搜档网
当前位置:搜档网 › DS18B20温度测量与控制实验报告(20200522034302)

DS18B20温度测量与控制实验报告(20200522034302)

DS18B20温度测量与控制实验报告(20200522034302)
DS18B20温度测量与控制实验报告(20200522034302)

课程实训报告《单片机技术开发》

专业:机电一体化技术班级: 104201 学号: 10420134 姓名:杨泽润

浙江交通职业技术学院机电学院

2012年5月29日

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

温度测量实验报告

温度测量实验报告 上海交通大学材料科学与工程学院 实验目的 1.掌握炉温实时控制系统结构图及其电压控制原理; 2.通过数据采集板卡,对温度信号(输入为电压模拟量)采集和滤波; 3.通过数据采集板卡,输出模拟电压量到调节器; 4.通过观测温度曲线,实施手动调节输出电压,使得温度曲线与理想波形尽量接近; 5.用增量式PID控制算法控制炉温曲线。 实验原理 (一)炉温实时控制系统结构图 (二)输出控制电压与工作电压的关系 加热炉加热电压=板卡输出控制电压×220 10 (三)电压控制原理 (四)温度与电压的关系

温度=电压× 700℃ (五)PID控制算法公式 ?u k= Ae k? Be k ? 1+ Ce(k ? 2) 其中:A=K P(1+ T T I + T D T );B=K P(1+2T D T );C=K P T D T 。 u k=u k ? 1+ ?u(k) 手动控制炉温参数选择及理由 加热电压:4V 理由:本套实验装置加热速度很快,若加热电压过高(高于5V)则会导致升温过快从而有可能损坏实验装置,而若加热电压过低则会导致升温过慢,浪费时间。综合实际情况以及上述分析,本组成员决定将加热电压设置为4V。 PID炉温控制参数选择及理由 表1 PID炉温控制参数 选取理由 周期:由于温度滞后性较大,因此周期应当大一些。此处本组采用了推荐值0.2s。 K P:由实际经验可知,K P的最佳范围在0.5-1.5之间。此处本组取了中间值1。 T I:实际操作过程中,本组同学发现若T I较小,超调量就会很大。所以这里将T I取得大一些,设置为20s。T D:小组成员发现炉温滞后现象非常严重,因此T D不得不调大一些,取成0.9s。

基于单片机的DS18B20温度测量

基于DS18B20的温度测量系统 组员:计佳辰11221120 组员:徐文杰11221110 1.课题要求 测量环境中的温度,以BCD码的形式在LED上显示 2. 设计背景 随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。本设计选用A T89C51单片机作为主控制器件,DS18B20作为测温传感器,通过LM016L 实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。 3.设计方案 3.1总体设计思路方案与系统框图 采用数字温度芯片DS18B20测量温度,输出信号全数字化。采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,DS18B20的DQ与AT89C51的P3.7口相连,与它直接输出温度的数字信号,采用AT89C51单片机控制,温度显示由四位八段LED显示屏完成,LED的D0~D7为8位双向数据端,与AT89C51的P1口相连,系统框图如下图所示。

3.2 DS18B20芯片介绍 DS18B20引脚定义: (1)DQ为数字信号输入输出端 (2)GND为电源地 (3)VDD为外接供电电源输入端温度寄存器(0和1字节) AT89C51 时钟电路复位电路 DS18B20数 字温度传感器 测温物体 图1 显示电路

