搜档网
当前位置:搜档网 › 提取溶剂

提取溶剂

提取溶剂
提取溶剂

1.2.溶剂的选择:运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择

适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。

常见的提取溶剂可分为以下三类:

1)水:水是一种强的极性溶剂。中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、蛋白质、有机酸盐、生物碱盐及甙类等都能被水溶出。为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂。酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出。但用水提取易酶解甙类成分,且易霉坏变质。某些含果胶、粘液质类成分的中草药,其水提取液常常很难过滤。沸水提取时,中草药中的淀粉可被糊化,而增加过滤的困难。故含淀粉量多的中草药,不宜磨成细粉后加水煎煮。中药传统用的汤剂,多用中药饮片直火煎煮,加温可以增大中药成分的溶解度外,还可能有与其他成分产生“助溶”现象,增加了一些水中溶解度小的、亲脂性强的成分的溶解度。但多数亲脂性成分在沸水中的溶解度是不大的,既使有助溶现象存在,也不容易提取完全。如果应用大量水煎煮,就会增加蒸发浓缩时的困难,且会溶出大量杂质,给进一步分离提纯带来麻烦。中草药水提取液中含有皂甙及粘液质类成分,在减压浓缩时,还会产生大量泡沫,造成浓缩的困难。通常可在蒸馏器上装置一个汽一液分离防溅球加以克服,工业上则常用薄膜浓缩装置。

2)亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇(酒精)、甲醇(木精)、丙酮等,以乙醇最常用。乙醇的溶解性能比较好,对中草药细胞的穿透能力较强。亲水性的成分除蛋白质、粘液质、果胶、淀粉和部分多糖等外,大多能在乙醇中溶解。难溶于水的亲脂性成分,在乙醇中的溶解度也较大。还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取。用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少。乙醇为有机溶剂,虽易燃,但毒性小,价格便宜,来源方便,有一定设备即可回收反复使用,而且乙醇的提取液不易发霉变质。由于这些原因,用乙醇提取的方法是历来最常用的方法之一。甲醇的性质和乙醇相似,沸点较低(64℃),但有毒性,使用时应注意。

中药化学成分提取、分离和鉴定的(一)溶剂提取法:

1.溶剂提取法的原理:溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓

溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。

中草药成分在溶剂中的溶解度直接与溶剂性质有关。溶剂可分为水、亲本性有机溶剂及亲脂性有机溶剂,被溶解物质也有亲水性及亲脂性的不同。

有机化合物分子结构中亲水性基团多,其极性大而疏于油;有的亲水性基团少,其。极性小而疏于水。这种亲水性、亲脂性及其程度的大小,是和化合物的分子结构直接相关。一般来说,两种基本母核相同的成分,其分子中功能基的极性越大,或极性功能基数量越多,则整个分子的极性大,亲水性强,而亲脂性就越弱,其分子非极性部分越大,或碳键越长,则极性小,亲脂性强,而亲水性就越弱。

各类溶剂的性质,同样也与其分子结构有关。例如甲醇、乙醇是亲水性比较强的溶剂,它们的分子比较小,有羟基存在,与水的结构很近似,所以能够和水任意混合。丁醇和戊醇分子中虽都有羟基,保持和水有相似处,但分子逐渐地加大,与水性质也就逐渐疏远。所以它们能彼此部分互溶,在它们互溶达到饱和状态之后,丁醇或戊醇都能与水分层。氯仿、苯和石油醚是烃类或氯烃衍生物,分子中没有氧,属于亲脂性强的溶剂。

这样,我们就可以通过时中草药成分结构分析,去估计它们的此类性质和选用的溶剂。例如葡萄糖、蔗糖等分子比较小的多羟基化合物,具有强亲水性,极易溶于水,就是在亲水性比较强的乙醇中也难于溶解。淀粉虽然羟基数目多,但分子大大,所以难溶解于水。蛋白质和氨基酸都是酸碱两性化合物,有一定程度的极性,所以能溶于水,不溶于或难溶子有机溶剂。甙类都比其甙元的亲水性强,特别是皂甙由于它们的分子中往往结合有多数糖分子,羟基数目多,能表现出较强的亲水性,而皂甙元则属于亲脂性强的化合物。多数游离的生物碱是亲脂性化合物,与酸结合成盐后,能够离子化,加强了极性,就变为亲水的注质,这些生物碱可称为半极性化合物。所以,生物碱的盐类易溶于水,不溶或难溶于有机溶剂;而多数游离的生物碱不溶或难溶于水,易溶于亲脂性溶剂,一般以在氯仿中溶解度最大。鞣质是多羟基的化台物,为亲水性的物质。油脂、挥发油、蜡、脂溶性色素都是强亲脂性的成分。

总的说来,只要中草药成分的亲水性和亲脂性与溶剂的此项性质相当,就会在其中有较大的溶解度,即所谓“相似相溶”的规律。这是选择适当溶剂自中草药中提取所需要成分的依据之一。方

法 ............................................................ https://www.sodocs.net/doc/c715624646.html,/n87c15.aspx基本有机化学实验:07.升华操作

,不易和多数生物碱沉淀试剂水蒸汽蒸馏,不易和多数生物碱沉淀试剂反应,多为仲胺衍生物,属中强碱,麻黄反应,多为仲胺衍生物,属中强碱,麻黄碱的碱性比伪麻黄碱弱。游离的麻黄碱可碱的碱性比伪麻黄碱弱。游离的麻黄碱可溶于水,伪麻黄碱比之小;两者均可溶于溶于水,伪麻黄碱比之小;两者均可溶于氯仿、乙醚、苯及醇类溶剂中。草酸麻黄氯仿、乙醚、苯及醇类溶剂中。草酸麻黄碱难溶于水,草酸伪麻黄碱易溶于水;盐碱难溶于水,草酸伪麻黄碱易溶于水;盐酸麻黄碱不溶于氯仿,盐酸伪麻黄碱可溶酸麻黄碱不溶于氯仿,盐酸伪麻黄碱可溶于氯仿。于氯仿。 c) c)鉴别反应:鉴别反应:①二硫化碳①二硫化碳--硫酸酮硫酸酮--氢氧化钠,产生氢氧化钠,产生棕黄色沉淀棕黄色沉淀,仲胺为阳性,仲胺为阳性,,伯叔胺为阴性。伯叔胺为阴性。

