搜档网
当前位置:搜档网 › 资源储量计算方法

资源储量计算方法

资源储量计算方法
资源储量计算方法

资源储量计算方法

固体矿产资源储量计算方法

地质找矿,矿产资源勘查目的是找到符合当前工业要求的矿产资源,并通过勘查手段、选冶实验以及工业指标来确定矿体边界(即矿与非矿),并圈出达到经济技术指标的工业矿体,估算资源/储量。矿产资源/储量是地质勘查报告的核心内容,是矿山建设的依据,是矿政管理的基础,是矿权交易的标的物。

本文以最简单的层状固体矿床——煤炭为例,谈一下关于储量计算的东西。本文的采用的案例为XX省XX县XX镇XX煤矿,数据也来源此。

1、资源储量估算范围和工业指标

资源储量估算必须在有效的矿权范围内进行。矿权范围分为采矿许可范围、勘查许可范围、划定矿区范围或矿业权设置方案。采矿许可范围、划定矿区范围或矿业权设置方案是三维的,其范围用拐点坐标和标高表示,勘查许可范围是二维的,只有平面范围。资源储量估算范围都是三维的,包括平面范围和标高范围,平面范围用拐点表示,以矿权证上载明的拐点和标高为准。探矿许可证上没有载明标高,以实际估算煤层赋存标高为准。关于资源储量估算的垂深,中、高山区以含煤地层或主要含煤段出露的平均标高起算,垂深为1 000m。

根据《中国煤炭分类》GB5751矿区范围内煤种主要为无烟煤,煤层一般倾角5-16°,平均8°依据《煤、泥炭地质勘查规范》DZ/T0215—2002的规定,确定的煤层最低可采厚度为0.80m,煤层最高原煤灰分(Ad)40%,原煤全硫(St.d)≤3%,原煤全硫(St.d)>3%,最低发热量小于Qnet,d 22.1 MJ/kg的单独估算。

2、资源量估算方法的选择及依据

经过勘探所获得的资料分析研究验证,有可采煤层6层(17、18、19、22、24、26煤层)。可采煤层参与资源储量的估算,可采煤层分为全区可采煤层、大部可采煤层、局部可采煤层。不可采煤层,是指在评价范围内其可采部分面积小于三分之一,或者虽然占有一定的面积,但分布零星,不便或不能被开采利用的煤层,过去通常不估算其资源储量。从节约保护资源和现实情况出发,不可采煤层是否计量,根据具体情况确定。并对其进行算量工作。此次资源量估算方法,采用煤层底板地质块段法。其计算公式为Q=S×M×d÷cosα

式中:Q:资源量(万吨)

S:块段水平投影面积(103m2)

M:资源量块段煤层平均厚度(m)

d:煤层的平均视密度(t/m3)

α:煤层资源量块段内平均倾角(度)

2-1、资源量估算参数的确定

2-1-1、可采煤层厚度的确定:煤层中单层厚度小于0.05m的夹矸,在全煤层灰分小于40%的前提下与上、下煤分层一起合并计算为该煤层的可采厚度。当夹矸厚度大于0.05m,小于最低可采煤层厚度,且煤分层厚度大于或等于夹矸厚度时,将煤分层厚度相加,作为该煤层点的采用厚度。当夹矸厚度大于煤分层厚度时,则取其该煤层点的上分层或下分层作为该煤层点的采用厚度。结构复杂煤层和无法进行煤分层对比的煤层,当夹矸的总厚度不大于煤分层总厚的1/2时,则以各煤分层的厚度相加作为该煤层点的采用厚度。

2-1-2、块段平均厚度:块段周围或邻近点及块段内工程点煤层厚度的算术平均值。对于临界可采厚度的个数采用是依据块段周围不可采点的个数确定。例如矿区22号煤层孔201的见煤厚度为0.82m(0.82m=0.40m+0.42m)。

2-1-3、视密度:用本次化验该煤层的视密度平均值作为该煤层资源量估算的视密度,各煤层视密度值见表1。

表1 煤层视密度表

煤层17 18 19 22 24 26 视密度

1.50 1.51 1.45 1.42 1.45 1.47

(t/m3)

2-1-4、块段面积:在煤层底板等高线图上,采用MapGis拓扑计算块段水平投影面积,块段斜面积为所计算块段的水平投影面积除以该块段平均倾角的余弦值而求得。

2-1-5、块段倾角:在煤层底板等高线图上直接量取,并参考剖面图相应位置的倾角,将量取的多个倾角用其算术平均值作为块段的平均倾角。

2-2、块段划分原则

2-2-1、边界线的圈定:以煤层的不可采见煤点与邻近可采见煤点,用插入法求得煤层最低可采厚度0.80m的煤厚点,各0.80m的煤厚点连线作为煤层可采边界线。尖灭点边界线的确定为未见煤点(除构造点)与相邻见煤点的1/2距离确定为0点,其0点连线为尖灭点边界线。

2-2-2、风氧化带:根据邻近井田一般经验资料以及矿区内老窑的开采深度,以煤层露头深30m的水平投影作为风氧化带界线。

2-2-3、块段划分原则:原则上以达相应控制程度的勘查线,勘查工程点、煤层底板等高线或重要构造线以及煤层风氧化带底界为界。相应的控制程度是指在相应的勘查工程见煤点连线以内和在连线之外以本种基本线距(工程点)1/4~1/2的距离所圈定的全部范围。

2-3、块段划分原则

2-3-1、边界线的圈定:以煤层的不可采见煤点与邻近可采见煤点,用插入法求得煤层最低可采厚度0.80m的煤厚点,各0.80m的煤厚点连线作为煤层可采边界线。尖灭点边界线的确定为未见煤点(除构造点)与相邻见煤点的1/2距离确定为0点,其0点连线为尖灭点边界线。

2-3-2、风氧化带:根据邻近井田一般经验资料以及矿区内老窑的开采深度,以煤层露头深30m的水平投影作为风氧化带界线。

2-3-3、块段划分原则:划分各类块段,原则上以达相应控制程度的勘查线,勘查工程点、煤层底板等高线或重要构造线以及煤层风氧化带底界为界。相应的控制程度是指在相应的勘查工程见煤点连线以内和在连线之外以本种基本线距(工程点)1/4~1/2的距离所圈定的全部范围。

