搜档网
当前位置:搜档网 › 植物蛋白与动物蛋白

植物蛋白与动物蛋白

植物蛋白与动物蛋白
植物蛋白与动物蛋白

阐述植物铁蛋白的结构和功能,重点阐述植物铁蛋白与动物铁蛋白在结构与功能的差异。

潘少香S1******* 农产品加工及贮藏工程

植物铁蛋白的结构

植物铁蛋白是由24个同源或异源亚基所结合成的1个蛋白质复合体,每个亚基包括1个由4股长螺旋组成的束、第5个短的螺旋和1个长的突出环,形成1个中空的蛋白外壳,直径为12~13 nm,壳内含1个复合体状的无机铁核,由细胞中过量铁聚合形成,内径7~8 nm。每分子铁蛋白能以可溶、无毒和生物体可利用的形式储存0~4 500个铁原子不等。所有铁蛋白是由1个球形蛋白质外笼围绕水合铁氧化物而组成,铁原子能够在单一铁蛋白这种铁一蛋白复合物中浓缩。铁蛋白外壳的亚基以4重、3重和2重对称的形式相互排列。在4重与3重轴线上具有离子通道,其中3重轴线附近通道是由亲水残基组成,可结合金属离子如Cd2+、Zn2+、Tb3+或Ca2+等。3重通道是铁的主要通道和Fe2+氧化作用位点,铁离子通过此通道进人核中,在植物和哺乳动物铁蛋白中非常保守。4重对称轴哑单位之间的离子通道比3重轴线上的要窄一些,也是亲水性的。

植物铁蛋白的功能

1调控铁生物功能、维持铁平衡

生物体内铁的氧化还原反应涉及电子传递过程,参与重要的生化反应如光合作用和呼吸作用。铁还是多种酶的辅助因子,参加了许多基本的反应如DNA合成、植物固N作用及植物激素合成。因此,缺铁会造成严重的营养紊乱,从而影响植物的生理代谢|。铁与H202反应产生羟自由基,对植物产生巨大的毒性而损害生物有机体,控制细胞中自由Fe2+对植物防御由氧化胁迫带来的损害非常重要。铁蛋白具有强大的贮铁功能,将高毒性的Fe2+转化为无毒的Fe3+螯合物形式。并通过控制细胞中游离Fe2+浓度防御氧化胁迫对植物带来的损害保持植物体内铁的平衡,为依赖于铁的生理生化过程起暂时性的铁缓冲作用。

2在植物发育过程中的作用

植物铁蛋白在植物体种子形成、叶片衰老或环境中铁的过量积累方面有着重要功能.它可以在种子萌发或质体绿化过程中释放铁,从而调节植物对铁的吸收和释放。

3铁蛋白与非生物胁迫

铁蛋白的积累受各种环境信号的诱导。在寒冷、干旱、机械损伤、衰老、强光照等各种胁迫和重金属、铁过量,烟碱、H202、脱落酸、乙烯等化学物质处理的条件下都发现植物中铁蛋白基因的转录量增加数倍,并有大量的铁蛋白存在,另外,抗坏血酸也影响或参与植物铁蛋白的合成。当植物处于不利的环境下时,氧化胁迫即占主要地位,抗氧化作用的防御能力减弱,由铁介导的自由基的产生增强,导致代谢失调、脂肪过氧化、蛋白质分解和DNA损伤。由于铁蛋白可容纳大量铁,并以稳定的形式储存,所以对植物抵抗氧化胁迫以及提高植物自身的耐受性等方面有重要作用。

4铁蛋白与生物胁迫

植物中大量积累铁蛋白,还可以对一些真菌的感染、病毒引起的坏死等表现出抗性,保护细胞免受因各种环境胁迫而导致的细胞氧化性损伤。在有病害的植物组织如病毒感染和肿瘤等中,都发现有铁蛋白的积累。如当孢囊线虫浸染使根瘤的发育和功能受损后,大豆根部即有铁蛋白的积累。此外,病毒感染和肿瘤也促使铁蛋白积累。铁蛋白通过螯合被感染组织和裂解的组织中过量的铁,可以避免铁毒害,同时也能阻止病原体扩散到其他组织,而大豆根部被线虫感染而引起的铁蛋白合成。也可能是大豆结瘤过程被抑制所致。

5抗氧化功能

所有的铁蛋白都可以在有氧条件下与溶液中的二价铁离子反应,铁离子螯合在内部的空心结构中,抑制铁氧化反应,从而保护细胞不受铁过量引起的氧化损害;而且亚铁氧化中心能利用Fenton反应的反应物阻止自由基的产生,所以认为铁蛋白具有抗氧化功能。在正常的生长条件下,植物铁蛋白天然积累在一些低光合活性的组织中,它们主要在植物的发育过程和植物对环境胁迫的适应性中起作用。在逆境胁迫条件下,植物光合作用中产生的氧自由基及金属离子(主要是铁离子)催化的Fenton反应是氧自由基的主要来源,植物铁蛋白通过贮藏过量的铁,降低植物体细胞内自由铁离子浓度,从而减少氧自由基的产生,降低氧自由基带来的损害。

植物铁蛋白与动物铁蛋白的区别

结构差别:

1动物铁蛋白中,内含子的位置和蛋白的二级结构域相关,而植物铁蛋白的二级结构域与内含子/外显子边界没有明显的关系。

2 铁蛋白外壳亚基的4重对称轴哑单位之间的离子通道比3重轴线上的要窄一些,也是亲水性的,但此结构在动物铁蛋白中却是疏水性的,因此认为此结构是动物和植物铁蛋白的主要区别之一。

3 植物铁蛋白只含H亚基分为H-1、H-2,动物铁蛋白含有H、L两种亚基

功能差别

1 植物铁蛋白与动物铁蛋白的调控方式不同

2 存在部位不同:植物铁蛋白存在于植物亚细胞器中,而动物铁蛋白存在于动物细胞的细胞质中

3 贮铁的目的不同:植物铁蛋白用于非血红素的合成,动物铁蛋白用于血红素的合成

真正好的朋友,从来不需要这些表面功夫。走在这漫漫俗尘,形如微尘的我们,每天忙碌的像只蝼蚁,哪有时间去整那些虚假的表面文章。那些沉淀在岁月里的真情实意,哪一个不是无事各自忙,有事时,却又从不问回报几何的真心相助?

至于那些平日里看上去可以一起打闹,一起吃喝,一起厮混,看似好成一片的人,或许,只是你在多少次的四目相对之时,动了真心,存了真义,是你默默认定对方可称朋友,有困难的时候是你愿意伸以援手,但未必对方一样。

多少看似热情的人,内心是薄情的。而多少看似淡漠的人,内心实则一片温热。那些表面热诚的人,总是相安无事各自好,一旦你有事需要援助,别说大事,就是小事需代劳,你都会发现原来不过情比纸薄,对方远比你自己想的要现实的多。

有些人,自从与你接近,内心就存有一份自己的打算。定是你于他而言,多少有些可用之处。正所谓无事献殷勤,非奸即盗。在这个功利心弥漫的世态下,没有哪一份意外的热情不无所图。不仅是职场如此,男人如此,就连女人也不能免俗。

接孩子的时候,被困高层电梯下不来,一个电话打来,希望能帮忙照看一下放学的孩子。实在的人总是把别人毫不见外的信任,当作是一种荣幸,于是想都不用想就能一口答应。可当你有事需要对方只是代笔签个字这样的举手之劳时,对方都能各种不情愿各种推脱,至此你终是发现,原来人与人之间真不是一杯换一盏的事儿。关键时刻,还是得找那些看似平时不联系,但一开口能力范围之内就愿意为你想办法的人。