②硫酸酮②硫酸酮--氢氧化钠,溶液显氢氧化钠,溶液显蓝紫色蓝紫色,加入乙醚,加入乙醚振摇,振摇,乙醚层为红色,水层为蓝色乙醚层为红色,水层为蓝色。。((22)麻黄碱与伪麻黄碱的提取分离)麻黄碱与伪麻黄碱的提取分离 aa)溶剂法)溶剂法::利用两者既可溶于水又可溶于有机溶利用两者既可溶于水又可溶于有机溶剂剂,,其盐则可溶于水而不溶有机溶剂的性质进行其盐则可溶于水而不溶有机溶剂的性质进行提取提取..再利用草酸麻黄碱的溶解度小于伪麻黄碱再利用草酸麻黄碱的溶解度小于伪麻黄碱进行分离。进行分离。 b) b)水蒸汽蒸馏法:游离麻黄碱和伪麻黄碱具有挥水蒸汽蒸馏法:游离麻黄碱和伪麻黄碱具有挥发性发性,,先用水提取先用水提取,,碱化后再用水蒸汽蒸馏法提碱化后再用水蒸汽蒸馏法提取取.. c) c)离子交换树脂法:利用两者碱性差异离子交换树脂法:利用两者碱性差异,,控制洗脱控制洗脱液量来分离液量来分离..麻黄碱碱性弱先从树脂柱上洗下。麻黄碱碱性弱先从树脂柱上洗下。 33.黄连.黄连:毛茛科黄连(味连)、三角叶黄连(雅:毛茛科黄连(味连)、三角叶黄连(雅连)、云连。清热燥湿、泻火解毒。连)、云连。清热燥湿、泻火解毒。((11)主成分结构和性质:小檗碱含量约为)主成分结构和性质:小檗碱含量约为5% 5%--8% 8%,,有的可达有的可达10% 10%。其它尚含黄连碱、甲基黄连碱、。其它尚含黄连碱、甲基黄连碱、巴马亭、药根碱、表小檗碱等。巴马亭、药根碱、表小檗碱等。 aa)作用:抗菌。)作用:抗菌。 bb)分布:毛茛科黄连属和唐松草属,防己科古山)分布:毛茛科黄连属和唐松草属,防己科古山龙属,芸香科黄柏属,小檗科小檗属和十大功劳龙属,芸香科黄柏属,小檗科小檗属和十大功劳属。黄柏、三颗针均含较多的小檗碱。属。黄柏、三颗针均含较多的小檗碱。 cc)性质:黄色或橘黄色结晶。在水中溶解度大)性质:黄色或橘黄色结晶。在水中溶解度大,为强碱。易溶热水、热乙醇,难溶与苯、氯,为强碱。易溶热水、热乙醇,难溶与苯、氯仿、丙酮。加热仿、丙酮。加热220℃ 220℃左右分解成左右分解成红棕色的小檗红棕色的小檗红碱红碱,,285℃285℃熔融。小檗碱的盐酸盐微溶于冷水熔融。小檗碱的盐酸盐微溶于冷水,易溶于热水。盐酸盐(,易溶于热水。盐酸盐(11::500 500);硫酸盐();硫酸盐( 1∶30 1∶30)。小檗碱和有机酸形成的盐在水中的溶)。小檗碱和有机酸形成的盐在水中的溶解度很小。如与甘草酸和大黄鞣质生成难溶于解度很小。如与甘草酸和大黄鞣质生成难溶于水

的大分子复合物。水的大分子复合物。互变异构:互变异构:季铵式、醛式和醇式季铵式、醛式和醇式,以季铵式最,以季铵式最稳定,碱性最强。稳定,碱性最强。((22)检识反应:)检识反应:丙酮丙酮--氢氧化钠:氢氧化钠:黄色结晶黄色结晶((丙酮小檗碱丙酮小檗碱))。。漂白粉或次氯酸钙:漂白粉或次氯酸钙:樱红色樱红色(巴马亭也显阳(巴马亭也显阳性)。性)。((33)提取分离:)提取分离:黄连中小檗碱、甲基黄连碱的提取分离详见黄连中小檗碱、甲基黄连碱的提取分离详见参考书。参考书。茄科植物白曼陀罗的干燥花。平茄科植物白曼陀罗的干燥花。平喘止咳、镇痛解痉。喘止咳、镇痛解痉。((11)生物碱的结构、存在及性质:主要)生物碱的结构、存在及性质:主要为莨菪烷类生物碱。洋金花主含东莨为莨菪烷类生物碱。洋金花主含东莨菪碱、莨菪碱、去甲莨菪碱。颠茄主菪碱、莨菪碱、去甲莨菪碱。颠茄主含莨菪碱、东莨菪碱。山莨菪主含莨含莨菪碱、东莨菪碱。山莨菪主含莨菪碱、东莨菪碱、山莨菪碱及樟柳碱菪碱、东莨菪碱、山莨菪碱及樟柳碱和红谷豆。和红谷豆。 OCO N CH 3 CH CH 2 OH OCO N CH 3 O CH CH 2 OH OCO O N CH 3 CH 2 OH C OH N OCO CH CH 2 OH CH 3 HO ((22)性质:)性质: aa)旋光性:除阿托品外,其余均为左旋。阿托品是)旋光性:除阿托品外,其余均为左旋。阿托品是莨菪碱的外消旋体。莨菪碱的外消旋体。 bb)碱性:除)碱性:除NN--去甲基莨菪碱是仲胺外,其余属于叔去甲基莨菪碱是仲胺外,其余属于叔胺。由于氮原子周围化学环境、立体效应,碱性有胺。由于氮原子周围化学环境、立体效应,碱性有差异。碱性差异。碱性::莨菪碱>莨菪碱>NN--去甲莨菪碱>山莨菪碱>去甲莨菪碱>山莨菪碱>东莨菪碱东莨菪碱(樟柳碱)。(樟柳碱)。 cc)溶解性:莨菪碱(阿托品)易溶于乙醇、氯仿、)溶解性:莨菪碱(阿托品)易溶于乙醇、氯仿、可溶于四氯化碳、苯。东莨菪碱具有较强的亲水性可溶于四氯化碳、苯。东莨菪碱具有较强的亲水性,易溶于热水、乙醇、乙醚、氯仿或丙酮,难溶于,易溶于热水、乙醇、乙醚、氯仿或丙酮,难溶于四氯化碳、苯或石油醚。樟柳碱与东莨菪碱相似,四氯化碳、苯或石油醚。樟柳碱与东莨菪碱相似,具有较强的亲水性。山莨菪碱比阿托品亲脂性弱。具有较强的亲水性。山莨菪碱比阿托品亲脂性弱。一、单选题一、单选题 11、下列生物碱水溶性最大的是:、下列生物碱水溶性最大的是:AA..氧化苦参碱氧化苦参碱BB..吗啡吗啡CC..乌头碱乌头碱DD..马钱子碱马钱子碱EE..莨菪碱莨菪碱 22、麻黄碱不具有的性质是、麻黄碱不具有的性质是:: AA..有类似肾上腺素的作用有类似肾上腺素的作用BB..可溶于氯仿可溶于氯仿CC..和二硫化碳和二硫化碳--硫酸铜反应硫酸铜反应DD..可溶于水可溶于水EE..与常用的生物碱沉淀试剂反应与常用的生物碱沉淀试剂反应 33、下列杂化的氮原子碱性最强的是、下列杂化的氮原子碱性最强的是A.A.SP SP 11 B.B.SP SP 22 C.C.SP SP 33 D.D.SP SP 44 E.E.SP SP 55 44、利用生物碱或成盐溶解度不同或特殊功能基分、利用生物碱或成盐溶解度不同或特殊功能基分离生物碱,选择下列溶剂或成盐方式可分离,离生物碱,选择下列溶剂或成盐方式可分离,甲苯:甲苯:AA..苦参碱和氧化苦参碱苦参碱和氧化苦参碱BB..汉防己甲素和乙汉防己甲素和乙CC..莨菪碱和