2-4、资源量分类

根据《固体矿产资源储量分类(GB/T17766-1999)》标准,结合《中国矿业权评估师协会公告2007第1号》相关标准,煤矿目前在建已做过可研,表明该矿煤炭资源开发是经济的,因此探明的资源量分类为探明的(可研)经济基础储量(111b),控制的资源量分类为控制的经济基础储量(122b)。对于开采标高以下没有进行过可研的部分,探明的内蕴经济资源量为(331),控制的内蕴经济资源量为(332),推断的内蕴经济资源量为(333),按照标准,储量计算中不再使用(334?)进行储量计算。

111b类别:准采标高内,以可靠的钻孔及巷道见煤点工程圈定的块段,以线距500m,孔距小于线距圈定探明的经济基础储量;

331类别: 准采标高外,以可靠的钻孔及巷道见煤点工程圈定的块段,以线距500m,孔距小于线距圈定探明的经济基础储量;

122b类别: 准采标高外,以可靠的钻孔及巷道见煤点工程圈定的块段,以线距1000m,孔距小于线距圈定控制的经济基础储量;

332类别: 准采标高外,以可靠的钻孔及巷道见煤点工程圈定的块段,以线距1000m,孔距小于线距圈定控制的经济基础储量;

333类别:其余块段以线距2000m左右,孔距小于线距圈定推断的内蕴经济资源量。2-5、单个煤层储量计算举例

为了更深了解储量计算的细节问题,本文以矿区22号煤层(图2)的储量计算为例,进一步说明。

在现实工作中我们用地质软件做出22号煤层的底板图,然后在此基础上,按照各个钻孔以及见煤点的控制距离,找出边界线,圈出各个块段范围。然后用计算公式为Q=S×M×d÷cosα进行计算。其中每个块段的面积(S)直接用地质软件可以在图上读出来,视密度d在图1中知为1.42(t/m3),块段平均厚度M为块段周围或邻近点及块段内工程点煤层厚度的算术平均值。图2

在图2中我们以第一块段的资源量计算为例,第一块段

位于本矿区北部的中部区域,共被四个控制点包围,他们分

别为201孔、401孔、301孔、302孔。其中各个孔的间距

都小于500m,满足圈定探明的经济基础储量(111b)。其见

煤厚度分别为1.69m、0.85m、1.10m、1.03m,故该区域的

煤层的平均厚度M=(1.69m+0m.85+1.10m+1.03m)

/4=1.17m。该区域的面积直接在地质软件上读出为24.8万

平方米,煤层倾角有多方面考虑定为6度。则资源量计算后

为41万吨。Q=1.17m*1.42t/m3*248000m2/cos6。=41万吨.

图3 则22号煤层的资源量中其中控制的经济基础储量(122b)为65万吨、推断的内蕴经济资源量(333)为90万吨,22号煤层的总共储量为41+65+90=196万吨。

2-5、资源量估算结果

资源量估算截止日期为2012年12月31日。

本次在准采标高范围内(+1500-+1060m)获得资源/储量共3440万吨,其中消耗量214万吨,保有资源量为3226万吨(其中探明的经济基础储量(111b)为971万吨,控制的经济基础储量(122b)为982万吨, 推断的资源量(333)为1273万吨);其中St.d≤3%资源/储量1732万吨(探明的经济基础储量(111b)为648万吨,控制的经济基础储量(122b)为497万吨, 推断的资源量(333)为587万吨);St.d>3%资源/储量1494万吨(探明的经济基础储量(111b)为323万吨,控制的经济基础储量(122b)为485万吨, 推断的资源量(333)为686万吨)。其中,探明的与控制的资源量占保有总资源量(111b+122b)/(111b+122b+333)的60.54%。见表2、表3。探明的的资源量占保有总资源量(111b)/(111b+122b+333)的30.10%,矿区平面范围内准采标高外(+1060m以下)共获得总资源/储量共15万吨(St.d>3%);全部为推断的资源量(333),见表4。符合有关要求。

表2 各煤层资源量汇总表单位:万吨

煤层

准采标高内(+1500-+1060) 准采标高以下(+1060以下)总计消耗量111b 122b 333 合计331 332 333 合计

17 133 434 415 385 1367 1367

18 81 220 148 267 716 716

19 193 111 168 472 472 22 41 65 90 196 196 24 30 119 118 267 2 2 269 26 53 124 245 422 13 13 435 小计214 971 982 1273 3440 15153455

备注

111b+122b=1953

111b+122b+333=3226

(111b)/(111b+122b+333)=30.10% (111b+122b)/(111b+122b+333)=60.54%

表3 准采标高(+1500-+1060m)各煤层(按硫份)资源/储量统计表单位:万吨

煤层

111b 122b 333

合计St.d≤3%St.d≥3%St.d≤3%St.d≥3%St.d≤3%St.d≥3%

17 434 374 41 327 58 1234

18 220 148 267 635

19 186 7 66 45 154 14 472

22 41 65 90 196

24 28 2 57 62 106 12 267

26 53 124 245 422

合计648 404 497 485 587 748 3226 备注:St.d≤3%共计1732万吨St.d≥3%共计1494万吨

表4 准采标高外(+1060m以下)各煤层(按硫份)资源/储量统计表单位:万吨

煤层

111b 122b 333

合计St.d≤3%St.d>3% St.d≤3%St.d>3% S t.d≤3%St.d>3%

15 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0

24 0 0 0 0 0 2 2

26 0 0 0 0 0 13 13

合计0 0 0 0 0 15 15 备注:St.d≤3%共计0万吨St.d≥3%共计15万吨

2-6、资源量对比

2-6-1、2007年7月XX地质矿产勘查开发局地球物理地球化学勘查院对该矿编制了《XX 省XX县XX镇XX煤矿资源储量核实报告》,勘查报告在拟采范围内核实17、19号煤层资源储量,矿区范围内占有总资源量为1488万吨,其中保有资源1346万吨,(332)资源量310万吨,(333)资源量578万吨,(334)?资源量458万吨);消耗量(采空区)资源储量142万吨。最近勘查地质报告估算资源/储量结果见下表5。

矿山名称资源量

类别

C17号煤资源量(万吨)C19号煤资源量(万吨)合计

(万

吨)煤

视密

面积

资源

煤厚

视密

面积

(km2)