多少人天真的以为,认识的人越多,人脉就越广,自己就越厉害,其实,那些所谓的人脉,不过廉价。倘若你没有同等的利用价值,谁会与你建立起所谓的交际?最是谈钱伤感情,也最是感情不值钱。别结识了比自己优秀比自己有能力的人,就觉得有了依靠有了光环,自己不足够优秀,结识谁都没有用。在你困难需求的时候,你开口求助,能够推脱敷衍那算给面子,对你闭门不见佯装不熟也是情理之中。

日久见人心,患难见真情。平时是平时,别把平时当真情。这世上多少人变脸如翻书,有求于你一个样,各自安好一个样,最是有求于他嘴脸陋,让你瞬间就明白,何谓人情凉薄。

随着年龄的增长,人心的不再纯澈,人与人之间的交往就不再那么的纯粹而真心了。也正是因为如此,才更要珍惜那些默默守护在你生活中的朋友。别看平时忙的少有见面,少有聊天,就连微信,都少有私信。但有事儿的时候,只一声招呼,谁能出力都会挺身而出,义不容辞。

真正好的朋友,从来不需要这些表面功夫。走在这漫漫俗尘,形如微尘的我们,每天忙碌的像只蝼蚁,哪有时间去整那些虚假的表面文章。那些沉淀在岁月里的真情实意,哪一个不是无事各自忙,有事时,却又从不问回报几何的真心相助?

至于那些平日里看上去可以一起打闹,一起吃喝,一起厮混,看似好成一片的人,或许,只是你在多少次的四目相对之时,动了真心,存了真义,是你默默认定对方可称朋友,有困难的时候是你愿意伸以援手,但未必对方一样。

多少看似热情的人,内心是薄情的。而多少看似淡漠的人,内心实则一片温热。那些表面热诚的人,总是相安无事各自好,一旦你有事需要援助,别说大事,就是小事需代劳,你都会发现原来不过情比纸薄,对方远比你自己想的要现实的多。

有些人,自从与你接近,内心就存有一份自己的打算。定是你于他而言,多少有些可用之处。正所谓无事献殷勤,非奸即盗。在这个功利心弥漫的世态下,没有哪一份意外的热情不无所图。不仅是职场如此,男人如此,就连女人也不能免俗。

接孩子的时候,被困高层电梯下不来,一个电话打来,希望能帮忙照看一下放学的孩子。实在的人总是把别人毫不见外的信任,当作是一种荣幸,于是想都不用想就能一口答应。可当你有事需要对方只是代笔签个字这样的举手之劳时,对方都能各种不情愿各种推脱,至此你终是发现,原来人与人之间真不是一杯换一盏的事儿。关键时刻,还是得找那些看似平时不联系,但一开口能力范围之内就愿意为你想办法的人。

多少人天真的以为,认识的人越多,人脉就越广,自己就越厉害,其实,那些所谓的人脉,不过廉价。倘若你没有同等的利用价值,谁会与你建立起所谓的交际?最是谈钱伤感情,也最是感情不值钱。别结识了比自己优秀比自己有能力的人,就觉得有了依靠有了光环,自己不足够优秀,结识谁都没有用。在你困难需求的时候,你开口求助,能够推脱敷衍那算给面子,对你闭门不见佯装不熟也是情理之中。

日久见人心,患难见真情。平时是平时,别把平时当真情。这世上多少人变脸如翻书,有求于你一个样,各自安好一个样,最是有求于他嘴脸陋,让你瞬间就明白,何谓人情凉薄。

随着年龄的增长,人心的不再纯澈,人与人之间的交往就不再那么的纯粹而真心了。也正是因为如此,才更要珍惜那些默默守护在你生活中的朋友。别看平时忙的少有见面,少有聊天,就连微信,都少有私信。但有事儿的时候,只一声招呼,谁能出力都会挺身而出,义不容辞。

十食用植物油脂品质检验

综合训练实验实验一食用植物油脂品质检验 标准依据:GB/T 5009.37-2003 食用植物油卫生标准的分析方法 一、目的与要求 1、学习实际样品的分析方法,通过对食用植物油脂主要特性的分析,包括试样的制备分离提 纯、分析条件及方法的选择、标准溶液的配制及标定、标准曲线的制作以及数据处理等内容,综合训练食品分析的基本技能。 2、掌握鉴别食用植物油脂品质好坏的基本检验方法。 二、实验原理与相关知识 食用植物油脂品质的好坏可通过测定其酸价、碘价、过氧化值、羰基价等理化特性来判断: 1、油脂酸价:酸价(酸值)是指中和1.0g油脂所含游离脂肪酸所需氢氧化钾的毫克数。酸 价是反映油脂质量的主要技术指标之一,同一种植物油酸价越高,说明其质量越差越不新鲜。测定酸价可以评定油脂品质的好坏和贮藏方法是否恰当。中国《食用植物油卫生标准》规定:酸价,花生油,菜子油,大豆油≤4,棉子油≤1。 2、碘价:测定碘价可以了解油脂脂肪酸的组成是否正常有无掺杂等。最常用的是氯化碘— 乙酸溶液法(韦氏法)。其原理:在溶剂中溶解试样并加入韦氏碘液,氯化碘则与油脂中的不饱和脂肪酸起加成反应,游离的碘可用硫代硫酸钠溶液滴定,从而计算出被测样品所吸收的氯化碘(以碘计)的克数,求出碘价。常见油脂的碘价为:大豆油120~141; 棉子油99~113;花生油84~100;菜子油97~103;芝麻油103~116;葵花子油125~135; 茶子油80~90;核桃油140~152;棕榈油44~54;可可脂35~40;牛脂40~48;猪油52~77。 碘价大的油脂,说明其组成中不饱和脂肪酸含量高或不饱和程度高。 3、过氧化值:检测油脂中是否存在过氧化值,以及含量的大小,即可判断油脂是否新鲜和 酸败的程度。常用滴定法,其原理:油脂氧化过程中产生过氧化物,与碘化钾作用,生成游离碘,以硫代硫酸钠溶液滴定,计算含量。中国“食用植物油卫生标准(GB2716-85)” 规定:过氧化值(出厂)≤0.15%。 4、羰基价:羰基价是指每千克样品中含醛类物质的毫摩尔数。用羰基价来评价油脂中氧化 产物的含量和酸败劣度的程度,具有较好的灵敏度和准确性。我国已把羰基价列为油脂的一项食品卫生检测项目。大多数国家都采用羰基价作为评价油脂氧化酸败的一项指标。常用比色法测定总羰基价,其原理:羰基化合物和2,4—二硝基苯胺的反应产物,在碱性溶液中形成褐红色或酒红色,在440nm波长下,测定吸光度,可计算出油样中的总羰基价。中国《食用植物油卫生标准》规定:羰基价≤20 mmol/kg。 三、仪器与试剂 (一)实验室提供下列仪器和试剂 1、仪器: (1)碘量瓶250mL; (2)各种分析天平; (3)分光光度计; (4)10ml具塞玻璃比色管; (5)常用玻璃仪器。 2、试剂