东莨菪碱莨菪碱和东莨菪碱DD..小檗碱及其共存生物碱小檗碱及其共存生物碱EE..麻黄碱和伪麻黄碱麻黄碱和伪麻黄碱 55、利用生物碱或成盐溶解度不同或特殊功能基分、利用生物碱或成盐溶解度不同或特殊功能基分离生物碱,选择下列溶剂或成盐方式可分离,离生物碱,选择下列溶剂或成盐方式可分离,四氯化碳四氯化碳: : (5 (5~~88选项同选项同4) 4) 66、利用生物碱或成盐溶解度不同或特殊功能基分、利用生物碱或成盐溶解度不同或特殊功能基分离生物碱,选择下列溶剂或成盐方式可分离,乙离生物碱,选择下列溶剂或成盐方式可分离,乙醚醚:: 77、利用生物碱或成盐溶解度不同或特殊功能基分、利用生物碱或成盐溶解度不同或特殊功能基分离生物碱,选择下列溶剂或成盐方式可分离,草离生物碱,选择下列溶剂或成盐方式可分离,草酸盐酸盐:: 88、利用生物碱或成盐溶解度不同或特殊功能基、利用生物碱或成盐溶解度不同或特殊功能基分离生物碱,选择下列溶剂或成盐方式可

如何对中药有效成分进行分离与精制(二)

根据物质溶解度的差别,如何对中药有效成分进行分离与精制?

1.结晶法

需要掌握结晶溶剂选择的一般原则及判定结晶纯度的方法。

结晶溶剂选择的一般原则:对欲分离的成分热时溶解度大,冷时溶解度小;对杂质冷热都不溶或冷热都易溶。沸点要适当,不宜过高或过低,如乙醚就不宜用。

判定结晶纯度的方法:理化性质均一;固体化合物熔距≤ 2℃;TLC 或PC展开呈单一斑点;HPLC或GC分析呈单峰。

2.沉淀法

可通过4条途径实现:

1)通过改变溶剂极性改变成分的溶解度。常见的有水提醇沉法(沉淀多糖、蛋白质)、醇提水沉法(沉淀树脂、叶绿素)、醇提乙醚或丙酮沉淀法(沉淀皂苷)等。

2)通过改变溶剂强度改变成分的溶解度。使用较多的是盐析法,即在中药水提液中加入一定量的无机盐,使某些水溶性成分溶解度降低而沉淀出来。

3)通过改变溶剂pH值改变成分的存在状态。适用于酸性、碱性或两性亲脂性成分的分离。如分离碱性成分的酸提碱沉法和分离酸性成分的碱提酸沉法。

4)通过加入某种试剂与欲分离成分生成难溶性的复合物或化合物。如铅盐沉淀法(包括中性醋酸铅或碱式醋酸铅)、雷氏盐沉淀法(分离水溶性生物碱)、胆甾醇沉淀法(分离甾体皂苷)等。

根据物质在两相溶剂中分配比的差异,如何对中药有效成分进行分离与精制?

1.液-液萃取

选择两种相互不能任意混溶的溶剂,通常一种为水,另一种为石油醚、乙醚、氯仿、乙酸乙酯或正丁醇等。将待分离混合物混悬于水中,置分液漏斗中,加适当极性的有机溶剂,振摇后放置,分取有机相或水相,即可将极性不同的成分分离。分离的难易取决于两种物质在同一溶剂系统中分

配系数的比值,即分离因子。分离因子愈大,愈好分离。

2.纸色谱(PC)

属于分配色谱。可用于糖的检识、鉴定,亦可用于生物碱的色谱鉴别等。

3.分配柱色谱

可分为正相色谱与反相色谱。正相色谱固定相极性大,流动相极性小,可用于分离水溶性或极性较大的成分。反相色谱与此相反,适宜分离脂溶性化合物。

如何根据物质分子大小对中药有效成分进行分离与精制?

1.透析法

适用于水溶性的大分子成分(如蛋白质、多肽、多糖)与小分子成分(如氨基酸、单糖、无机盐)的分离。

2.凝胶过滤法

又称凝胶渗透色谱、分子筛过滤、排阻色谱。分离混合物时,各组分按分子由大到小的顺序先后流出并得到分离。常用凝胶有葡聚糖凝胶(Sephadex G)和羟丙基葡聚糖凝胶(Sephadex LH-20)。前者只适于在水中应用。后者既可在水中应用,又可在有机溶剂中应用,分离混合物时,既有分子筛作用,又有吸附作用。如分离游离黄酮时,主要靠吸附作用;分离黄酮苷时,则分子筛的性质起主导作用。

3.超滤法

4.超速离心法

根据物质吸附性的差别, 如何对中药有效成分进行分离?

在中药化学成分分离及精制工作中,应用较多的是固液吸附,其中涉及吸附剂、被分离物质和洗脱剂3个要素。按常用吸附剂的不同,大致可分为以下几种。

1)硅胶吸附色谱

硅胶为极性吸附剂,吸附力的大小取决于被分离物质的极性(极性越大,吸附力越强)和洗脱溶剂的极性(溶剂极性越弱,硅胶对被分离物质的吸附能力越强)。因此,用硅胶吸附色谱分离一组极性不同的混合物时,极性大的物质因吸附力大而洗脱慢;洗脱溶剂的极性增大,洗脱能力增强,洗脱速度加快。另外硅胶有一定的酸性,在用其分离碱性成分时,需注意。

2)氧化铝吸附色谱

氧化铝亦为极性吸附剂,其吸附规律与硅胶相似。不同的是,氧化铝有一定的碱性,且具有铝离子,在用其分离一些酸性或酚性成分时,易产生不可逆吸附而不能被溶剂洗脱。如蒽醌类、黄酮类(葛根异黄酮除外)成分分离时一般不选择氧化铝。

3)活性炭吸附色谱

活性炭为非极性吸附剂,其吸附规律与硅胶、氧化铝恰好相反。对非极性物质具有较强的亲和力,在水中对物质表现出强的吸附能力。常用于水溶液的脱色素,也可用于糖、环烯醚萜苷的分离纯化等。

4)聚酰胺吸附色谱

聚酰胺吸附属于氢键吸附,系通过其分子中众多的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离胺基与醌类、脂肪羧酸上的羰基形成氢键缔合而产生吸附。因此,聚酰胺吸附色谱特别适合分离酚类、

醌类和黄酮类化合物。聚酰胺对被分离物质吸附力的大小取决于被分离物质分子结构中可与聚酰胺形成氢键缔合的基团数目及氢键作用强度。同时,溶剂也会影响聚酰胺对被分离物质的吸附,表现出各种溶剂在聚酰胺吸附色谱中洗脱能力有大有小,其由弱到强的大致顺序为水、甲醇、丙酮、氢氧化钠水溶液等。

5)大孔吸附树脂吸附色谱

大孔吸附树脂同时具有吸附性和分子筛性。一般非极性化合物在水中易被非极性树脂吸附,极性物质在水中易被极性树脂吸附。物质在溶剂中的溶解度大,树脂对此物质的吸附力就小,反之就大。对非极性大孔吸附树脂来说,洗脱溶剂极性越小,洗脱能力越强。该法可用于皂苷类成分的纯化分离。

选择离子交换法分离中药有效成分,需注意什么问题?