资源

XX 煤矿

消耗量 3.10 1.44 0.1523 68 2.54 1.50 0.1942 74 142 (332)

(122b)

3.10 1.44 0.3607 161 2.54 1.50 0.3911 149 310

333 3.10 1.44 0.7124 318 2.54 1.50 0.6824 260 578 (334)? 3.10 1.44 0.5757 257 2.54 1.50 0.5334 201 382

合计 3.10 1.44 1.8011 804 2.54 1.50 1.8011 684 1488

表5 XX煤矿最近勘查地质报告资源/储量统计表

2-6-2、1999年XX地勘局105地质大队编制提交的《XX省XX县三官营片区煤矿勘查地质报告》,全区共获总储量8832万吨,全区面积40km2,算量标高为+1187m至+1548m。XX煤矿西北部位于三官营片区东南部内,与勘查区完全重叠,重叠面积为0.103km2,占勘

查区面积的0.26%,因重叠范围内与《XX县三官营片区煤矿勘查地质报告》没有估算资源量,故无重叠资源量。1961年XX省煤矿管理局一五九煤田地质勘探队提交的《兴安区地质填图找矿报告》,兴仁县老鬼山背斜测区共获总储量262223万吨,全区面积237.886km2,算量标高为-600m至+600 m以上。XX煤矿位于兴仁县老鬼山背斜测区内,与该区完全重叠,重叠面积为2.0072km2,占勘查区面积的0.87%,重叠范围内与勘查报告共获得资源量2986万吨。

2-6-3、本次核实资源储量

截至2013年1月20日止,该矿山准采标高范围内(+1500-+1060m)获得资源/储量共3440万吨,保有资源量3226万吨(其中探明的经济基础储量(111b)为971万吨,控制的经济基础储量(122b)为982万吨, 推断的资源量(333)为1273万吨);本次计算资源量有6个煤层,即17、18、19、22、24、26,其中18、22、26三层煤硫分大于3%,17、19、24层煤硫分部分大于3%。见表6

表6 XX煤矿准采标高范围内(+1500-+1060m)资源/储量统计表

煤层类别

消耗量

万吨

111b

(万吨)

122b

(万吨)

333

(万吨)

小计

17 133 434 415 385 1367

18 81 220 148 267 716

19 193 111 168 472 22 41 65 90 196 24 30 119 118 267 26 53 124 245 422

小计214 971 982 1273 3440

2-6-4、重叠部分资源/储量对比

最近勘查报告资源量估算面积为1.8011km2,开采标高+1500-+1060m,最近核实报告共获资源/储量(332+333+334?)1488万吨;本次资源量估算面积为1.8011km2,准采标高范围内(+1500-+1060m)获得3440万吨资源量,比最近勘查地质报告资源量增加了1952万吨。

2-6-5、资源储量增减原因

经对比,本次核实资源/储量与最近勘查地质报告核实的资源/储量增加1952万吨(其中消耗量增加了72万吨。保有1880万吨,保有中(111b)增加了971万吨,(122b)增加了672万吨,(333)增加了695万吨,(334?)减少了458万吨)。见表7。

XX煤矿准采标高范围内(+1500-+1060m)资源/储量增减对比表表7 单位:万吨

类别煤层消耗

111b 122b 333 334?合计

资源量增

减对比表

备注

最近核实报告

C17 68 161 318 257 804 St.d≤3% C19 74 149 260 201 684 St.d≤3%合计142 310 578 458 1488

17 133 41 58 241 +232 St.d>3%

17 434 374 327 1135 +331 St.d≤3%

18 81 220 148 267 716 +32 St.d>3%

19 7 45 14 66 +66 St.d>3% 19 186 66 154 406 +406 St.d≤3% 22 41 65 90 196 +196 St.d>3% 24 2 62 12 76 +76 St.d>3% 24 28 57 106 191 +191 St.d≤3% 26 53 124 245 422 +422 St.d>3% 合计214 971 982 1273 3440 +1952

其中:St.d≤3%增加928万吨,St.d>3%增加1024万吨

各煤层增减原因如下:

经对比,本次核实资源/储量估算面积与最近核实报告估算资源量的面积一致,其增减原因如下:

2-6-5-1、煤层对比

统一对比本次核实对比最近核实

17 17 17

18 18 19

19 19

22 22

24 24

26 26

2-6-5-2、煤层厚度

本次算量煤层共六层,即17、18、19、22、24、26煤层总厚13.59米,最近一次核实报告算量煤层为两层,即17、19煤层总厚为5.64米。

煤层编号本次核实对比最近核实

17 5.81 3.10

18 2.76 2.54

19 1.47

22 1.05

24 .94

26 1.56

合计13.59 5.64 2-6-5-3、煤层视密度

煤层编号本次核实对比最近核实

17 1.50 1.44

18 1.51 1.50

19 1.45

22 1.42

24 1.45

26 1.47

合计

2-6-5-4、增减量

煤层编号

本次核实报告最近核实报告

消耗量111b 122b 333 合计消耗量122b 333 334 合计

17 133 434 415 385 1367 68 161 318 257 804

18 81 220 148 267 716 74 149 260 201 684

19 193 111 168 472

22 41 65 90 196

24 30 119 118 267

26 53 124 245 422

214 971 982 1273 3440 142 310 578 458 1488 17号煤层厚度增加资源量563万吨(其中消耗量增加了65万吨);

18号煤层(相当于最近一次核实报告的19号煤层),增加了32万吨(其中消耗量增加了7万吨);

算量煤层增加了4层(19、22、24、26),资源量增加了1357万吨(其中19号煤层增加了472万吨,22号煤层增加了196万吨,24号煤层增加了267万吨,26号煤层增加了422万吨)。

2-6、资源量估算结果

由于本矿自2007年取得采矿证以来,煤矿一直处于建设阶段,主要是地面建设和井筒建设,没有进行采煤。因此本次核实与最近核实报告的采空面积不变。最近核实报告消耗量为142万吨,本次核实报告消耗为214万吨,增加原因如下:

2-6-1、本次核实报告的17煤层对应最近核实报告的C17煤层,资源量增加了563万吨,原因是最近一次核实报告采用的平均算量煤厚为 3.10m,本次勘探后实际平均算量煤厚为5.81m,消耗量增加了65万吨