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

植物蛋白饮料工艺设计

《食品工厂设计与环境保护》大作业 一工艺流程图 二、设计说明书 市场背景 植物蛋白饮料主要原料为植物核果类籽及植物的种籽。这些籽仁含有大量脂肪、蛋白质、维生素、矿物质等,是人体生命活动中不可缺少的营养物质。植物蛋白及其制品由于不含胆固醇而含大量的亚油酸和亚麻酸,长期食用不仅不会造成血管壁上的胆固醇沉积,而且还对血管壁上沉降胆固醇既有溶解作用。植物籽仁中含有较多的维生素E,可防止不饱和脂肪氧化,去除过剩的胆固醇,防止血管硬化,减少褐斑,有预防老年病的作用。植物蛋白饮料还富含钙、锌、铁等多种物质和微量元素,为碱性食品,可以缓冲肉类,鱼、蛋、家禽、谷物等酸性食品的不良作用。部分人尤其是多数亚洲人体内不含乳搪酶,饮用牛奶有过敏问题,而饮用不含乳糖的植物蛋白饮料就无此问题。 世界上部分地区食物与蛋白供应不足,己成为人类无法回避的问题。根据FAO统计,发展中国家有20%的居民热量不足,60%的居民食物中的蛋白质满足不了要求。这种实际情况,迫使各国政府和人民采取有效措施解决食物与蛋白的供应问题。 我国人民解决了温饱,但饮食结构中缺乏优质蛋白。鉴于我国人多地少及粮食转化为动物蛋白的效率低(即Ikg动物蛋白消耗能源和劳动工本分别高于植物蛋白的9倍和7倍)等因素,中国食品工业协会以及相关部门先后提出发展植物蛋白与动物蛋白并举的方针。 以椰子汁、杏仁露等为代表的植物蛋白饮料将掀起新一波饮料浪潮。《中国饮料行业“十二五”发展规划建议》中,中国饮料工业协会估计,以椰子、大豆、花生、杏仁、核桃等植物果仁、果肉为原料的植物蛋白饮料或将迎来高速发展期。与此同时,包括海南椰岛集团、汇源集团、维他奶等饮料企业纷纷进军植物饮料领域,欲抢占市场先机。据了解,随着饮料行业发展和国内消费者对健康饮料的追求,中国饮料产业结构也在不断调整。《中国饮料行业“十二五”发展规划建议》显示,中国饮料工业协会保守估计,未来五年,我国饮料

饲料用油脂的品质判断

饲料用油脂的品质判断 1.品质注意事项 A.油脂含有高量热能,故对饲料效率的改善效果显著,但劣质油脂的使用,不仅影响生长,中毒死亡的病例时有耳闻,列举如下事例供参考,并应避免。 a)棉籽油:因含有环丙烯脂肪酸及棉酚,会造成孵化率降低、海绵卵及变色卵等异常现象。b)油脂不皂化物中的硬脂(Stearin)与某些农药会结合成贫血因子。 c)某饲料厂曾因仔猪饲料中用了含沥青(柏油)的牛油而发生集体中毒死亡的病例。 d)台湾家禽饲料曾因使用掺有劣质鱼油的进口牛油,造成家禽屠体烹调产生严重异味,致成鸡无人食之。 B.油脂的氧化:油脂在室温下,受氧气的影响而起氧化作用,这种现象称为自动氧化作用,氧气和不饱和脂肪酸的双链发生化合作用,初期产生过氧化物(Peroxide),然后再分解为醛类及酮类,因而产生不快味道和气味(臭油垢味)。氧化后的脂肪品质变差,甚至有中毒的可能,其主要影响有: a)脱毛; b)增重差; c)酶不活化; d)破坏维生素及色素; e)蛋白质与氨基酸不溶化; f)消化率及饲料效率降低; g)下痢; h)拒食。油脂氧化程度随油脂不饱和度、抗氧化剂的种类及其他因素等均影响,如光线、水分、加温及金属离子等均会加速氧化的进行。 C.下述不良脂肪来源应小心用之,并预防污染。 含有蜡的油:鲸油、米糠蜡。 有毒的油:蓖麻油、桐油、菜籽油、棉籽油、高酸油、未中和皂脚。 产生恶臭的油:蚕蛹油、变质鱼油。 2.品质管理项目及其意义 ①总脂肪酸(Total fatty acid):此系包括游离脂肪酸及与甘油结合的脂肪酸总量。动物性或植物性油脂其量通常为92~94%。油脂能量大部分系由脂肪酸供应,因此总脂肪酸量为能量值的指标。 ②游离脂肪酸(Free fatty acid):脂肪分解后会产生游离脂肪酸,故其量可做为鲜度判断的根据,完全饲料所用油脂一般约在15~35%。在营养上而言,游离脂肪酸对动物无害,但太高的游离脂肪酸(50%以上)表示油脂原料不好,对金属机械、器具有腐蚀性,而且会降低适口性。 ③水分(Moisture):油脂中含有水分,不但引起加工装置的腐蚀,同时易使油脂起水解作用产生游离脂肪酸,加速脂肪的酸败,并降低脂肪的能量含量。 ④不溶物或杂质(Insoluble,Inpurities):包括纤维质、毛、皮、骨、金属、砂土……等细小颗粒无法溶解于石油醚的物质。这些物质没有能量价值,而且会阻塞筛网和管口,或在贮存桶造成沉积。其量应限制在0.5以下。 ⑤不可皂化物(Unsaponifiable matter):包括固醇类、碳氢化合物、色素、脂肪醇、维生素……等不与碱发生皂化反应的物质,大部分成分仍有饲用价值,对动物无不良影响,但其中蜡、焦油等则无营养价值,甚至有些问题成分,如水肿因子。 ⑥酸价(Acid Value):酸价虽测定容易,但通常不能单纯以此评价品质,须配合其他方法

QZH 0005 S-2015 山东中惠生物科技股份有限公司 酸水解植物蛋白调味粉

Q/ZH 山东中惠生物科技股份有限公司企业标准 Q/ZH 0005S-2015 酸水解植物蛋白调味粉 2015-06-4发布2015-06-10实施山东中惠生物科技股份有限公司发布

Q/ZH 0005S-2015 前言 根据《中华人民共和国食品安全法》制定本标准。 本标准严格按照GB/T 1.1《标准化工作导则第1部分:标准的结构和编写规则》的要求进行编写。本标准由山东中惠生物科技股份有限公司提出并起草。 本标准主要起草人:赵吉兴 本标准自发布之日起有效期限3年,到期复审。

Q/ZH 0005S-2015 酸水解植物蛋白调味粉 1 范围 本标准规定了酸水解植物蛋白调味粉的技术要求、食品添加剂、生产加工过程卫生要求、检验方法、检验规则、标志、包装、运输与贮存。 本标准适用于以大豆为主要原料,经盐酸水解、过滤、氢氧化钠中和、过滤、脱醇、调配、检验、喷雾、干燥、包装等主要工艺加工制成的酸水解植物蛋白调味粉。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191包装储运图示标志 GB 1352 大豆 GB 1897 食品添加剂盐酸 GB 2760食品安全国家标准食品添加剂使用标准 GB 4789.2 食品安全国家标准食品微生物学检验菌落总数测定 GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群计数 GB 4789.4 食品安全国家标准食品微生物学检验沙门氏菌检验 GB 4789.5 食品安全国家标准食品微生物学检验志贺氏菌检验 GB 4789.10 食品安全国家标准食品微生物学检验金黄色葡萄球菌检验 GB 5009.3 食品安全国家标准食品中水分的测定 GB 5009.5 食品安全国家标准食品中蛋白质的测定 GB/T 5009.11 食品中总砷及无机砷的测定 GB 5009.12 食品安全国家标准食品中铅的测定 GB/T 5009.191 食品中氯丙醇含量的测定 GB/T 5009.39 酱油卫生标准的分析方法 GB 5175 食品添加剂氢氧化钠 GB 5749 生活饮用水卫生标准 GB/T 6543 运输包装用单瓦楞纸箱和双瓦楞纸箱 GB 7718 食品安全国家标准预包装食品标签通则 GB 9683 复合食品包装袋卫生标准 GB 14881 食品安全国家标准食品生产通用卫生规范 SB 10322 pH值测定法 JJF 1070 定量包装商品净含量计量检验规则 国家质量监督检验检疫总局[2005]第75号令《定量包装商品计量监督管理办法》 3 技术要求 3.1 原辅料 3.1.1 大豆 应符合GB 1352的规定。 3.1.2 盐酸 应符合GB 1897的规定。