1)离子交换法适用于酸性、碱性或两性成分的分离,即

3.溶剂提取法的基本原理——相似相溶原理

“相似相溶原理”的“相似”指的是极性相似,即所用溶剂的极性要与所提取成分的极性相似。一般,亲脂性强的溶剂,如石油醚,可提取亲脂性强的中药成分,如油脂、挥发油、游离甾体和三萜类化合物;氯仿或乙酸乙酯可提取游离生物碱、有机酸及黄酮苷元、香豆素苷元等中等极性化合物;丙酮或乙醇、甲醇可提取苷类、生物碱盐、鞣质等极性化合物;水可提取氨基酸、糖等水溶性成分。

4.提取方法

溶剂法提取中药成分的常用方法有浸渍法、渗漉法、煎煮法、回流提取法和连续回流提取法5种。其中浸渍法和渗漉法属于冷提法,适用于对热不稳定的成分的提取,但提取效率低于热提法,因此提取时间长、消耗溶剂多。含淀粉、果胶、粘液质等杂质较多的中药提取可选择浸渍法。煎煮法、回流提取法和连续回流提取法属于热提法,提取效率高于浸渍法、渗漉法,但只适用于对热稳定的成分的提取。三法比较,煎煮法只能用水作提取溶剂,回流提取法溶剂消耗量较大,连续回流提取法节省溶剂,但提取液受热时间长。

(二)水蒸气蒸馏法

能够用水蒸气蒸馏法提取的中药成分必须满足3个条件,即挥发性、热稳定性和水不溶性(或虽可溶于水,但经盐析后可被与水不相混溶的有机溶剂提出,如麻黄碱)。凡能满足上述3个条件的中药化学成分均可采用此法提取。如挥发油、挥发性生物碱(如麻黄碱等)、小分子的苯醌和萘醌、小分子的游离香豆素等。

(三)升华法

适用于具有升华性的成分的提取,如游离的醌类成分(大黄中的游离蒽醌)、小分子的游离香豆素等,以及属于生物碱的咖啡因,属于有机酸的水杨酸、苯甲酸,属于单萜的樟脑等。

执业药师考试辅导-中药化学

中药有效成分的提取方法有哪些(一)

(一)溶剂法

针对中药所含有效成分及共存杂质的性质,选择适当的溶剂,采用适宜的方法将有效成分从药材中提取出来。需要掌握4个方面的问题:

1.常用溶剂及性质

常用溶剂包括石油醚、苯、乙醚(Et2O)、氯仿(CHCl3)、乙酸乙酯(EtOAc)、正丁醇(n-BuOH)、丙酮(Me2O)、乙醇(EtOH或Alc)、甲醇(MeOH)、水等,极性依次由小渐大。其中排在正丁醇以前的溶剂与水混合后能够分层,可用于从水溶液中萃取化学成分,而丙酮、乙醇、甲醇与水混合后不分层。另外象氯仿比水重、乙醚沸点低等一些基本知识,需要知道。

利用麻黄碱与伪麻黄碱易溶于有机溶剂的性质,用甲苯将生物碱从麻黄的水浸出液中萃取出,再用草酸溶液将生物碱以草酸盐的形式从甲苯中提出,生物碱草酸水溶液浓缩至一定体积,溶解度小的草酸麻黄碱先析出结晶,滤取,溶解度较大的草酸伪麻黄碱仍留在母液中,继续浓缩,草酸伪麻黄碱才可析出,借此两者分离。该方法是目前生产用方法。水蒸汽蒸馏法利用麻黄碱和草酸伪麻黄碱在游离状态下具有挥发性,用水蒸汽蒸馏法得到馏出液,将馏出液吸收于草酸

7

麻黄碱和伪麻黄碱的提取分离

溶剂法

利用麻黄碱与伪麻黄碱易溶于有机溶剂的性质,用甲苯将生物碱从麻黄的水浸出液中萃取出,再用草酸溶液将生物碱以草酸盐的形式从甲苯中提出,生物碱草酸水溶液浓缩至一定体积,溶解度小的草酸麻黄碱先析出结晶,滤取,溶解度较大的草酸伪麻黄碱仍留在母液中,继续浓缩,草酸伪麻黄碱才可析出,借此两者分离。该方法是目前生产用方法。

水蒸汽蒸馏法

利用麻黄碱和草酸伪麻黄碱在游离状态下具有挥发性,用水蒸汽蒸馏法得到馏出液,将馏出液吸收于草酸溶液,以下按溶剂法操作,分别得到两者。

ASE 350 加速溶剂萃取仪操作手册

ASE 350 加速溶剂萃取仪操作手册 原理:加速溶剂萃取(ASE)是一种固体或半固体样品预处理技术。使用常见溶剂在加温加压下提取样品。 高温高压下进行溶剂萃取优势:(1)提高分析物的溶解能力;(2)增加压力使溶剂在萃取过程中一直保持液态。 仪器基本结构 1、控制面板显示屏、控制面板键盘 (a)Trays:切换键。左边灯亮,萃取池托盘及收集瓶托盘在自由旋转状态,可以手动转动;右边灯亮,锁定状态,不能手动转动(切记!)。为保险起 见,启动前,按右灯亮,托盘自动回零,旋转至初始位置。在运行样品萃 取时,该键失效。 (b)Rinse:开启手动冲洗功能,排空管路中的气泡,开机和更换溶剂后管路冲洗,关机以前也要执行。转盘会转到距离最近的冲洗溶液收集瓶及冲洗管。用户指定体积的冲洗溶液将被泵入流路系统中并最终进入冲洗液收集瓶。该功能只有在仪器处于IDLE(空闲状态)时有效。 (c)Start:启动当前加载的方法或序列。Stop,可以将当前运行暂停。然后根据屏幕提示选择。 2、溶剂瓶和托盘:3个2升溶剂瓶,色谱纯,由近到远,依次为A、B、C。目 前A二氯甲烷,B正己烷,C丙酮。每个溶剂瓶旁都配有溶剂和氮气接口。 接氮气的,一按就可(切记:氮气一路先断后上);接溶剂的,是个旋钮,手拧紧即可,一定要拧紧。燃点200度以下的不能用作溶剂,如CS2,1,4-二氧杂环己烷,乙醚。腐蚀性酸碱会损坏不锈钢萃取池(要用锆材质)。 3、萃取池,冲洗管和萃取池托盘(24+2位)。 (a)不锈钢冲洗管两个,R1和R2位置,相当于两通,是用来清洗流路的。(b)萃取池,22mL;34mL;66mL。 4、冲洗液收集瓶和收集瓶托盘 (a)收集盘放60mL和250mL收集瓶。光敏样品,推荐使用琥珀色收集瓶。(b)R1,R2处收集瓶:用于收集清洗管路的废液。每次用完清空。收集瓶标签贴到中间可以,上下不行,传感器会检测(下,检测有无瓶;上,检测有无满)。 (c)每次运行开始前,检查收集瓶是否完好。瓶盖和密封隔垫只能使用一次。 (经验:隔垫可用10次左右)。 5、废液瓶:放置在收集瓶托盘左侧仓门内(控制面板后)收集冷凝废液。请每 天检查废液瓶并将其及时清空。 6、安全罩:切记门要关上。运行结果或中断后才能打开。 7、加热炉区:自动密封臂。 仪器操作步骤 1、看溶剂够用否,过滤头是否淹没在瓶底部。液面太低,不行;高于气体管路, 也不行。手拧紧即可。 2、先开气,总压开足两圈,分压1MPa。 3、再开电源,(右后方)。主菜单,常用前四个。