2-6-2、本次核实报告的18煤层对应最近一次核实报告的C19煤层,资源量增加32万吨,原因是最近核实报告采用的平均算量煤厚为 2.54m,本次勘探后实际平均算量煤厚为

2.76m,使18号煤层消耗量增加7万吨。

3、资源量估算方法的注意事项

煤炭作为一种固体层状矿体,其计算的方法较其他矿产要更加简单,这与煤炭在地下的赋存状态有很大关系,总体而言煤炭赋存条件比较简单,形态也不是很复杂,连续性很强。所以煤炭的存量计算相对比较简单,选取的数学方法也容易理解和掌握。本文只是想以煤炭为例,说明固体矿产储量的计算方法,着重说明了地质块段法的应用。当然在另外的固体矿产的储量计算中会涉及到更加复杂的数学统计方法,但是其核心思想是不会变的,把握好各种矿种的规范、文件等,便可以做好算量工作。

参考文献

[1]颜洪鸣.中小型矿山固体矿产资源储量核实报告编制值得注意的问题[J].中国煤炭地质,2008,20(5).

[2]赵世煌.编制煤炭资源储量报告常见问题及注意事项.中国煤炭地质,2010,20(9).[3]叶松青.《矿产勘查学》(普通高等教育地质类教材),地质出版杜,2003.8

固体矿产资源储量分类有关的指标解释

固体矿产资源储量分类有关的指标解释 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

与《固体矿产资源/储量分类》有关的指标解释 1.储量 指基础储量中的经济可采部分。在预可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应的,修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量(111)和预可采储量(121和122)三种类型。 1)可采储量 (111) ——探明的经济基础储量的可采部分:是在已按勘探阶段要求加密工程的地段;在三维空间上详细圈定了矿体,肯定了矿体的连续性;详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果;已进行了可行性研究,包括对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应的修改,证实其在计算的当时开采是经济的;所计算的可采储量及可行性评价结果的可信度高。 2)预可采储量(121)——指探明的经济基础储量的可采部分:是在已达到勘探阶段要求加密工程的地段;在三维空间上详细圈定了矿体,肯定了矿体的连续性;详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果;但只进行了预可行性研究,表明当时开采是经济的;所计算的可采储量可信度高而可行性评价结果的可信度一般。 3)预可采储量(122)——指控制的经济基础储量的可采部分:是在已达到详查阶段工作程度要求的地段;基本上圈定了矿体的三维形态,能够较有把握地确定矿体的连续性;基本查明了矿床地质特征、矿石质量和开采技术条件,提供了矿石加工选冶性能条件试验的成果(对于工艺流程成熟的易选矿石,也可以类比利用同类型矿山的试验成果);其预可行性研究结果表明开采是经济的;所计算的可采储量可信度较高而可行性评价结果的可信度一般。 2.基础储量 指查明矿产资源的一部分;它能满足现行采矿和生产所需的指标要求(包括品位、质量、厚度、开采技术条件等);是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用未扣除设计、采矿损失的数量表述。基础储量可分为以下6种类型。 1)探明的(可研)经济基础储量(111b)——它所达到的勘探阶段、地质可靠程度、可行性评价阶段及经济意义的分类同“可采储量(111)”所述,与其唯一的差别仅在于—本类型是用未扣除设计、采矿损失的数量来表述的。

矿产资源储量分类及类型条件

8 矿产资源/储量分类及类型条件 8.1 矿产资源/储量分类依据 8.1.1 地质可靠程度 8.1.1.1 预测的: 是指对具有矿化潜力较大地区经过预查得出的结果。在具有初步的数据并能与地质特征相似的已知矿床类比时,才能估算出预测的资源量。 8.1.1.2 推断的: 是指对普查区按照普查的精度大致查明矿产的地质特征以及矿体(点)的展布特征、品位、质量等,也包括那些由地质可靠程度较高的基础储量或资源量外推的部分。矿体的连续性是推断的。矿产资源数量的估算所依据的数据有限,可信度较低。 8.1.1.3 控制的: 是指对矿区的一定范围依照详查的精度基本查明了矿床的主要地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性基本确定,矿产资源数量的估算所依据的数据较多,可信度较高。 8.1.1.4 探明的: 是指在矿区的勘探范围依照勘探的精度详细查明了矿床的地质特征、矿体的形态、产状、规模、矿石质量、品位及开采技术条件,矿体的连续性已确定,矿产资源数量估算所依据的数据详尽,可信度高。 8.1.2 经济意义 8.1.2.1 经济的: 其数量和质量是依据符合市场价格确定的生产指标估算的。在可行性研究或预可行性研究当时的市场条件下开采,技术上可行、经济上合理、环境等其他条件也允许,即每年开采矿产品的平均价值能足以满足投资回报的要求,或在政府补贴和(或)其他扶持措施条件下,开发是可能的。 8.1.2.2 边际经济的: 在可行性研究或预可行性研究当时,其开采是不经济的,但接近盈亏边界,只有在将来由于技术、经济、环境等条件的改善或政府给予其他扶持的条件下才可变成经济的。 8.1.2.3 次边际经济的: 在可行性研究或预可行性研究时,开采是不经济的或技术上不可行,需大幅度提高矿产品价格或技术进步,使成本降低后方能变为经济的。 8.1.2.4 内蕴经济的: 仅通过概略研究做了相应的投资机会评价,未做预可行性或可行性研究。由于不确定因素多,无法区分其是经济的、边际经济的,还是次边际经济的。 8.2 矿产资源/储量类型(附录A) 8.2.1 储量 8.2.1.1 可采储量(111): 是探明的经济基础储量的可采部分,是指在已按勘探阶段要求加密工程的地段,在三维空间上详细圈定了矿体,肯定了矿体的连续性,详细查明了矿床地质特征、矿石质量和开采技术条件,并有相应的矿石加工选冶试验成果,已进行了可行性研究,包括对开采、选冶、经济、市场、法律、环境、社会和政府因素的研究及相应的修改,证实其在计算的当时开采是经济的。估算的可采储量和可行性评价结果的可信度高。