食用植物油脂品质检验

食用植物油脂品质检验 一、目的与要求 1、学习实际样品的分析方法,通过对食用植物油脂主要特性的分析,包括试样的制备 分离提纯、分析条件及方法的选择、标准溶液的配制及标定、标准曲线的制作以及数据处理等内容,综合训练食品分析的基本技能。 2、掌握鉴别食用植物油脂品质好坏的基本检验方法。 二、实验原理与相关知识 1. 油脂酸价:酸价(酸值)是指中和1.0g油脂所含游离脂肪酸所需氢氧化钾的毫克数。酸价是反映油脂质量的主要技术指标之一,同一种植物油酸价越高,说明其质量越差越不新鲜。测定酸价可以评定油脂品质的好坏和贮藏方法是否恰当。 2. 碘价:测定碘价可以了解油脂脂肪酸的组成是否正常有无掺杂等。最常用的是氯化碘—乙酸溶液法(韦氏法)。其原理:在溶剂中溶解试样并加入韦氏碘液,氯化碘则与油脂中的不饱和脂肪酸起加成反应,游离的碘可用硫代硫酸钠溶液滴定,从而计算出被测样品所吸收的氯化碘(以碘计)的克数,求出碘价。 3. 过氧化值:检测油脂中是否存在过氧化值,以及含量的大小,即可判断油脂是否新鲜和酸败的程度。常用滴定法,其原理:油脂氧化过程中产生过氧化物,与碘化钾作用,生成游离碘,以硫代硫酸钠溶液滴定,计算含量。中国“食用植物油卫生标准(GB2716-85)” 规定:过氧化值(出厂)≤0.15% 。 4. 羰基价:常用比色法测定总羰基价,其原理:羰基化合物和2,4—二硝基苯胺的反应产物,在碱性溶液中形成褐红色或酒红色,在440nm波长下,测定吸光度,可计算出油样中的总羰基价。中国《食用植物油卫生标准》规定:羰基价≤20 mmol/kg。 三、仪器与试剂 (一)实验室提供下列仪器和试剂 1、仪器: 碘量瓶250mL;各种分析天平;分光光度计;10ml具塞玻璃比色管;常用玻 璃仪器。 2、试剂 酚酞指示剂(10g / L);氢氧化钾标准溶液[C(KOH)=0.05mol/L];碘化钾溶液(150g/L);硫代硫酸钠标准溶液(0.1mol / L;韦氏碘液试剂;三氯甲烷(分析纯);环己烷(分析纯);冰乙酸(分析纯);可溶性淀粉(分析纯);饱和碘化钾溶液;精制乙醇溶液;精制苯溶液;2,4-二硝基苯肼溶液;三氯乙酸溶液;氢氧化钾—乙醇溶液; (二)学生自配及标定试剂 1、氢氧化钾标准溶液(0.05mol / L)的标定:(按GB601标定或用标准酸标定)。 2、中性乙醚—乙醇(2+1)混合液:按乙醚—乙醇(2+1)混合,以酚酞为指示剂,用所配的KOH溶液中和至刚呈淡红色,且30s内不退色为止。

油脂质量表征指标

油脂质量表征指标 (1)酸价(acid value)AV 1.定义:中和1克油脂中所含游离脂肪酸所需氢化钾的毫克数。 2.测定原理:油脂经加热后,游离脂肪酸增多,酸价也愈高,故可以酸价来作为劣变油脂之指标。酸价会随加热时间增加。 3.酸价愈高,油脂的发烟点会降低,油炸时容易冒烟,且会有刺鼻味。 (2)过氧化价(peroxide value)POV 1.定义:油脂1000克中所含过氧化物的毫克当量数。 2.测定原理:油脂氧化后会产生过氧化物,过氧化价是测定油脂中的过氧化物含量。过氧化物含量增加至某一程度后,会自行分解,过氧化价又会降低,因此过氧化价仅可作为油脂酸败初期的酸败度指标。 3.过氧化价愈高,油脂酸败油耗味会愈明显。 (3)色泽(color) 1.方法:油脂厂大都依照诺威朋比色计(Lovibond Tintometer)之方法,将试样装于长度5又1/4"液槽中,以诺威朋比色计测定其颜色。通常检测红色R值及黄色Y值,数值愈高,颜色即愈深。 2.油脂在加热后,会引起许多化学反应,导致油脂颜色加深。此外也可由油炸食品的颜色来判定油质量的好坏,通常新鲜的油,所炸出来的食品,颜色是漂亮的金黄色。 (4)油脂稳定性试验(活性氧法)AOM 1.定义:将空气以每秒 2.33ml的速度流经97.8℃,20克油脂使过氧化价POV值到达100所需的时间。此法是用来测定油脂的安定性。AOM值愈高,油脂安定性愈佳。 2.通常精制黄豆油AOM值约10小时;精制棕梠油约50~60小时;氢化植物油之AOM值可达100小时以上。添加抗氧化剂(BHA、BHT、TBHQ)亦可提升AOM 值。 (5)油脂安定性指标OSI 1.定义:将空气以5.5psi 的压力通入5克、120℃的油脂中,使油脂氧化产生可溶性挥发性物质,再利用电极测定水中导电度大小,由此可计算油脂氧化诱导期的时间。 2.油脂安定性愈高,OSI值亦愈大。OSI值可由公式换算成AOM值。

油脂的一般性质

油脂一般知识 一、油脂的分类 按照来源的不同,油脂可分为四大类:水产油脂:如鱼油、鱼肝油等;陆地动物脂肪:如猪油、牛油等;乳脂:如牛乳、羊乳等;植物油脂:是种类最多、产量最大、我们日常生活中最常食用的一类,常见的品种有芝麻油、花生油、豆油、菜油、葵花籽油、玉米油、棉籽油等。 二、植物油脂的分类 1、根据加工精度的不同,植物油可分为原油、四级油、三级油、二级油、一级油等由低到高五个等级: 原油―――俗称毛油,未经任何处理的不能直接供人类食用的油。 成品油――-毛油经处理符合国家成品油质量指标和卫生要求的直接供人类食用的油脂。植物油等级是根据其精炼程度来区分的,一般是从色泽、透明度、气滋味、酸值、过氧化值、水分及挥发物、不溶性杂质、280℃加热试验、溶剂残留等理化指标来判断,并且符合国家卫生标准。全精炼的油(一级、二级)经过脱水、脱酸、脱色、脱胶、脱臭、脱溶,水杂小,色泽浅,无味,酸价、过氧化值较低,无溶剂残留,烟点高;半精炼油(三、四级)经过脱溶、脱酸、脱胶处理,色泽较深,加热后油烟大,有些四级油透明度较差。植物油精炼程度四级最低,一级最高,都符合国家直接食用标准。 2、根据加工工艺的不同,植物油可分为浸出油和压榨油两种: 浸出油―――油料经浸出工艺制取的油。油料预处理后直接(或压榨后)与有机溶剂充分结合,提取制成成品油,是国际上通用的加工方法,优点是出油率高,加工成本低,缺点是有溶剂残留,但经过全精炼以后,基本上可以完全去除溶剂残留,降低水杂、色泽,提高透明度、烟点,常用于豆油、葵花籽油、玉米油等。油脂工业使用的抽提溶剂,是国家专为油料加工生产的专用溶剂,与那些普通汽油有着本质的区别。所以只要成品油达到国家标准要求,都是优质、安全的,可放心食用。 压榨油―――油料经直接压榨制取的油。采用纯物理压榨方式,是我国传统加工方法,优点是安全,产品污染少,且营养成分不易受破坏,保持油脂中原有的气味,能保留油脂中的一些微量成分,缺点是出油率低,成本高并且较难去除黄曲霉毒素残留,常用于花生油、芝麻油等。另外,芝麻香油根据压榨工艺不同又分为小磨水代香油和机制香油。 3、根据油料来源不同,植物油可分为转基因油和非转基因油两种: 转基因油―――用转基因油料制取的油。 三、植物油的基本特性 我们所见的植物油在常温状态下,具有以下几个特点: 1、一般都呈液体状态(棕榈油除外),尤其是在气温较高的夏季。因此,在生产中发现油中漂浮有固体颗粒,就应该引起注意,要认真检查,确认是否混入了杂质;在低温下,油脂会出现凝固现象,如花生油在10℃以下会出现半凝固现象;棉籽油在7℃会出现凝固分层,这都是油脂的固有特性。但一级植物油国家标准要求在0℃下5.5个小时保持澄清透明。 2、与水不能相互溶解。油和水是两种极性不同的物质,在常温状态下,这两种物质不能相互溶解。在当混有水的油往热锅里倒时,会发生向外溅油或溢锅等现象。 3、油的密度比水的密度小。油脂的单位体积所具有的质量叫做油脂密度。在常温状态下水的密度要接近1.0g/ml,而油脂的密度一般在0.91—0.93g/ml之间,这说明油比水要轻。所以油里掺进水时,静置一段时间后,水一般都沉在底部。 4、有热胀冷缩的性质。油脂的密度随温度的变化呈反比变化,温度升高,密度降低,反之,密度升高。 四、植物油营养成分简介: 植物油主要成分是由脂肪酸和甘油化合而成的天然高分子化合物,并含有磷脂、甾醇、维生