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

温度测量控制技术

温度测量控制技术 一、目的 1. 学会使用触点温度计,掌握恒温槽的控制技术。 2. 了解恒温槽的构造及各部件的作用,初步掌握其安装和使用方法。 3. 测绘恒温槽的灵敏度曲线。 二、仪器和试剂 玻璃缸恒温槽和超级恒温槽各一套(浴槽、加热器、触点温度计、电子继电器、搅拌器、精密温度计) 三、原理 许多物理化学参数的测定须在恒温条件下进行,一般采用恒温水浴来获得恒温条件,恒温槽是常用的一种以液体为介质的恒温装置,恒温槽包括玻璃缸恒温槽和超级恒温槽。 1.恒温槽的结构 讲解本实验所用玻璃缸恒温槽装置,超级恒温槽的结构。 恒温槽一般由浴槽、温度调节器(水银接点温度计)、继电器、加热器、搅拌器和温度计组成。当浴槽的温度低于恒定温度时,温度调节器通过继电器的作用,使加热器加热;当浴槽的温度高于所恒定的温度时即停止加热。因此,浴槽温度在一微小的区间内波动,而置于浴槽中的系统,温度也被限制在相应的微小区间内而达到恒温的要求。 恒温槽各部分设备介绍如下: ⑴浴槽当控温范围在室温附近时,浴槽常用玻璃槽,便于观察系统的变化情况,浴槽的大小和形状可根据需要而定。在常温下,多采用水作为恒温介质。为避免水分蒸发,当温度高于50℃时,常在水面上加一层石蜡油。 ⑵加热器常用加热器(如电阻丝等)。要求加热器惰性小、导热性好、面积大、功率适当。加热器的功率大小会影响温度控制的灵敏度。 ⑶温度计恒温槽中常以一支0.1℃分度的温度计测量浴槽的温度。 ⑷搅拌器搅拌器以马达带动,常采用调压器调节其搅拌速率,要求搅拌器工作时,震动小、噪声低、能连续运转。搅拌器应安装在加热器的上方或附近,以使加热的液体及时分散,混合均匀。 ⑸温度调节器它是决定恒温槽加热或停止加热的一个自动开关,用于调节恒温槽所要求控制的温度。实验室中常用水银接点温度计(又称水银触点温度计)水银接点温度计下半部为一普通水银温度计,但底部有一固定的金属丝与接点温度计中的水银相连接;在毛细管上部也有一金属丝,借助磁铁转动螺丝杆,可以随意调节改金属丝的上下位置。螺杆的标铁和上部温度标尺相配合可粗略估计所需控制的温度。 浴槽升温时,接点温度计中的水银柱上升,当达到所需恒定的温度时,就与上方的金属丝接触;温度降低时与金属丝断开。通过两引出导线与继电器相连,达到控制加热器回路的断路或通路。 水银接点温度计只能作为温度的调节器,不能作为温度的指示器,恒温槽的温度由精密温度计指示。 水银接点温度计控温精度通常是±0.1℃。当要求更高精度时,可选用控温精度更高的温度调节

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

基于单片机的DS18B20温度测量

基于DS18B20的温度测量系 统 组员:计佳辰11221120 组员:徐文杰11221110 1.课题要求 测量环境中的温度,以BCD码的形式在LED上显示 2. 设计背景 随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,这里设计的数字温度计具有读数方便,测温围广,测温精确,数字显示,适用围宽等特点。本设计选用AT89C51单片机作为主控制器件,DS18B20作为测温传感器,通过LM016L 实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。 3.设计方案 3.1总体设计思路方案与系统框图 采用数字温度芯片DS18B20测量温度,输出信号全数字化。采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,DS18B20的DQ与AT89C51的P3.7口相连,与它直接输出温度的数字信号,采用AT89C51单片机控制,温度显示由四位八段LED显示屏完成,LED的D0~D7为8位双向数据端,与AT89C51的P1口相连,系统框图如下图所示。

3.2 DS18B20芯片介绍 DS18B20引脚定义: (1)DQ为数字信号输入输出端 (2)GND为电源地 (3)VDD为外接供电电源输入端温度寄存器(0和1字节)AT89C51 时钟电路复位电路 DS18B20数 字温度传感器 测温物体 图1 显示电路

DS18B20的测温原理

3.2.3 DS18B20的测温原理 DS18B20的测温原理如图3-2-2-6所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。 图3-2-3-1 DS18B20与处理器连接图 3.2.4 DS18B20与单片机的典型接口设计 以MCS51单片机为例,图3-2-3-1中采用寄生电源供电方式,P1 1口接

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

温度检测与控制实验报告

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。 DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

DS18B20测温流程图

主程序流程图:

DS18B20程序流程图: 程序按数据手册的时序图编写子函数模块: 1、DS18B20复位函数:resetDS18B20(void) 2、写一位的函数:WriteBit (unsigned char wb) 3、读一位的函数:unsigned char ReadBit (void) 4、读一个字节的函数:unsigned char readByteDS18B20(void) 即将位读取的时序循环8次。 5、写一个字节的函数:void writeByteDS18B20(unsigned char Data)。即将位写入的时序循环8次。 6、first和next函数流程图:

1、端口初始化子函数; 2、串口初始化; 3、串口发送一个字符函数:void USART_Putchar(unsigned char send_char) 4、串口发送数组函数:void UsartTransmit(unsigned char *data, unsigned char len) 5、串口发送字符串函数:void USART1_Putstr(char *s) 即通过字符串长度控制USART_Putchar函数的循环次数。6、串口发送字符串子程序(带有换行符): void USART1_Puts(char *s) 7、串口接收字符串函数:unsigned char getchar1(void) 8、串口接收中断子程序:void USART_RXT(void)流程图

1、 数据打包子函数:void Packet_Data(void) 2、

DS18B20温度检测

目录1引言1 2系统描述2 2.1系统功能2 2.2系统设计指标3 3系统的主要元件3 3.1单片机3 3.2温度传感元件4 3.3LCD显示屏7 4硬件电路8 4.1系统整体原理图8 4.2单片机晶振电路8 4.3温度传感器连接电路9 4.4LCD电路10 4.5报警和外部中断电路11

5结论12

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以 简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高了系统能够的抗干扰性,使系统更灵活、方 便。本系统主要实现温度的检测、显示以及高低温的报警。也可以通过单总线挂载 多个DS18B20实现多点温度的分布式监测。 关键词:DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。

温度传感器DS18B20工作原理以及引脚图

温度传感器: DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离 多点温度检测系统。 2 DS18B20的内部结构 DS18B20内部结构如图1所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图2所示,DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源 接线方式时接地,见图4)。 ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+

1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 图2DS18B20的管脚排列 DS18B20中的温度传感器完成对温度的测量,用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S 为符号位。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。 温度值高字节 高低温报警触发器TH和TL、配置寄存器均由一个字节的

基于CC2430和DS18B20的无线测温系统设计

基于CC2430和DS18B20的无线测温系统设计 关键字: CC2430 DS18B20 无线测温系统 目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温系统是一种集温度信号采集、大容量存储、无线射频发送、LED(或LCD)动态显示、控制与通信等功能于一体的新型系统。 本文从低功耗、小体积、使用简单等方面考虑,基于射频SoC CC2430和数字温度传感器DS18B20设计了一个无线测温系统,整个系统由多个无线节点和1个基站组成。无线节点工作在各个测温地点,进行温度数据采集和无线发送。基站与多个节点进行无线通信,并通过数码管将数据显示出来,同时可以通过RS-232串口将数据发送给PC。 CC2430简介 CC2430是TI/ChipconAs公司最新推出的符合2.4G IEEE802.15.4标准的射频收发器.利用此芯片开发的无线通信设备支持数据传输率高达250 kbit/s可以实现多点对多点的快速组网。CC2430的主要性能参数如下: (1)工作频带范围:2.400~2.483 5 GHz;(2)采用IEEE802.15.4规范要求的直接序列扩频方式; (3)数据速率达250 kbit/s码片速率达2 MChip/s; (4)采用o-QPSK调制方式; (5)超低电流消耗(RX:19.7mA,TX:17.4mA)高接收灵敏度(-99 dBm); (6)抗邻频道干扰能力强(39 dB); (7)内部集成有VCO、LNA、PA以及电源整流器采用低电压供电(2.1~3.6V); (8)输出功率编程可控; (9)IEEE802.15.4 MAC层硬件可支持自动帧格式生成、同步插入与检测、16bit CRC 校验、电源检测、完全自动MAC层安全保护(CTR,CBC-MAC,CCM); (10)与控制微处理器的接口配置容易(4总线SPI接口); (11)采用QLP-48封装,外形尺寸只有7×7mm。CC2430只需要极少的外围元器件,其典型应用电路如图2所示。它的外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3个部分。