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度是指当矿石质量符合工业要求时,在一定的技术水平和经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质是在充分满足国家需要充分利用资源并使矿石在开采和加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素是:国家需要和该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采和加工得难易程度等。 工业品位和可采厚度对于不同矿种和地区各不相同,就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

地热资源储量计算方法

地热资源储量计算方法 一、地热资源/储量计算的基本要求 地热资源/储量计算应建立在地热田概念模型的基础上, 根据地热地质条件和研究程度的不同, 选择相应的方法 进行。概念模型应能反映地热田的热源、储层和盖层、储层 的渗透性、内外部边界条件、地热流体的补给、运移等特征。 依据地热田的地热地质条件、勘查开发利用程度、地热 动态,确定地热储量及不同勘查程度地热流体可开采量。 表3—1地热资源/储量查明程度 类别验证的探明的控制的推断的 单泉多年动态资 料年动态资料调查实测资 料 文献资料 单井多年动态预 测值产能测试内 插值 实际产能测 试 试验资料 外推 地热田钻井控制 程度 满足开采阶 段要求 满足可行性 阶段要求 满足预可行 性阶段要求 其他目的 勘查孔开采程度全面开采多井开采个别井开采自然排泄动态监测 5年以上不少于1年短期监测或 偶测值 偶测值

计算参数依据勘查测试、多 年开采与多 年动态 多井勘查测 试及经验值 个别井勘查、 物探推测和 经验值 理论推断 和经验值 计算方法数值法、统计 分析法等解析法、比拟 法等、 热储法、比拟 法、热排量统 计法等 热储法及 理论推断 二、地热资源/储量计算方法 地热资源/储量计算重点是地热流体可开采量(包括可利用的热能量)。计算方法依据地热地质条件及地热田勘查研究程度的不同进行选择。预可行性勘查阶段可采用地表热流量法、热储法、比拟法;可行性勘查阶段除采用热储法及比拟法外, 还可依据部分地热井试验资料采用解析法;开采阶段应依据勘查、开发及监测资料, 采用统计分析法、热储法或数值法等计算。 (一)地表热流量法 地表热流量法是根据地热田地表散发的热量估算地热资源量。该方法宜在勘查程度低、无法用热储法计算地热资源的情况下,且有温热泉等散发热量时使用。通过岩石传导散发到空气中的热量可以依据大地热流值的测定来估算,温泉和热泉散发的热量可根据泉的流量和温度进行估算。

固体矿产资源储量计算基本公式

固体矿产资源/储量计算基本公式 一、矿体厚度计算 1、单工程矿体厚度 a 、真厚度m : m =L(sinα·sinβ·cosγ±cosα·cos β) 或 m =L(cosθsinβcos γ±sinθcosβ) 式中: m ——矿体真厚度; L ——在工程中测量的矿体假厚度; β——矿体倾角; α——切穿矿体时工程的天顶角(工程与铅垂线的夹角); θ——工程切穿矿体时的倾角或坡度(工程与水平线的夹角)。 γ——工程方位角与矿体倾斜方向的夹角。 注:上列两式中,凡工程倾斜方向与矿体倾斜方向相反时,此处用“+”号,反之用“-”号。 b 、水平厚度m s : m s =m/sinβ c 、铅垂厚度m v : m v = m/cosβ 2、平均厚度 a 、算术平均法 如果揭露矿体的勘探工程分布均匀、或者勘探工程分布不均匀,但其厚度变化无一定规律时,块段或矿体的平均厚度可用算术平均法计算: n m n m m m n ∑= ++= 21cp M 式中:M cp ——平均厚度; m 1、m 2……m n ——各工程控制的矿体厚度。 n ——控制工程数目。 b 、加权平均法 当厚度变化稳定并有规律的情况下,如果勘探工程不均匀时,平均厚度应用各工程控制的长度对厚度进行加权平均:

n m l l l l m l m l m n n n ∑= ++++= 212211cp M 式中L 1、L 2……L n ——各工程控制长度(相邻工程间距离各一半之和)。 二、平均品位的确定 1、单项工程平均品位计算 a 、算术平均法 在坑道、探槽或钻孔中连续取样的情况下,若样品长度相等,或不相等,但参予计算的样品较多,且样品分割长度与品位间无一定的依存关系时,应尽可能的使用算术平均法计算平均品位: n n ∑= +++= C C C C C n 21cp 式中:C cp ——平均品位; C 1、C 2……C n ——各样品的品位; n ——样品数目。 b 、长度对品位进行加权平均 在坑道、探槽或钻孔中连续采样的情况下,若样品分割长度不等,且样品数量不多或分割长度与品位之间呈一定的依存关系时,应以取样长度对品位进行加权平均: ∑∑= ++++++= L CL L L L L C L C L C C 212211cp n n n 式中:C 1、C 2、……C n ——各个样品的品位; L 1、L 2、……L n ——各个样品的分割长度。 c 、取样点矿体厚度对品位进行加权平均 在沿脉工程中,当样品的平均品位与矿体厚度有一定的依存关系,但取样间距相等时,应用取样点矿体厚度对品位进行加权平均: ∑∑= ++++++= m m m m m m m m n n n C C C C C 212211cp 式中:C 1、C 2、……C n ——各取样点的平均品位; m 1、m 2、……m n ——各取样点的矿体厚度。 d 、取样点的控制长度对品位进行加权平均 在沿脉工程中,当矿体厚度变化很小,如果取样间距不等且品位变化较大时, 应用取样点的控制长度对品位进行加权(参照公式9-12): 式中:C 1、C 2、……C n ——各取样点的平均品位; L 1、L 2、……L n ——各取样点的矿体控制长度(相邻工程取样点间距各一半之和)。

储量计算方法

金属、非金属矿产储量计算方法 邓善德 (国土资源部储量司) 一、储量计算方法的选择 矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。现将几种常用的方法简要说明如下。 1.算术平均法 是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。 算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。 2.地质块段法

它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。 地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。 3.开采块段法 是以坑道为主要勘探手段的矿床中常用的储量计算方法,由于矿体被坑道切割成大小不同的块段,即将矿体化作一组密集的、厚度和品位一致的平行六面体(即长方形的板状体)。因此实质上开采块段法仍是算术平均法在特定情况下的具体运用。 计算储量时,是根据块段周边的坑道资料,(有时还包括部分钻孔资料)分别计算各块段的矿体面积,平均厚度,平均品位和矿石体重等,然后求得每个块段的体积和矿产储量,各块段储量的总和,即为整个矿体的储量。 开采块段法能比较如实地反映不同质量和研究程度的储量及其