天然药物有效成分的提取方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 天然药物有效成分的提取方法 天然药物有效成分的提取方法介绍天然药物化学成分的提取方法,主要介绍溶剂提取法。 重点:溶剂提取法的原理,化学成分的极性、常用溶剂、极性大小顺序及提取溶剂的选择;常见的提取方法及应用范围。 常用三种方法,溶剂提取法、水蒸气蒸馏法、升华法。 另外新方法还有超临界提取法。 提取的概念:指用选择的溶剂或适当的方法,将所要的成分溶解出来并同天然药物组织脱离的过程。 一溶剂提取法(一)提取原理:根据天然药物化学成分与溶剂间“极性相似相溶”的原理,依据各类成分溶解度的差异,选择对所提成分溶解度大、对杂质溶解度小的溶剂,依据“浓度差”原理,将所提成分从药材中溶解出来的方法。 (二)化学成分的极性:被提取成分的极性是选择提取溶剂最重要的依据。 1 影响化合物极性的因素: (1) 化合物分子母核大小(碳数多少):分子大、碳数多,极性小;分子小、碳数少,极性大。 (2) 取代基极性大小:在化合物母核相同或相近情况下,化合物极性大小主要取决于取代基极性大小。 常见基团极性大小顺序如下;酸>酚>醇>胺>醛>酮>酯>醚>烯>烷。 1/ 8

天然药物化学成分不但数量繁多,而且结构千差万别。 所以极性问题很复杂。 但依据以上两点,一般可以判定。 需要大家判断的大多数是母核相同或相近的化合物,此时主要依据取代基极性大小。 2 常见天然药物化学成分类型的极性:极性较大的:苷类、生物碱盐、糖类、蛋白质、氨基酸、鞣质、小分子有机酸、亲水性色素。 极性小的:游离生物碱、苷元、挥发油、树脂、脂肪、大分子有机酸、亲脂性色素。 以上不是绝对的,具体成分要具体分析。 比如,有的苷类化合物极性很小,有的苷元极性很大。 (三)提取溶剂及溶剂的选择: 1. 常用提取溶剂的分类与极性:1)分类:通常分三类:水类;亲水性有机溶剂;亲脂性有机溶剂。 2)极性大小:水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3 ) >苯(C6H6)>四氯化碳(CCl4)>正己烷≈ 石油醚(Pet.et)。 水类还包括酸水、碱水;亲水性有机溶剂包括甲醇、乙醇、丙酮;亲脂性有机溶剂为正丁醇后所有的。 这三类溶剂间互溶情况:水和亲水性有机溶剂可互溶,水和亲脂性有机溶剂间不互溶,有机溶剂间除甲醇和石油醚不互溶外,其它均互溶。 3)溶剂极性大小的实质:介电常数不同,介电常数大的溶剂极性

中草药提取方法——溶剂提取法

⑴溶剂提取法原理及常用溶剂溶剂提取法是根据中草药中各种成分在溶剂中的溶解性质,选用对活性成分溶解度大,对不需要溶出成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。当溶剂加到中草药原料(需适当粉碎)中时,溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。中草药成分在溶剂中的溶解度直接与溶剂性质有关。运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。选用什么样的溶剂提取中药成分,取决于溶剂的性质和被提取成分的化学结构及溶解性。溶剂可分为水及酸水或碱水。亲水性有机溶剂、亲脂性有机溶剂。根据“相似相溶原理”,欲提取亲脂性成分应选用亲脂性溶剂,欲提取亲水性成分则选用水及亲水性溶剂。应注意的是乙醇、甲醇虽然属于亲水性溶剂,它们可与水随便混溶,但很多亲脂性成分可溶于乙醇、甲醇,所以乙醇或甲醇溶液中既有水溶性成分,也有很多脂溶性成分。乙醇或甲醇中可加入水配成不同浓度的乙醇或甲醇,根据提取成分的情况可选用适当浓度的醇进行提取。⑵提取方法用溶剂提取中药成分,常用浸渍法、渗漉法、煎煮法、回流提取法、连续提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取效率,必须加以考虑。①浸渍法:浸渍法是将处理过的药材,用适当的溶剂在常温或温热(60~80℃)的情况下浸渍以溶出其中成分。本法适用于有效成分遇热易破坏以及含多量淀粉、树胶、果胶、粘液质的中药的提取。比较简单易行,但浸出率较差,特别是用水为溶剂,其提取液易于发霉变质,须注意加入适当的防腐剂。②渗漉法:渗漉法是将中草药粉末装在渗漉器中,不断添加新溶剂,使其渗透过药材便可认为基本上已提取完全。在大量生产中常将收集的稀渗淮液作为另一批新原料的溶剂之用。本法浸出效率较高,浸出液较澄清,但溶剂消耗量大、费时长、操作仍嫌麻烦。③煎煮法:煎煮法是我国最早使用的传统的浸出方法。所用容器一般为陶器、砂罐或铜制、搪瓷器皿,不宜用铁锅,以免药液变色。直火加热时最好时常搅拌,以免局部药材受热太高,容易焦糊。有蒸汽加热设备的药厂,多采用大反应锅、大铜锅、大木桶,或水泥砌的池子中通入蒸汽加热。还可将数个煎煮器通过管道互相连接,进行连续煎浸。此法简便,药中大部分成分可被不同程度地提出,但含挥发性成分及有效成分遇热易破坏的中药不宜用此法,对含有多糖类中药,煎煮后,药液比较粘稠,过滤比较困难。④回流提取法:应用有机溶剂加热提取,需采用回流加热装置,以免溶剂挥发损失。小量操作时,可在圆底烧瓶上连接回流冷凝器。溶剂浸过药材表面约1~2cm。在水浴中加热回流,一般保持沸腾约1小时放冷过滤,再在药渣中加溶剂,作第二、三次加热回流分别约半小时,或至基本提尽有效成分为止。此法提取效率较冷浸法高,大量生产中多采用连续提取法。但受热易破坏的成分不宜用此法,且溶剂消耗量仍大,操作亦麻烦。⑤连续提取法:为了弥补回流提取法中需要溶剂量大、操作较烦的不足,可采用连续提取法。实验室常用脂肪提取器或称索氏提取器。应用挥发性有机溶剂提取中草药有效成分,不论小型实验或大型生产,均以连续提取法为好,而且需用溶剂量较少,提取成分也较完全。连续提取法,一般需数小时才能提取完全。提取成分受热时间较长,遇热不稳定易变化的成分不宜采用此法。上述几种为提取中药的传统方法,存在的缺点主要有:(1)煎煮法有效成份损失较多,尤其是水不溶性成份;(2)提取过程中有机溶剂有可能与有效成分作用,使其失去原有效用;(3)非有效成分不能被最大限度的除去,浓缩率不够高;(4)提取液中除有效成分外,往往杂质较多,尚有少量脂溶性成分,给精制带来不利;