植物水解蛋白

植物水解蛋白 一.植物水解蛋白的性质 植物蛋白质水解物(HVP,hydrolyzed vegetable protein)是指在酸或酶的作用下,水解含蛋白质的植物组织所得到的多肽及氨基酸的中间混合胶体溶液,再经加工处理后得到的产物。HVP主要性状为淡黄色至黄褐色液体、糊状体、粉状体或颗粒。糊状体含水分17%-21%,粉状及颗粒状者含水分3%-7%,总氮量5%-14%(相当于粗蛋白25%-87%),2%水溶液的pH 值为5.0-6.5,所含氨基酸组成视所用原料而定,其鲜味物质和程度不尽相当,视所用原料和加工方法而各异。 水解植物蛋白是近年来蓬勃发展起来的新型食品增味剂,它集色、香、味等营养成分于一体,主要作用为鲜味剂、营养强化剂以及肉类香精原料,投放市场以来即为广大消费者认可。由于其谷氨基酸含量较高,逐渐成为取代味精的新一代调味品,并且HVP的制造原料植物蛋白质来源丰富,经水解、脱色、除臭、除杂、调味、杀菌、喷雾干燥等工艺制造而成,可机械化、大规模、自动化生产。 植物蛋白质占世界蛋白供应总量70%以上,其营养价值与动物蛋白质接近,且胆固醇含量低,含有大量人体必需氨基酸,是人类食用蛋白质重要来源。因此,水解植物蛋白作为调味品前景非常广阔。 以下为3种水解蛋白的含量指标 氨基酸大豆蛋白水解产品小麦蛋白水解产品玉米蛋白水解产品 名称 赖氨酸8.62 1.98 1.81 组氨酸 2.89 1.73 2.59 精氨酸7.05 2.97 4.40 苏氨酸 4.06 2.48 3.57 丝氨酸 5.39 3.96 5.70 谷氨酸19.67 40.08 24.12 脯氨酸11.83 15.84 11.93 甘氨酸 5.02 2.23 2.85 丙氨酸 6.05 2.33 7.78 缬氨酸 4.75 3.96 2.07 蛋氨酸0.78 1.98 2.59 异亮氨酸 3.08 7.67 9.08 亮氨酸 3.87 3.47 4.15 酪氨酸0.32 1.00 3.89 苯丙氨酸 3.45 4.46 5.70 天冬氨酸13.17 3.96 7.77 合计100 100 100 二.植物水解蛋白生产工艺 目前,水解植物蛋白常用的方法有酸法和酶法,一般为酸法为主。 1. 酸水解法生产HVP 常用的酸水解方法是:在大豆、小麦、花生、玉米和大米等植物蛋白原料中,加浓盐酸进行加水分解(110℃回流酸解),中和后,经脱色、脱臭、再过滤并浓缩而成浆状体,或喷雾干燥制成粉状成品。

植物蛋白饮料的常见质量问题及控制措施

植物蛋白饮料的常见质量问题及控制措施摘要:本文阐述了植物蛋白饮料在生产、运输、销售、贮存过程中容易出现的坏包、脂肪上浮及蛋白质聚集、絮凝、凝结、沉淀等主要质量问题。从原辅料、加工工艺、加工设备的技术水平、包装材料、贮存等过程,分析其产生原因,并提出相应的控制措施,特别是在乳化稳定剂的使用方面。 植物蛋白饮料是以各种核果类及植物的种子(如花生、核桃、大豆、杏仁、椰子等)为主料,经过原料预处理、浸泡、磨浆、过滤、均质、杀菌等工序,调配制成的植物蛋白饮品。这些产品口味鲜香独特,富含丰富的蛋白质和脂肪,且药食兼备。随着人们对健康、营养的日益关注,植物蛋白饮料的消费日益增长,品种日益增多。 植物蛋白饮料是多种成分组成的一种复杂的分散体系,其分散质为蛋白质和脂肪,分散剂为水,外观呈乳状液态,属热力学不稳定体系。本文针对植物蛋白饮料常见的坏包、脂肪上浮及蛋白质聚集、絮凝、分层、沉淀等质量问题进行分析,并提出相应的解决办法,从而使该类产品质量稳定。 1、坏包 植物蛋白饮料富含蛋白质、脂肪,很容易发生胀罐、胀袋、酸败等变质现象。 原因分析及控制措施: 1.1、原料的选取不当 生产植物蛋白饮料宜选择新鲜、无霉变、成熟度较高的植物籽仁。 1.2、杀菌方式选择不正确 欲达到室温下长期存放产品的效果,有两种杀菌方式可以选择,一种是先灌装,然后经过121℃、保温15~20min的高压杀菌方式;另一种就是采用超高温瞬时杀菌(即UHT法)和无菌灌装。 1.3、杀菌过程控制不当 在高压杀菌过程中,产品在进入杀菌罐之前要分层放置,不能过多、过挤,以防止引起杀菌不透的现象;对UHT-无菌灌装方式,按规定对UHT杀菌机进行有效的CIP清洗,使UHT杀菌机处于正常工作状态,温度显示准确。对于包材必须经过双氧水杀菌,不能有遗漏之处。无菌灌装区域在工作期间应始终处于无菌状态,严格检查封口质量。 1.4、设备、管道的清洗与消毒不彻底 就我国现有的生产工艺条件,要想生产杀菌效果很好的产品,不但杀菌方式的选择、杀菌过程的控制十分重要,而且设备、管道的清洗与消毒也是保证产品品质的一个相当重要的因素。管道的清洗程序如下:①用清水冲洗10~15min;②用生产温度下的热碱性洗涤剂循环10~15min(加浓度为2%-2.5%的氢氧化钠溶液);③用清水冲洗至中性,即pH 值为7;④定期(如每周)用65~70℃的酸性洗涤剂循环15~20min。对于UHT杀菌方式,除按照规定进行有效的CIP清洗外,对UHT杀菌机与无菌灌装机之间的所有管路和无菌罐在进料前,用高温热水循环40min,杀菌前应仔细检查管路活节处有无渗漏现象,检查活节处的密封垫是否完好。 2、脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等 在生产工艺、设备控制相对较好的前提下,产品在货架期内出现的主要问题为产品的稳定性问题(即脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等); 原因分析及控制措施: 2.1、水质不符合软饮料用水要求 水的硬度对植物蛋白饮料的影响,不但会降低蛋白质的提取率(即降低蛋白质的溶解度),而且会引起蛋白质一定程度的变性,从而造成饮料分层及沉淀量增加。所以用水一定要符合软饮料用水要求,特别是水的硬度。 2.2、原料的预处理不当 对于该类产品,原料的预处理是十分关键的。这不但会影响产品的口感和风味,而且对产品的稳定性影响较大。如花生奶,如果花生烘烤过度,会引起蛋白质部分变性,沉淀量增多。一般花生的烘烤温度为120~130℃,时间为20~25min最好。 2.3、均质条件的选择不合适 植物蛋白饮料通过高压均质可减小颗粒直径,在不考虑电荷影响时,颗粒沉降速度符合斯托克斯定律。要使饮料稳定,必须选择沉降速度的最小值,对于特定的蛋白饮料,粒子密度、介质粘度都为定值,无疑是有选择颗粒的最小值,而采用高压均质,使颗粒直径减小,粒子达到微粒化的一个重要措施。其中均质的压力、温度和均质次数是保证均质效果的重要工艺参数。如果均质压力、温度较低,则脂肪、蛋白粒子的直径较大,容易引起颗粒聚集,从而引起脂肪上浮和沉淀。在生产中建议采用两次均质,一次均质压力为20~25MPa,二次均质压力为30~40MPa,均质温度为75℃左右,均质效果较好,颗粒直径可达到1~2μm。 2.4、杀菌强度的控制不当 在杀菌过程中,高温对植物蛋白饮料稳定性的影响主要表现在对蛋白质变性作用的影响。高温使分子