资源储量估算章节

5.4.4、资源储量估算 5.4.4.1、工业指标及勘探类型 1、工业指标 (1)边界品位 (2)块段最低工业品位 (3)最小可采厚度 (4)夹石剔除厚度 2、勘探类型 (1)勘探类型 (2)勘探间距 5.4.4.2、资源量估算方法的选择及依据 1、资源/储量估算的方法 (1)距离反比法,简述方法及原理。 距离反比加权插值法(Inverse Distance Weighting)首先是由气象学家和地质工作者提出的,后来由于D.Shepard 的工作被称为谢别德法(Shepard)方法。它的基本原理是设平面上分布一系列离散点,己知其位置坐标(xi,yi)和属性值zi(i= 1,2,…,n), p(x,y)为任一格网点,根据周围离散点的属性值,通过距离反比加权插值求P 点属性值。距离反比加权插值法综合了泰森多边形的邻近点法和多元回归法的渐变方法的长处,它假设P点的属性值是在局部邻域内中所有数据点的距离反比加权平均值,可以进行确切的或者圆滑的方式插值。周围点与P 点因分布位置的差异,对P(z)影响不同,我们把这种影响称为权函数W i(x, y),方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额;对于一个较小的方次,权重比较均匀地分配给各数据点。计算一个格网结点时,给予一个特定数据点的权值,与指定方次的结点到观测点的距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当

一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0的权重,所有其它观测点被给予一个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值,这就是一个准确插值。权函数主要与距离有关,有时也与方向有关,若在P点周围四个方向上均匀取点,那么可不考虑方向因素,这时: 式中: 表示由离散点(xi,yi)至P(x,y)点的距离。P(z)为要求的待插点的值。权函数 储量估算u值取2时为(距离平方成反比)。 (2)封闭多面体估算法,简述方法及原理。 封闭多面体估算法计算的步骤是,首先根据圈定的矿体模型(三角形网)的体积,按以下过程进行储量估算,估算的结果较精确。 1)确定三角网的最小Z值(最低海拔标高),将该值作为所有参与体积计算的立体三角形的基准平面; 2)对于每个三角形,计算其与基准平面之间的体积; 3)确定三角形和基准平面之间的体积是位于模型之内还是模型之外,通常根据每个三角形的方向来进行判断; 4)如果在模型以内,就将其加到总体积中;如果在模型以外,就将其从总体积中减掉。 然后对模型内的所有样品使用简单平均或系数加权的方法得到总的品位和比重。如果样品在模型内间隔均匀,并且使用样长加权计算,而且选择了忽略缺失区间的话,那么三角网格模型的品位应该与块模型非常相似。如果样品间隔不是非常均匀,并且有很多探槽和坑道的话,那么由于线框内的样品聚集,线框品位和块模型品位之间可能会存在差异。 最后,用模型的体积乘以比重得到矿石量,再用矿石量乘以品位得到金属量。 (1)数据准备及数据处理

SD矿产资源储量计算方法

SD矿产资源储量计算方法 SD矿产资源储量计算方法原地勘工作中一套储量计算方法,传统法,虽然简单方便灵活~但它缺乏应有的先进性~科学性~影响着当今矿产地勘工作的发展。上世纪末产生的SD法不同于传统法~亦有别于地质统计学~是一全新创造的矿产资源储量计算审定法。 SD法弥补了传统法和克里格法的不足。从我国矿产特点和我国勘查、开采实际以及储量审查的需要出发~一系列’ 成图’一体化的SD法体系的软计算——分类——审定—— 件产品~正由恩地公司向矿业市场提供全方位的服务~SD法系统也在实践中发挥更加重要的作用。SD法已在国内各个省,市、自治区,、百余个矿山,区,、千余个矿段作过试点和应用均取得了很好的效果。矿种包括: 铁、锰、铜、铅、锌、锡、锑、钴、钼、锗、金、铀、锶、铝土矿、大理石、水泥灰岩、制铝灰岩、萤石、金红石、煤、硫铁矿等四十余种,图3,。矿床类型包括:沉积型、沉积变质型、层控型、斑岩型、热液型、矽卡岩型、风化壳型、砂矿等十余个类型。矿床规模包括:特大、大、中、小矿床。 应用领域包括:计算动态矿产资源储量、确定合理工业指标、计算矿产资源储量精度及矿山保有储量、计算和预测工程控制程度,工程间距,、编制各勘查阶段矿资源储量报告、矿山闭坑报告、矿产资源储量动态监测管理。矿业应用单位包括:勘查部门、设计研究院、矿山开采、储量管理机构,评审、评估机构,。 评审通过的主要SD法报告一览表 序号报告名称

1《湖北大冶鸡冠嘴铜金矿床生产勘探核实报告》 2《黑龙江逊克县东安岩金矿床5号矿体勘探报告》 3《内蒙古赤峰道伦达坝铜多金属矿详查报告》 4《内蒙古自治区西乌珠穆沁旗道伦达坝二道沟铜多金属矿 区详查报告》 5《青海省都兰县果洛龙洼金矿?-1号矿体37-18线详查报告》 6《内蒙古自治区陈巴尔虎旗六一硫铁矿勘探报告》 7《云南省新平县大红山铜矿资源储量核实报告》 8《云南省大姚县大姚铜矿区六苴矿床资源储量核实报告》 9《云南省大姚县大姚铜矿区凹地苴矿床资源储量核实报告》10《安徽省当涂县杨庄铁矿普查报告》 11《云南省潞西市芒市金矿区SD资源储量核实报告》 SD法主要市场性报告一览表序号 报告名称 1《云南易门矿务局里士铜矿SD法资源储量估算》 2《云南易门矿务局狮山铜矿SD法资源储量估算》 3《云南易门矿务局凤山铜矿SD法资源储量估算》 4《云南个旧马拉格锡矿老阴山铅矿段SD法资源储量估算》 5《云南个旧老厂锡矿SD法资源储量估算》 6《云南个旧松树脚锡矿SD法资源储量估算》 7《云南易门矿务局老厂村钴矿SD法资源储量估算》 8《四川会理拉拉铜矿SD法资源储量估算》 9《四川会理锌矿SD法资源储量估算》10《云南建水锰矿SD法资源储量估算》 11《云南会泽铅锌矿SD法资源储量估算》 12《山东淄博铁矿SD法资源储量估算》 13《贵州GC制铝氧用石灰岩SD法资源储量估算》 14《江苏太湖水泥灰岩SD 法资源储量复核》 15《湖北大冶铜山口铜矿SD法工业指标论证》 16《内蒙古自治区乌兰图嘎锗煤矿SD法资源储量估算》 17《云南老王寨金矿SD法资源储量估