常用有机溶剂的纯化方法

常用有机溶剂的纯化(蒸馏法) 二硫化碳 沸点46.25℃,折光率1.631 9,相对密度1.2632。 二硫化碳为有毒化合物,能使血液神经组织中毒。具有高度的挥发性和易燃性,因此,使用时应避免与其蒸气接触。 对二硫化碳纯度要求不高的实验,在二硫化碳中加入少量无水氯化钙干燥几小时,在水浴55℃~65℃下加热蒸馏、收集。如需要制备较纯的二硫化碳,在试剂级的二硫化碳中加入0.5%高锰酸钾水溶液洗涤三次。除去硫化氢再用汞不断振荡以除去硫。最后用2.5%硫酸汞溶液洗涤,除去所有的硫化氢(洗至没有恶臭为止),再经氯化钙干燥,蒸馏收集。 DMF N,N-二甲基甲酰胺沸点149~156℃,折光率1.430 5,相对密度0.948 7。无色液体,与多数有机溶剂和水可任意混合,对有机和无机化合物的溶解性能较好。 N,N-二甲基甲酰胺含有少量水分。常压蒸馏时有些分解,产生二甲胺和一氧化碳。在有酸或碱存在时,分解加快。所以加入固体氢氧化钾(钠)在室温放置数小时后,即有部分分解。因此,最常用硫酸钙、硫酸镁、氧化钡、硅胶或分子筛干燥,然后减压蒸馏,收集76℃/4800Pa(36mmHg)的馏分。其中如含水较多时,可加入其1/10体积的苯,在常压及80℃以下蒸去水和苯,然后再用无水硫酸镁或氧化钡干燥,最后进行减压蒸馏。纯化后的N,N-二甲基甲酰胺要避光贮存。 N,N-二甲基甲酰胺中如有游离胺存在,可用2,4二硝基氟苯产生颜色来检查。 DMSO 沸点189℃,熔点18.5℃,折光率1.4783,相对密度1.100。二甲基亚砜能与水混合,可用分子筛长期放置加以干燥。然后减压蒸馏,收集76℃/1600Pa(12mmHg)馏分。蒸馏时,温度不可高于90℃,否则会发生歧化反应生成二甲砜和二甲硫醚。也可用氧化钙、氢化钙、氧化钡或无水硫酸钡来干燥,然后减压蒸馏。也可用部分结晶的方法纯化。 二甲基亚砜与某些物质混合时可能发生爆炸,例如氢化钠、高碘酸或高氯酸镁等应予注意。 乙醇 沸点78.5℃,折光率1.361 6,相对密度0.789 3。 制备无水乙醇的方法很多,根据对无水乙醇质量的要求不同而选择不同的方法。 若要求98%~99%的乙醇,可采用下列方法: ⑴利用苯、水和乙醇形成低共沸混合物的性质,将苯加入乙醇中,进行分馏,在64.9℃时蒸出苯、水、乙醇的三元恒沸混合物,多余的苯在68.3与乙醇形成二元恒沸混合物被蒸出,最后蒸出乙醇。工业多采用此法。 ⑵用生石灰脱水。于100mL95%乙醇中加入新鲜的块状生石灰20g,回流3~5h,然后进行蒸馏。 若要99%以上的乙醇,可采用下列方法: ⑴在100mL99%乙醇中,加入7g金属钠,待反应完毕,再加入27.5g邻苯二甲酸二乙酯或25g草酸二乙酯,回流2~3h,然后进行蒸馏。 金属钠虽能与乙醇中的水作用,产生氢手和氢氧化钠,但所生成的氢氧化钠又与乙醇发生平衡反应,因此单独使用金属钠不能完全除去乙醇中的水,须加入过量的高沸点酯,如邻苯二甲酸二乙酯与生成的氢氧化钠作用,抑制上述反应,从而达到进一步脱水的目的。 ⑵在60mL99%乙醇中,加入5g镁和0.5g碘,待镁溶解生成醇镁后,再加入900mL99%乙醇,回流5h