实验十八 脂肪含量及油脂品质检测

实验十八脂肪含量及油脂品质检测 一、目的与要求 1、掌握油脂提取方法; 2、学习实际样品的分析方法,通过对食用植物油脂主要特性的分析,包括试样的制 备分离提纯、分析条件及方法的选择、标准溶液的配制及标定、标准曲线的制作以及数据处理等内容,综合训练食品分析的基本技能; 3、掌握鉴别食用植物油脂品质好坏的基本检验方法。 二实验原理与相关知识 食用植物油脂品质的好坏可通过测定其酸价、碘价、过氧化值、羰基价等理化特性来判断: 1、油脂酸价:酸价(酸值)是指中和1.0g油脂所含游离脂肪酸所需氢氧化钾的毫 克数。酸价是反映油脂质量的主要技术指标之一,同一种植物油酸价越高,说明其质量越差越不新鲜。测定酸价可以评定油脂品质的好坏和贮藏方法是否恰当。 中国《食用植物油卫生标准》规定:酸价,花生油,菜子油,大豆油≤4,棉子油≤1。 2、碘价:测定碘价可以了解油脂脂肪酸的组成是否正常有无掺杂等。最常用的是氯 化碘—乙酸溶液法(韦氏法)。其原理:在溶剂中溶解试样并加入韦氏碘液,氯化碘则与油脂中的不饱和脂肪酸起加成反应,游离的碘可用硫代硫酸钠溶液滴定,从而计算出被测样品所吸收的氯化碘(以碘计)的克数,求出碘价。常见油脂的碘价为:大豆油120~141;棉子油99~113;花生油84~100;菜子油97~103; 芝麻油103~116;葵花子油125~135;茶子油80~90;核桃油140~152;棕榈油44~54;可可脂35~40;牛脂40~48;猪油52~77。碘价大的油脂,说明其组成中不饱和脂肪酸含量高或不饱和程度高。 3、过氧化值:检测油脂中是否存在过氧化值,以及含量的大小,即可判断油脂是否 新鲜和酸败的程度。常用滴定法,其原理:油脂氧化过程中产生过氧化物,与碘化钾作用,生成游离碘,以硫代硫酸钠溶液滴定,计算含量。中国“食用植物油卫生标准(GB2716-85)”规定:过氧化值(出厂)≤0.15%。 4、羰基价:羰基价是指每千克样品中含醛类物质的毫摩尔数。用羰基价来评价油脂 中氧化产物的含量和酸败劣度的程度,具有较好的灵敏度和准确性。我国已把羰

如何解决植物蛋白饮料生产中的常见问题

如何解决植物蛋白饮料生产中的常见问题 问:植物蛋白饮料生产中有哪些常见问题?如何解决? 答:植物蛋白饮料如花生奶、核桃奶、杏仁露、椰奶等奶饮品的营养价值早已被世人所知,但许多厂家在生产中存在这样或那样的问题,如絮凝、沉淀、浮油、水析、色泽较深、香味不够或带有生青味或豆腥味等等。 1.产生絮凝、沉淀 1.1 生产用水的水质不行水的硬度过高,水中铁、锰等离子含量过高,会使蛋白质饮料絮凝沉淀,可以通过对水进行软化处理解决。也可以不对水进行处理,添加一定量的磷酸盐或熬和剂解决。 1.2 pH值过低奶品在灌装杀菌前pH值过低,也会引起蛋白质在高温杀菌过程中絮凝沉淀,所以应该在奶品灌装前用NaOH或NaHCO3溶液调整pH值为7.0左右,使产品的pH值远离蛋白质的等电点。但pH值也不能太高,否则会使产品带有不好闻的碱味,并使奶品的颜色过深。 1.3 杀菌强度过大,冷却不及时中性奶的高温杀菌温度一般为121℃,20分钟,若杀菌温度过高,时间过长,会使蛋白质絮凝、沉淀,颜色加深。解决办法是降低杀菌强度,及时冷却至室温。 1.4 稳定剂使用不当也会产生絮凝沉淀解决办法:若产品油脂含量高,则选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂;脂肪含量较低,则选用爱可瑞牌XGW-ZH01型---植物蛋白饮料乳化稳定剂。 1.5 颗粒太大均质操作不当引起的。解决方法:应该先用胶体磨磨两遍,然后采用二级均质机均质,均质时料液的温度一般为70--80℃,一级压力为30Mpa以上,二级压力为25Mpa左右,使均质后的颗粒达到50微米以下。 1.6 稳定剂的用量不够若产生的沉淀为粉末状而不是絮凝状,则可能是稳定剂用量不够,应适当增加用量。 2. 产品带有生青味或豆腥味产生生青味或豆腥味一般是因为灭酶强度不够或操作不当。对于花生,采用烘烤灭酶,烘烤温度为130--140℃,时间30—40分钟(时间长短与花生的干燥程度有关),也不能烤得不够,否则可能产生絮凝,一般烤到花生皮转色较好。对于大豆,则采用热烫灭酶,快速使大豆中的脂肪氧化酶失活,以免产生豆腥味;采用热水磨浆,同时选用好的香精增强奶的香味。花生奶中添加蝶之舞牌花生香精可以很好的掩盖生花生味。 3. 油圈严重产生原因:乳化稳定剂选用不当;乳化稳定剂添加不足或过头。解决方法:选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂,使用量和使用方法参照产品说明。 4. 水析水析是指产品中的蛋白质从水中析出并呈皱褶状凝聚,悬浮于瓶中上部,瓶的下层为淡黄色的清水层。产生的原因有:稳定剂使用不当;灭菌操作不当;封口不良等。若因稳定剂原因引起的水析,则选用爱可瑞牌XGW-ZH01或ZH02稳定剂就可以解决问题;若是因灭菌操作不当引起水析则采用15ˊ--20ˊ--10ˊ/121℃(即15分钟内升到121℃,接着恒温20分钟,然后快速将温度降到常温)就可以避免水析。若是由于封口不良引起的水析,则只要加强封口检查。 5. 微生物引起的腐败腐败了的奶也会出现上述几种现象。解决方法:改