矿量计算方法

矿量计算方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。 (一)地质块段法计算步骤: 首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;然 后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 块段编号 资源储量级别 块段 面积 (m2) 平均厚度(m) 块段 体积 (m3) 矿石体重(t/m3) 矿石储量(资源量) 平均品位(%) 金属储量(t) 备注 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置 ②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

固体矿产资源、储量分类与编码

固体矿产资源、储量分类及编码-----------------------作者:

-----------------------日期:

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

储量计算方法

油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。 油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。储量计算分为静态法和动态法两类。静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。 容积法: 在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。有效孔隙度和含气饱和度的乘积。对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。 容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量 纯气藏天然气地质储量计算 G = 0.01A ·h ·φ(1-S wi )/ B gi = 0.01A ·h ·φ(1-S wi )T sc ·p i / (T ·P sc ·Z i ) 式中,G----气藏的原始地质储量,108m3; A----含气面积, km2; h----平均有效厚度, m; φ ----平均有效孔隙度,小数; Swi ----平均原始含水饱和度,小数; Bgi ----平均天然气体积系数 Tsc ----地面标准温度,K;(Tsc = 20oC) Psc ----地面标准压力, MPa; (Psc = 0.101 MPa) T ----气层温度,K; pi ----气藏的原始地层压力, MPa; Zi ----原始气体偏差系数,无因次量。 凝析气藏天然气地质储量计算 G c = Gf g f g = n g /(n g + n o ) = GOR / ( GOR + 24056γ o /M o ) 式中,Gc ----天然气的原始地质储量, 108m3; G----凝析气藏的总原始地质储量, 108m3; fg----天然气的摩尔分数;

固体矿产资源储量分类及编码

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第 3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据就是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标就是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度就是指当矿石质量符合工业要求时,在一定的技术水平与经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位就是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质就是在充分满足国家需要充分利用资源并使矿石在开采与加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素就是:国家需要与该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采与加工得难易程度等。 工业品位与可采厚度对于不同矿种与地区各不相同,就就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位就是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

资源储量估算各种参数的确定

资源储量估算各种参数的确定 一、矿体平均品位(C )的确定 (一)勘探工程矿体平均品位的计算 采用样品代表长度加权平均的方法计算。其公式为: C =n 321n 332211l ......l ......++++++++l l l C l C l C l C n 式中:C —勘探工程矿体平均品位 C 1……C n —单个样品品位 l 1……l n —单个样品代表长度。 (二)剖面矿体平均品位的计算 剖面矿体平均品位的计算采用剖面上同一块段内各勘探工程的见矿代表厚度加权平均的方法计算。计算公式: C =n n n m m m m m C m C m C m C ++++++++............321332211 式中:C —剖面矿体平均品位 C 1……C n —勘探工程矿体平均品位 m 1……m n —勘探工程见矿代表厚度。 (三)相邻两剖面间块段矿石平均品位的计算 采用两剖面面积加权平均的方法计算。 C =2 12211S S S C S C ++ 式中:C —相邻两剖面间块段矿石平均品位 C 1,C 2—剖面矿体平均品位 S 1,S 2—剖面面积 (四)矿体平均品位的计算 采用矿体总锡金属量除以总矿石量计算。 C =∑∑Q P C ——矿体锡平均品位

∑P——矿体锡总金属量 ∑Q——矿体总矿石量 (五)特高品位的处理 当单样品位≥工程平均品位的8倍时,作为特高品位进行处理,以特高品位所在工程的矿体各样品品位平均值代替该样品的品位值,进行矿体平均品位的计算。矿区内需处理的仅一处,在ZK801孔中,该工程的52号样锡品位达20.86%,计算时以该工程的首次平均品位7.32%代替参与资源储量估算。 二、矿体面积(S)的计算 剖面矿体面积在剖面图上直接使用计算机求得。要求两次所求面积相对误差不超过3%。 三、块段矿体体积(V)的计算 根据相邻两剖面面积差与大剖面面积之比值,分以下三种情况分别选择公式进行计算: 1、当(S 1-S 2 )/S 1 ≤40%时,计算公式为:V=L*(S 1 +S 2 )/2; 2、当(S 1-S 2 )/S 1 >40%时,计算公式为:V=L*(S 1 +S 2 +S2 * S1)/3。 3、当S1(S2)为0时,计算公式为: V=L* S/3(锥形)。式中:V为相邻两剖面间块段矿体体积; L为相邻两剖面的距离; S 1 为两剖面相对较大面积值; S 2 为两剖面相对较小面积值。

资源量和储量的类别划分

资源量和储量的类别划分 图4-7-1 固体矿产资源/储量分类框架图 新《总则》中,根据各勘查阶段获得的矿产资源储量开发的经济意义、可行性研究程度与地质可靠程度,将其分为资源量、基础储量和储量三个大类,细分为16个类型,并分别给以不同的编号代码(见表4-7-2)。 同时,采用了三维立体框架图(图4-7-1)表示,图形的三个轴分别代表地质轴(G)、可行性轴(F)、经济轴(E)。 表4-7-2 矿产资源储量类别与勘查各阶段对比表 1资源量(resource) 指所有查明与潜在(预测)的矿产资源中,具有一定可行性研究程度,但经济意义仍不确定或属次边际经济的原地矿产资源量。可分为三部分: (1)内蕴经济资源量矿产资源勘查工作自普查至勘探,地质可靠程度达到了推断的至探明的,但可行性评价工作只进行了概略研究,由于技术经济参数取值于经验数据,未与市场挂钩,区分不出其真实的经济意义,统归为内蕴经济资源