加速溶剂萃取技术提取定心藤中活性成分的研究

加速溶剂萃取技术提取定心藤中活性成分的研究 发表时间:2016-10-27T14:29:35.473Z 来源:《中国医院药学杂志》2016年8月作者:何凌云[导读] ASE法相较传统方法更为快速、高效,所得化合物总含量更高,因此具有更大的优势。 广州市药品检验所四分所广东广州510000 作者简介:何凌云(1980-),女,汉族,广东广州人,本科,广州市食品药品检验所四分所主管药师,研究方向中药化学成分的提取与测定。【摘要】目的采用加速溶剂萃取技术(ASE)对传统瑶药定心藤中所含的雪松醇、芦丁、豆甾醇-3-O-β-D-葡萄糖苷三种化合物进行提取并优化提取方法方法用中心组合设计 (CCD)对ASE中影响提取效率的参数进行优化,确定最佳条件后,分别与加热回流和超声法进行比较,根据HPLC分析所得结果,观察三者化合物提取总量间的差异结果ASE对定心藤中三个目标成分提取效率较传统方法高10.45%~15.76%(以总活性成分含量计),由统计分析结果可知,三者存在显著性差异。结论ASE法相较传统方法更为快速、高效,所得化合物总含量更高,因此具有更大的优势。【关键词】加速溶剂萃取技术;中心组合设计【中图分类号】R127.3【文献标识码】A【文章编号】1001-5213(2016)08-0376-01 定心藤(Mappianthus iodoides Hend.-Mazz.)为茶茱萸科植物甜果藤的干燥树藤(Mappianthus iodoides Hand.-Mazz)。该类药材活性成分多种多样,其中,含量最为丰富,文献报道较多的为(+)-雪松醇,芦丁与色谱分析预实验中鉴定出的豆甾醇-3-O-β-D-葡萄糖苷。然而,目前为止,对于定心藤活性成分的提取方法,仍停留在传统的硅胶柱层析、超声萃取等技术上。本研究的目的在于考察及充分利用ASE的技术特点,高压条件下快速连续萃取,降低中药材提取中人工、能源与试剂消耗并简化操作。同时,通过提取效率对比,探寻其替代传统技术的可能性。 1方法与结果 1.1 仪器、试剂和材料加速溶剂萃取仪为Dionex ASE 350 ,昆山 KQ-50DE超声净化仪,岛津LC-20A高效液相色谱仪(DAD检测器,迪马C18 钻石柱,规格5μm,250mm×4.6mm)。乙醇购自上海化学试剂有限公司;乙腈(色谱纯)购自默克公司;去离子水由MiLLi-Q系统制备。(+)-雪松醇与芦丁购自中国药品生物制品检定所,定心藤药材来源于广西壮族自治区金秀县山中,采集后晒干、切片保存,并经广西中医药研究院赖茂祥研究员鉴定为茶茱萸科定心藤(Mappianthus iodoides Hend.-Mazz.)。 1.2 豆甾醇-3-O-β-D-葡萄糖苷单体的制备由于未有标准品提供,故须自行制备其单体。称取定心藤药材粉末50g,以5g为一份,置于ASE提取罐中,以130℃,30分钟,循环两次的提取操作,所用溶剂量为每5g药材50mL45%乙醇,合并所得提取液,旋转蒸发浓缩后,采用大孔树酯以10%(v/v,下同)、30%、50%、65%、75%、95%乙醇各300mL,分三次洗脱,取洗脱液进HPLC后,得知该化合物在50%乙醇中含量最高,故将该部分合并,旋蒸浓缩后,挥干溶剂,即得橙黄色粉末状固体。 1.3 药材供试品的制备将同一批定心藤药材粉,分为9份,每份5g,平行操作。使用超声30min、加热回流3h、ASE按1.2操作,三种方法各提取三份,提取溶剂均为45%乙醇50mL。 1.4 三种化合物的含量测定 1.4.1高效液相色谱实验具体条件为:流动相A 1%磷酸水溶液,B 乙腈,采用梯度洗脱,梯度程序为: 0~40min 15~40%B,40~50min 40~60%B,50~60min 60~15%B,检测波长210nm,柱温25℃,流速0.8mL/min。 峰1为(+)-雪松醇,2为芦丁,3为豆甾醇-3-O-β-D-葡萄糖苷 1.4.2标准曲线绘制各取制备的活性成分对照品或单体10mg,精密称定,置于10mL容量瓶中,以甲醇定容至刻度即得。取上述标准溶液,精密量取一定量至同一10mL容量瓶中,加甲醇稀释至刻度,得1,2,5,10,20,50,100, 200μg/mL的溶液,进样后记录峰面积。回归方程分别为(+)-雪松醇y=5670.9x+25679,芦丁y = 23230x + 15503,以及豆甾醇-3-O-β-D-葡萄糖苷y=9245.2x-3737.5,相关系数分别为r2= 0.9997,0.9995和0.9996。结果显示,该方法线性良好,在1~200μg/mL范围内线性良好。 1.4.3定心藤药材中各化合物的含量测定取定心藤药材粉5g,以1.2部分所述ASE条件提取后,直接进HPLC分析,记录各化合物峰面积。将峰面积代入标准曲线中,求得各化合物含量。 1.5 ASE条件对提取效率影响的考察除对不同提取方法进行比较之外,本实验还对影响ASE提取效率的温度、提取时间、提取溶剂及提取循环等四个因素进行了考察。根据中心组合(CCD)设计,选取20组条件进行ASE提取,将提取液进HPLC测定各成分含量,根据Design Expert分析结果选择最优条件。结果(见表1)可知,三化合物最优提取条件为提取温度130℃,提取时间50min,采用溶剂为45%乙醇。

常用有机溶剂纯化

常用有机溶剂的纯化 有机化学实验离不开溶剂,溶剂不仅作为反应介质使用,而且在产物的纯化和后处理中也经常使用。市售的有机溶剂有工业纯、化学纯和分析纯等各种规格,纯度愈高,价格愈贵。在有机合成中,常常根据反应的特点和要求,选用适当规格的溶剂,以便使反应能够顺利地进行而又符合勤俭节约的原则。某些有机反应(如Grignard 反应等),对溶剂要求较高,即使微量杂质或水分的存在,也会对反应速率、产率和纯度带来一定的影响。由于有机合成中使用溶剂的量都比较大,若仅依靠购买市售纯品,不仅价值较高,有时也不一定能满足反应的要求。因此了解有机溶剂性质及纯化方法,是十分重要的。有机溶剂的纯化,是有机合成工作的一项基本操作,这里介绍了市售的普通溶剂在实验室条件下常用的纯化方法。 1.无水乙醚( absolute ether ) bp 34.5℃, 1.3526, 0.71378 20D n 20 4d 普通乙醚中含有一定量的水、乙醇及少量过氧化物等杂质,这对于要求以无水乙醚作溶剂的反应(如Grignard 反应),不仅影响反应的进行,且易发生危险。试剂级的无水乙醚,往往也不合要求,且价格较贵,因此在实验中常需自行制备。制备无水乙醚时首先要检验有无过氧化物。为此取少量乙醚与等体积的2%碘化钾溶液,加人几滴稀盐酸一起振摇,若能使淀粉溶液呈紫色或蓝色,即证明有过氧化物存在。除去过氧化物可在分液漏斗中加人普通乙醚和相当于乙醚体积1/5的新配制硫酸亚铁溶液(1),剧烈振摇后分去水溶液。然后除去过氧化物,按照下述操作进行精制。 [步骤] 在250 mL 圆底烧瓶中,放置100 mL 除去过氧化物的普通乙醚和几粒沸石,装上冷凝管。冷凝管上端通过一带有侧槽的橡皮塞,插人盛有10 mL 浓硫酸(2)的滴液漏斗。通人冷凝水,将浓硫酸慢慢滴人乙醚中,由于脱水作用所产生的热,乙醚会自行沸腾。加完后摇动反应物。 待乙醚停止沸腾后,拆下冷凝管,改成蒸馏装置。在收集乙醚的接受瓶支管上连一氯化钙干燥管,并用与干燥管连接的橡皮管把乙醚蒸气导人水槽。加人沸石,用事先准备好的水浴加热蒸馏。蒸馏速度不宜太快,以免乙醚蒸气冷凝不下来而逸散室内(3)。当收集到约70 mL 乙醚,且蒸馏速度显著变慢时,即可停止蒸馏。瓶内所剩残液,倒人指定的回收瓶中,切不可将水加人残液中(为什么?)。将蒸馏收集的乙醚倒入干燥的锥形瓶中,加入1g 钠屑或1g 钠丝,然后用带有氯化钙干燥管的软木塞塞住,或在木塞中插入一末端拉成毛细管的