油脂质量表征指标

……………………………………………………………最新资料推 荐………………………………………………… 油脂质量表征指标 (1)酸价(acid value)AV 1.定义:中和1克油脂中所含游离脂肪酸所需氢化钾的毫克数。 2.测定原理:油脂经加热后,游离脂肪酸增多,酸价也愈高,故可以酸价来作为劣变油脂之指标。酸价会随加热时间增加。 3.酸价愈高,油脂的发烟点会降低,油炸时容易冒烟,且会有刺鼻味。 (2)过氧化价(peroxide value)POV 1.定义:油脂1000克中所含过氧化物的毫克当量数。 2.测定原理:油脂氧化后会产生过氧化物,过氧化价是测定油脂中的过氧化物含量。过氧化物含量增加至某一程度后,会自行分解,过氧化价又会降低,因此过氧化价仅可作为油脂酸败初期的酸败度指标。 3.过氧化价愈高,油脂酸败油耗味会愈明显。 (3)色泽(color) 1.方法:油脂厂大都依照诺威朋比色计(Lovibond Tintometer)之方法,将试样装于长度5又1/4"液槽中,以诺威朋比色计测定其颜色。通常检测红色R值及黄色Y值,数值愈高,颜色即愈深。 2.油脂在加热后,会引起许多化学反应,导致油脂颜色加深。此外也可由油炸食品的颜色来判定油质量的好坏,通常新鲜的油,所炸出来的食品,颜色是漂亮的金黄色。 (4)油脂稳定性试验(活性氧法)AOM 1.定义:将空气以每秒 2.33ml的速度流经97.8℃,20克油脂使过氧化价POV值到达100所需的时间。此法是用来测定油脂的安定性。AOM值愈高,油脂安定性愈佳。 2.通常精制黄豆油AOM值约10小时;精制棕梠油约50~60小时;氢化植物油之AOM值可达100小时以上。添加抗氧化剂(BHA、BHT、TBHQ)亦可提升AOM 值。 (5)油脂安定性指标OSI 1.定义:将空气以5.5psi 的压力通入5克、120℃的油脂中,使油脂氧化产生可溶性挥发性物质,再利用电极测定水中导电度大小,由此可计算油脂氧化诱导期的时间。 2.油脂安定性愈高,OSI值亦愈大。OSI值可由公式换算成AOM值。

植物蛋白饮料制作过程

1. 材料与设备 (1)原料核桃仁、花生仁、鲜奶、奶粉、蔗糖、稳定剂。 (2)菌种嗜热链球菌、保加利亚乳杆菌(绵阳雪宝乳品厂提供)。 (3)仪器与设备FA1004型全自动电子天平、250B生化培养箱、远红外线食品烤炉、食物搅拌器、HH.S21-HI4型电热恒温水浴祸、SS-350型原子吸收分光光度计。 2. 工艺流程 ①核桃仁→浸泡→去皮→磨浆→过滤→核桃浆;②花生仁→焙烤→去皮→浸泡→磨浆→过滤→花生浆;③鲜奶→检测→过滤。 甜味剂、乳化剂、稳定剂 ①+②+③→混合→调配→均质→过滤→ 杀菌→冷却→接种→灌装→发酵→成熟→成品。 3. 操作要点 (1)核桃浆的制备核桃仁先用热水浸泡约20 min后,用7%的氢氧化钠溶液煮沸5 min,用流动水冲洗干净,然后在0.36%~ 0.38%的盐酸溶液中浸泡10 min,再用清水冲洗,将去皮后的核桃仁以1∶4的比例加入60 ℃的软水进行磨浆、过滤,即成核桃浆。 (2)花生浆的制备先将花生在120 ℃烘箱中焙烤17 min。焙烤后的花生仁要做去皮处理,再用60 ℃的温水浸泡4 h,与约80 ℃的水以1∶1的比例进行磨浆,用0.01%氢氧化钠溶液调节pH值,后经过滤得花生浆。 (3)鲜奶处理验收后的鲜奶经过滤,再加入适量脱脂奶粉调节固形物含量。 (4)混合将核桃浆、花生浆、鲜奶,以1∶5∶4的比例混合均匀。 (5)调配将甜味剂、稳定剂、乳化剂分别用蒸馏水溶解后,加入到上述混合液中。 (6)均质将调配好的混合液在20 MPa ~30 MPa压力下均质。 (7)杀菌、冷却、接种杀菌温度应控制在90 ℃,时间为20 min。杀菌后要迅速将混合液冷却到42 ℃~45 ℃。将冷却后的混合乳液接种4%的生产发酵剂。 (8)分装、发酵将接种后的乳液分装后放入生化培养箱中,在44 ℃的温度条件下培养4 h。 (9)冷却、后熟从培养箱中取出发酵产品迅速冷却到10 ℃以下,再放入冰箱中,在2 ℃~5 ℃条件下存放12 h~24 h,即得成品。 4. 结果分析 (1)花生浆制备关键点①烘烤工艺参数的确定。由试验得知,花生仁在高温烘烤时,若箱内温度较高,时间过长时,花生组织便可能受热破坏,蛋白质变性,花生浆稳定性较差,蛋白质量相对较低;温度低时间又短时,有些抗营养因子未被破坏,某些羰基化合物仍然存在,有明显的生腥味。试验结果表明最佳工艺参数是,烘烤温度为120 ℃,时间为17 min。经此条件烘烤后,花生仁的胰原酶阻碍因子、甲状腺肿素、植物性血球凝素及植酸、草酸等成分被破坏或失去活性,可消除食用后的不适症状,避免了成品的生味,还会诱发出各种芳香物。②加水量的确定。磨浆时的加水量对成品的营养成分含量有很大影响。加水量越多,营养成分越易溶出,固形物含量降低,不利于发酵。结果见表1。 (2)核桃浆制备的主要因素核桃蛋白质的溶出率与温度、pH值的变化有关。温度较低时,不利于蛋白质的溶出;温度升高,有利于蛋白质的溶出。经实验确定温度保持在60 ℃为宜。核桃蛋白质是由多种等电点所组成的复杂蛋白质。在等电点时,核桃蛋白以两性离子状态存在,溶解度很低,溶出率也低。在偏离等电点的酸性介质中,蛋白质分子主要