量。可细分为3个类型:探明的内蕴经济资源量(331)、控制的内蕴经济资源量(332)、推断的内蕴经济资源量(333)。 (2)次边际经济资源量据详查、勘探成果进行预可行性、可行性研究后,其内部收益率呈负值,在当时开采是不经济的,只有在技术上有了很大进步,能大幅度降低成本时,才能使其变为经济的那部分资源量。细分为3个类型:探明的(可研)次边际经济资源量(2S11)、探明的(预可研)次边际经济资源量(2S21)、控制的(预可研)次边际经济资源量(2S22)。 (3)行预测资源量经预查,依据各方面资料分析、研究、类比、估算的预测资源量(334)?各项参数都是假设的,经济意义不确定,属潜在矿产资源。可作为区域远景宏观决策的依据。 2基础储量(basic reserve) 经过详查或勘探,地质可靠程度达到控制的和探明的矿产资源,在进行了预可行性或可行性研究后,经济意义属于经济的或边际经济的,也就是在生产期内,每年的平均内部收益率在0以上的那部分矿产资源。基础储量又可分为两部分: (1)经济基础储量是每年的内部收益率大于国家或行业的基准收益率,即经预可行性或可行性研究属于经济的,未扣除设计和采矿损失(扣除之后为储量)。结合其地质可靠程度和可行性研究程度的不同,又可分为3个类型:探明的(可研)经济基础储量(111b),探明的(预可研)经济基础储量(121b)、控制的(预可研)经济基础储量(122b)。 (2)边际经济基础储量内部收益率介于国家或行业基准收益率与0之间未扣除设计和采矿损失的那部分。也有3个类型:探明的(可研)边际经济基础储量(2M11),探明的(预可研)边际经济基础储量(2M21)、控制的(预可研)边际经济基础储量(2M22)。 3储量(extractable reserve) 经过详查或勘探,地质可靠程度达到了控制或探明的矿产资源,在进行了预可行性研究或可行性研究,扣除了设计和采矿损失,能实际采出的数量,经济上表现为在生产期内每年平均的内部收益率高于国家或行业的基准收益率。储量是基础储量中的经济可采部分。 根据矿产勘查阶段和可行性评价阶段的不同,储量又可分为可采储量(proved extractable reserve)(111)、预可采储量(probable extractable reserve)(121)及预可采储量(122)3个类型。 二、矿产资源储量计算的原理和一般过程

我国现行矿产资源储量分类标准

我国现行矿产资源/储量分类及管理方法源自前苏联,主要依据地质勘探程度,并考虑当前工业技术经济条件下的开采利用情况,把矿产资源分为能利用(表内)储量、尚难利用(表外)储量和A、B、C、D、E五个级别。实际应用中,虽经多次修订,但其基本内容仍是适应计划经济条件下的矿业体制。随着我国经济体制改革的深化,社会主义市场经济体制的建立和完善以及改革开放,矿业投资体制发生了很大变化。现行的矿产资源/储量分类方法已不适应新形势的需要,更不便于与国际并轨,影响了国际交流与合作。为促进对外开放,充分利用国内、国际两种资源,增强与国外矿产资源勘探开发的合作与交流,推动我国矿业经济的发展和矿业体制改革,国家颁布了《固体矿产资源/储量分类》(GB/T17766-1999)标准(简称新标准),并于1999年12月1日起开始实施,同时矿产资源储量套改工作,即在新旧标准并行期间,将原《矿产储量表》中的矿产储量数据发新标准进行全面套改、归类、实现新老储量的统一归口统计管理。这是我国矿产资源分类与国际惯例并轨的重要变革。 1 矿产资源/储量套改的依据和业务 1.1 矿产资源/储量套改工作的依据 新标准实施后,由于新标准对于固体矿产资源储量的分类、数据处理上有较大的改动,与原分类标准有很大的差别和不同,在统计和管理上无法对比,因此,原有《矿产储量表》中的矿产资源储量数据必须全面按照新分类标准规定的要求进行套改。由于新的标准适用于固体矿产资源勘查、开发各阶段编制设计、部署工作、计算储量(资源量)、编写报告,也适用于矿产资源储量的评估、登记、统计、制定计划规划,制定固体矿产资源政策,编制矿产勘查规范、规定、指南,也可作为矿业权转让、矿产资源勘查开发筹资、融资等活动的评价、计算矿产资源/储量等。所以,这次矿产资源储量套改的依据必须是国家颁布的《固体矿产资源/储量分类》(GB/T17766-1999)标准。 1.1.1 新标准对矿产资源/储量的分类 新标准根据地质可靠程度,将矿产资源分为查明矿产资源和潜在矿产资源;依据地质可靠程度和可行性评价所获得的不同结果,查明矿产资源又分为:储量、基础储量和资源量三类共16种。分类情况及与地质可靠程度、经济意义的关系见表1。 表1 固体矿产资源/储量分类表 地质可靠程序类型查明矿产资源潜在矿产资源 探明的控制的推断的预测的 经济的可采储量 (111) 基础储量 (111b) 预可采储量 (121) 预可采储量 (122) 基础储量 (121b) 基础储量 (122b) 边际经济的基础储量 (2M11) 基础储量 (2M21) 基础储量(2M22) 次边际经济的资源量 (2S11) 资源量 (2S21) 资源量 (2S22) 内蕴经济的资源量 (331) 资源量 (332) 资源量 (333) 资源量 (334)? 1.1.2 新分类标准的特点新标准将经济意义、可行性评价、地质可靠程度作为分类依据。采用EFG三维编码进行分类(见图1)。其突出特点是将经济意义放在第一位,地质可靠程度放在第三位。充分体现了新标准的经济实用性,且能从储量状况辨别其可利用价值,见固体矿产资源/储量分类框架图。 图1 固体矿产资源/储量分类框架图 经济意义、可行性评价和地质可靠程度成为新分类标准分类的三个要素,这三个要素既相互联系,又相互制约,地质可靠程度是经济意义分类的基础,可行性评价是经济意义分类的手段和方法,影响矿床开发的内、外部因素及经济评价指标是经济意义分类的标准, 按经济意义划分的不同类型储量、基础储量、资源量是分类的结果。

相关主题