(完整版)红外测温实验报告

红外测温方法 1.温度测量的基本概念 温度是度量物体冷热程度的物理量。在生产生活和科学实验中占有重要的地位。是国际单位之中的基本物理量之一。从能量角度来看,温度是描述系统不同自由度的能量发布状况的物理量。从热平衡角度来看,温度是描述热平衡系统冷热程度的物理量。从微观上看,温度温度标志着系统内部分子无规则运动的剧烈程度。温度高的物体分子平均动能大,温度低的无题分子平均动能小。早期人们凭感觉出发,凭感觉到的冷热程度来区别温度的高低,这样的出来的结果不准确。研究表明,几乎所有的物质性质都与温度有关。例如尺寸,体积,密度,硬度,弹性模量,破坏强度,电导率,导磁率,光辐射强度等。利用这些性质及其随温度变化规律可进行温度测量。也就是说,温度只能通过物体随温度变化的某些特征来间接测量。而用来测量温度的尺标称为温标。它规定了温度的读数起点(零点)和基本单位。目前国际上用的较多的是华氏温标,摄氏温标,热力学温标和国际实用温标。 2. 红外测温原理,方法和适用范围 2.1红外测温原理 物体处于绝对温度零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波的形式向外辐射能量。波长涉及紫外,可见,红外光区。物体的红外辐射量的大小几千波长的分布与它的表面温度有着十分密切的关系。因此,通过物体自身红外辐射能量便能准确的确定其表面温度。这就是红外辐射测温所应用的原理。 2.2红外测温仪结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内置的算法和目标发射率校正、环境温度补偿后转变为被测目标的温度值。除此之外还应考虑目标和测温仪的环境条件,如温度,气压,污染和干扰等因素对其性能的影响和修正方法。 2.3红外测温仪器的种类 红外测温仪对于原理可分为单色测温仪和双色测温仪。对于单色测温仪,在例行测温时,检测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视场干扰测温读数,造成误差。相反,如果目

DS18B20温度测量设计实验报告2

信息工程学院 成绩课程设计说明书(论文) 题目: 温度测量 课程名称: 单片机课程设计 专业: 电子信息工程 班级: 电信0901 学生姓名: 学号: 31 16 10 设计地点: 3#北603 指导教师: 设计起止时间:2012年5月2日至2012年5月22日

目录 一、设计功能要求: (3) 二、系统总体设计方案: (5) 1、基本设计思想: (5) 2、实施方案论述: (6) 三、系统分析与设计: (6) 1、程序流程图及说明 (6) 2、温度计的的电路设计 (9) 四、源码清单: (12) 五、改进意见与收获体会: (18) 六、主要参考资料: (19)

一、设计功能要求: 本次的设计主要是利用了数字温度传感器DS18B20测量温度信号,计算后可以在LCD数码管上显示相应的温度值。其温度测量范围为-55~125℃,精确到0.5℃。 本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。数字温度计所测量的温度采用数字显示,控制器使用单片机89C51,测温传感器使用DS18B20,用LCD1602实现温度显示。从温度传感器DS18B20可以很容易直接读取被测温度值,进行转换即满足设计要求。 本次使用的单片机89C51和MCS-51是完全兼容的,是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压、高性能CMOS8位微处理器。其主要特点如下: ?8位CPU。 ?工作频率最高为24M。 ?128B数据存储器。 ?4KB程序存储器。 ?程序存储器的寻址空间为64KB。 ?片外数据存储器的寻址空间为64KB。 ?128个用户位寻址空间。 ?21个字节特殊功能寄存器。 ?4个8位的并行I/O接口:P0、P1、P2、P3。 ?两个16位定时/计数器。 ?两个优先级别的5个中断源。 ?1个全双工的串行I/O接口,可多机通信。 ?111条指令,喊乘法指令和除法指令。 ?较强的位处理能力。 ?采用单一+5V电源。 对于89C52而言,不同之处在于:有256B的数据存储器、8K的程序存储器、全双工串行I/O接口、6个中断源、3个16位定时/计数器,工作频率可升直33Mhz。比51拥有更高的性能。

智能温度报警系统:DS18B20 构成测温系统---论文篇

[实验任务] 用一片DS18B20 构成测温系统,测量的温度精度达到0.1 度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。 [硬件电路图] [实验原理] DS18B20 数字温度计是DALLAS 公司生产的1-Wire,即单总线器件,具有线 路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。DS18B20 产品的特点(1)、只要求一个 I/O口即可实现通信。(2)、在DS18B20中的每个器件上都有独一无二的序列号。(3)、实际应用中不需要外部任何元器件即可实现测温。(4)、测量温度范围在-55。C到+125。C之间。(5)、数字温度计的分辨率用户可以从9位到12位选择。(6)、内部有温度上、下限告警设置。 DS18B20详细引脚功能描述1 GND地信号;2 DQ数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;3 VDD可选择 的VDD引脚。当工作于寄生电源时,此引脚必须接地。 DS18B20的使用方法。由于DS18B20采用的是1-Wire总线协议方式,即在一根 数据线实现数据的双向传输,而对AT89S51单片机来说,我们必须采用软件的方 法来模拟单总线的协议时序来完成对DS18B20芯片的访问。由于DS18B20是在一 根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有 严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

相关主题