植物蛋白饮料的市场规模发展现状

植物蛋白饮料的市场规模发展现状及因素解析 露露、椰树多年停留在10亿左右的销售规模 以承德露露和海南椰树椰汁为代表的植物蛋白饮料的市场规模一直做不大,相对茶饮料和果汁饮料的市场规模相差甚远。露露和椰树着两个领先品牌多年来也基本徘徊在10亿元左右的销售规模,再往上做就变的非常困难。其主要原因到底是植物蛋白饮料市场规模本身就小,还是对目标消费者及其需求把握不准,以及对消费者需求引导不够呢?北京精准企划凭借15年食品企业成功营销策划的实战经验,我们认为虽然植物蛋白饮料的市场规模没有茶饮料大,但如果生产企业的营销水平不断提高,营销方式不断创新,从现在卖一瓶饮料,发展到卖二瓶,甚至是三瓶,植物蛋白饮料的市场规模必然会成倍增长。就像有了王老吉后,凉茶饮料的市场规模由几个亿变成了150亿以上,一下翻了数十倍。 植物蛋白饮料强势品牌存在的营销漏洞 应该说植物蛋白饮料的知名品牌中承德露露、椰树椰汁和大寨核桃露都是非常努力的企业,在营销方面走在了其它植物蛋白饮料的前面,同时也都表现出了专业的营销水平。尤其是露露的品牌规划和市场规划已接近可口可乐、康师傅这样国际品牌的营销模式。但精准企划认为这三个品牌都还有不足之处,直接影响了产品销量的进一步提升。 承德露露:品牌代言人是许晴。露露美颜坊的卖点是润出自然美丽。品牌传播口号是“我的私房美容饮品”。露露基本代表了植物蛋白饮料营销的最高水准。但也有明显的不足之处,就是没有将品牌传播上升到历史、文化的高度。让自己成为杏仁功效、历史文化的传承者和发扬者,是正宗杏仁饮料的第一品牌。这不仅限制了产品销量的扩大,也为潜在的竞争对手留下的市场机会。 椰树椰汁:广告口号是“喝椰树椰汁,白白嫩嫩”。传播口号太直白,容易引起目标消费者的反感。椰树椰汁有着非常突出的产品力,产品的口感也非常好。就是品牌规划和营销模式一直处在不温不火的状态。没有精准的品牌定位;没有一句能让消费者记住的广告口号;没有提炼出打动消费者的产品卖点。公司网站的设计也完全与椰树椰汁的品牌形象相差甚远。椰树椰汁在营销方面的表现好像有越来越弱的趋势。

油脂特性

[本次讲授内容] 5.3 油脂的物化性质(二) ——食品中油脂在加工贮藏中的变化 [目的要求] 1)掌握脂肪的自动氧化、光敏氧化的机理,脂肪氧化的影响因素;加工贮藏中的脂肪氧化、水解、高温下的反应对油脂品质的影响。 2)了解脂肪酶促氧化的机理,脂肪在高温下的化学反应。 [重、难点] 油脂自动氧化的自由基反应历程;影响氧化的因素;酚类及类胡萝卜素的抗氧化机理。 [教学内容] 5.3 食品中油脂在加工贮藏中的变化 5.3.1脂肪的水解--脂解(lipolysis) 脂肪作为酯类,可以发生“酯”的化学反应。如酯与酸或碱共热的水解、酶催化的水解。 ○脂解(lipolysis)指一定条件下,油脂酯键水解生成游离脂肪酸、甘油、二酰甘油、一酰甘油等的反应。 # 皂化:油脂在碱性条件下的水解称为皂化反应,不可逆。其产物-脂肪酸盐称为“肥皂”。 ——多数水解反应不利于产品质量。 ○加工贮放中的油脂水解反应 1)含油脂的罐头食品的加热杀菌时的部分水解,与温度高和游离脂肪酸存在有关; 2)油炸食品时因高温和高含水量(土豆80%)导致油脂水解为游离脂肪酸(FA)等,高FA 含量使油脂发烟点下降、易冒烟,影响食品风味、品质。衡量油脂中游离脂肪酸含量的指标为酸价。 3)未及时炼油的油料种子、动物脂肪因尚未经高温提炼灭酶而发生酶水解。 5.3.2 异构化(isomerization) 天然油脂中所含不饱和脂肪酸的双键一般为顺式,且双键的位置一般在9,12,15 位上。油脂在受光、热、酸、碱或催化剂及氧化剂的作用下,双键的位置和构型会发生变化,构型的变化称为几何异构,位置的变化称为位置异构。 5.3.3 油脂在高温下的化学变化(-食化新教129) 油脂或含油脂食品在加工中常常遇到高温处理,如油炸烹调、烘烤食品等。油脂经长时间的加热,特别是高温加热,会发生许多不良的化学变化,表现为粘度增高、碘值下降、酸价增高、还有折光率的改变,产生刺激性气味,营养价值下降等。 15

大米蛋白质的酶法水解及其性质研究

大米蛋白质的酶法水解及其性质研究注 王章存姚惠源 (江南大学食品学院,无锡214036) 摘要本文通过三种蛋白酶催化反应动力学特性的比较,确定用碱性蛋白酶Alcalase作为水解大米分离蛋白的酶制剂,并通过正交试验分别获得高溶解性、高发泡性、高乳化性大米蛋白水解物的酶反应条件。本实验所得到的大米蛋白水解物最大溶解度为50.2%,最大发泡力为50m L,最大乳化力为73.6mL/g。 关键词大米蛋白蛋白酶蛋白质水解 0前言 大米蛋白以其合理的氨基酸组成、较高的生物利用率及特有的低敏性等特点被视为优质蛋白质11-32。而在味精和淀粉生产中的大量副产品蛋白质未被充分利用,其主要原因是大米蛋白的水溶性较差,为此大米蛋白的开发利用被列入国家十五科技攻关课题。目前国内外对大米蛋白的提取多采用碱溶技术。作者认为对大米蛋白的开发利用宜首先获得高纯度大米蛋白,然后采用不同的改性方法使其适用于不同的用途。为此作者曾制备蛋白含量达90%的大米分离蛋白粉。当然该分离蛋白的物化功能尚不能满足食品加工的需要。为此本文探讨酶法水解大米分离蛋白(RPI)改善其物化功能性的技术措施。 1材料和方法 1.1材料 大米分离蛋白:由本实验室制备,蛋白质含量89.5%,粗灰分1.2%。 蛋白酶为诺维信公司产品,酶制剂品种是Pro-tamex,Alcalase和Neutrase(标示每g酶活力分别为1. 5,3.0和1.5安森单位)。 市售纯正花生油。 1.2试验方法 1.2.1三种蛋白酶的比较(复合酶Protamex、碱性酶 注:国家十五科技攻关项目 收稿日期:2003-03-11 王章存:男,1963年出生,博士研究生,副教授,粮油食品生物技术研究Alcalase、中性酶Neutrase) 配制5%的大米分离蛋白的悬浊液(pH值为7.0、7.5、7.0分别用于复合酶P(Protamex)、碱性酶A(A-l calase)和中性酶N(Neutrase)试验),酶的用量分别为0.1%(E/S),于50e下保温,每隔30min取样一次,沸水浴中灭酶3min,离心(1000r/min@5min)后,测定上清液中蛋白质含量。 1.2.2酶水解反应条件的优化 采用正交试验方法,以获得高溶解性、高发泡性、高乳化性的蛋白水解物为目的,考查的影响因子是蛋白浓度、酶添加量和反应时间。 每组试验结束后在45e以下真空浓缩和干燥。所得产物用于溶解、发泡和乳化性能指标的测定。1.2.3测定方法 蛋白质含量测定:采用Folin-酚试剂法142。 蛋白质溶解度:以上清液中蛋白质含量占反应体系中蛋白总量的百分比表示。 起泡性测定:取3g样品加50mL去离子水,用0.05mol/LNaOH或HCl调pH7后搅拌30min,再加去离子水至100mL作为测试液(水温为35e),于1000r/min转速下搅拌3min,立即测定泡沫体积。放置30min后测定下层析出液体的体积,以判断泡沫的稳定性。 乳化性测定152:取1%的蛋白质溶液50mL加入纯花生油,并用电导仪监测至电导率下降为零时停止加油,此时滴加花生油的总量即为该蛋白质样品的最大乳化量,以每g蛋白质乳化油的毫升数表示(mL/ g)。 2003年10月第18卷第5期 中国粮油学报 Journal of the Chinese Cereals and Oils Association Vol.18,No.5 Oct.2003

相关主题