(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程: 解方程组: 4word版本可编辑.欢迎下载支持.

理论力学周衍柏第三版第二章习题答案

第二章习题解答 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θ θθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 解 建立如图图所示的球坐标系

题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 解 建立如题图所示的直角坐标,原来人W 与共同作一个斜抛运动。 y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s

t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w Wv v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 0202uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.4 解 建立如图图所示的水平坐标。 题2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 2211=+x m x m && ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑,以2m 为参照物,则1m 受到一个惯性力21x m F &&-=惯(方向与2m 加速度方向相反)。如图图所示。所以1m 相对2m 下滑。由牛顿第二定律有 θ θcos sin 21111x m g m a m &&+=' ②

理论力学第三版(周衍柏)习题答案

理论力学第三版(周衍柏)习题答案

第一章 质点力学 第一章习题解答 1.1 由题可知示意图如题1.1.1图: { { S S t t 题1.1.1图 设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有: ()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 证明完毕. 1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1. 2.1图. 题1.2.1图 设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过??? ? ?+2110t 小时经过灯塔任意时刻A 船的坐标

()t t x A 15150--=,0=A y B 船坐标0=B x , ?? ????-??? ??+-=t t y B 15211150 则AB 船间距离的平方 ()()2 22B A B A y y x x d -+-= 即 () 2 02 1515t t d -=2 01521115?? ????-??? ??++t t ()2 02 002211225225675900450??? ? ?++++-=t t t t t 2d 对时间t 求导 () ()67590090002 +-=t t dt d d AB 船相距最近,即() 02=dt d d ,所以 h t t 4 30= - 即午后45分钟时两船相距最近最近距离 2 2 min 231543154315??? ???-?+??? ? ? ?=s km 1.3 解 ()1如题1.3.2图 x y C a B A ψ ? r O a 第1.3题图

理论力学(周衍柏第三版)思考题习题答案

第一章思考题解答 1.1答:平均速度是运动质点在某一时间间隔t t t ?+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ?对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在0→?t 的极限情况,二者一致,在匀速直线运动中二者也一致的。 1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度r V 的方向改变也引起θV 的大小改变,另一个θ r 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθ r r a +=。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况 1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若 b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同, 质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。 1.4答:质点在直线运动中只有n a a 而无τ,质点的匀速曲线运动中只有τa a n 而无;质点作变速运动时即有n t a a 又有。 1.5答:dt d r 即反应位矢r 大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量, 而 dt dr 只表示r 大小的改变。如在极坐标系中,j i r θ r r dt d +=而r dt dr =。在直线运动中,规定了直线的正方向后, dt d dt dr r = 。且dt dr 的正负可表示dt d r 的指向,二者都可表示质点的运

相关主题