加速溶剂萃取法

加速溶剂萃取法 加速溶剂萃取或加压液体萃取( pressur ized liqu id extractionPLE)是在较高的温度( 50~ 200 )和压力( 1 000 ~ 3 000 PS I)下用有机溶剂萃取固体或半固体的自动化方法。提高的温度能极大地减弱由范德华力、氢键、目标 物分子和样品基质活性位置的偶极吸引所引起的相互作用力。液体的溶解能力远大于气体的溶解能力, 因此增 加萃取池中的压力使溶剂温度高于其常压下的沸点。该方法的优点是有机溶剂用量少、快速、基质影响小、回收 率高和重现性好。 加速溶剂萃取简介(戴安公司培训教材全文) 一、加速溶剂萃取概述 复杂样品的前处理,常常是现代分析方法的薄弱环节,在以往的数年中,人们做了多种尝试以期找到一种高效、快捷的方法以取代传统的萃取法,例如,自动索氏萃取、微波消解、超声萃取和超临界萃取等。值得注意的是,以上各法无论是 自动索氏萃取,还是超临界流体萃取??等,都有一个共同点,即与温度有关。 在萃取过程中,通过适当提高温度,可以获得较好的结果。例如,在自动索氏萃取中,由于萃取时是将样品浸入沸腾的溶剂之中,因此,其萃取速度和效率较常规索氏萃取法快且溶剂用量少。超临界流体萃取可通过提高萃取时的温度使其回收率得到改善。而微波萃取则是利用一种可以施加压力的容器,将溶剂加热到其沸点之上,来提高其萃取的效率。 虽然以上各法与经典的索氏法相比已有了很大的进步,但有机溶剂的用量仍然偏多,萃取时间较长,萃取效率还不够高。 上世纪末,Richter等介绍了一种全新的称之为加速溶剂萃取的方法(ASE)。该法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法。与前几种方法相比,其突出的优点是有机溶剂用量少、快速、回收率高。该法已被美国+HD(环保局)选定为推荐的标准方法(标准方法编号3545)。 二、加速溶剂萃取的原理 加速溶剂萃取是在提高的温度(50~200℃)和压力(1000~3000psi或 10.3~20.6MPa)下用溶剂萃取固体或半固体样品的新颖样品前处理方法。 1、在提高的温度下萃取 提高温度使溶剂溶解待测物的容量增加。Pitzerk等报道,当温度从50℃升高至150℃后,蒽的溶解度提高了约15倍;烃类的溶解度,如正二十烷,可以增加数百倍。Sekine等报道水在有机溶剂中的溶解度随着温度的增加而增加。在低温低压下,溶剂易从“水封微孔”中被排斥出来,然而当温度升高时,由于水的溶解度的增加,则有利于这些微孔的可利用性。在提高的温度下能极大地减弱由范德华力、氢键、溶质分子和样品基体活性位置的偶极吸引力所引起的溶质与基体之间的强的相互作用力。加速了溶质分子的解析动力学过程,减小解析过程所需的活化能,降低溶剂的粘度,因而减小溶剂进入样品基体的阻滞,增加了溶剂进入样品基体的扩散,已报道温度从25 ℃增至150℃,其扩散系数大约增加2~10

蛋白质提取常用试剂及操作方法

蛋白质提取常用试剂及操作方法 一、原料选择和前处理 (一)原料的选择 早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰富及成本低的原料。尽量要新鲜原料。但有时这几方面不同时具备。含量丰富但来源困难,或含量来源均理想,但分离纯化操作繁琐,反而不如含量略低些易于获得纯品者。一般要注意种属的关系,如鲣的心肌细胞色素C 较马的易结晶,马的血红蛋白较牛的易结晶。要事前调查制备的难易情况。若利用蛋白质的活性,对原料的种属应几乎无影响。如利用胰蛋白酶水解蛋白质的活性,用猪或牛胰脏均可。但若研究蛋白质自身的性质及结构时,原料的来源种属必须一定。研究由于病态引起的特殊蛋白质(本斯.琼斯氏蛋白、贫血血红蛋白)时,不但使用种属一定的原料,而且要取自同一个体的原料。可能时尽量用全年均可采到的原料。对动物生理状态间的差异(如饥饿时脂肪和糖类相对减少),采收期及产地等因素也要注意。 (二)前处理 1.细胞的破碎 材料选定通常要进行处理。要剔除结缔组织及脂肪组织。如不能立即进行实验,则应冷冻保存。除了提取及胞细外成分,对细胞内及多细胞生物组织中的蛋白质的分离提取均须先将细胞破碎,使其充分释放到溶液中。不同生物体或同一生物体不同的组织,其细胞破坏难易不一,使用方法也不完全相同。如动物胰、肝、脑组织一般较柔软,作普通匀浆器磨研即可,肌肉及心组织较韧,需预先绞碎再制成匀桨。 ⑴机械方法 主要通过机械切力的作用使组织细胞破坏。常用器械有:①高速组织捣碎机(转速可达10000rpm,具高速转动的锋利的刀片),宜用于动物内脏组织的破碎;②玻璃匀浆器(用两个磨砂面相互摩擦,将细胞磨碎),适用于少量材料,也可用不锈钢或硬质塑料等,两面间隔只有十分之几毫米,对细胞破碎程度较高速捣碎机高,机械切力对分子破坏较小。小量的也可用乳钵与适当的缓冲剂磨碎提取,也可加氧化铝、石英砂及玻璃粉磨细。但在磨细时局部往往生热导致变性或pH 显著变化,尤其用玻璃粉和氧化铝时。磨细剂的吸附也可导致损失。 ⑵物理方法 主要通过各种物理因素的作用,使组织细胞破碎的方法。 Ⅰ.反复冻融法 于冷藏库或干冰反复于零下15~20℃使之冻固,然后缓慢地融解,如此反复操作,使大部分细胞及细胞内颗粒破坏。由于渗透压的变化,使结合水冻结产生组织的变性,冰片将细胞膜破碎,使蛋白质可溶化,成为粘稠的浓溶液,但脂蛋白冻结变性。 Ⅱ.冷热变替法 将材料投入沸水中,于90℃左右维持数分钟,立即置于冰浴中使之迅速冷却,绝大部分细胞被破坏。 Ⅲ.超声波法 暴露于9~10 千周声波或10~500 千周超声波所产生的机械振动,只要有设备该法方便且效果也好,但一次处理量较小。应用超声波处理时应注意避免溶液中气泡的存在。处理一些

多酚提取方法

1.1溶剂提取法 多酚就是多羟基化合物,它的结构特点决定多酚易溶或可溶于水、醇类、醚类、酮类、酯类等,所以,溶剂提取法主要有水溶剂提取与有机溶剂提取两种。水溶剂提取植物多酚类物质早90年代就有报道,该法由于工艺简便、成本低、纯度高而被广泛使用,但此法提取率低。有机溶剂提取就是利用多酚在不同溶剂中的溶解度不同进行回流提取,常用的溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,此法可提高提取率、缩短反应时间。姚永志[2]等人在比较水溶剂及乙醇溶剂提取花生红衣多酚物质的研究中报道,当以水作溶剂提取花生红衣多酚物质时,最佳工艺:水浴温度40℃、液料比75、提取时间lh、提取率为6.41%,而乙醇作溶剂时最佳工艺:乙醇浓度55%、水浴温度60℃、提取时间0.5 h、料液比1:37.5,提取率达到7.858%。但有机溶剂成本高、回收困难,有毒易燃,不利于安全生产。 1.2微波辅助提取 微波辅助提取技术就是利用微波能来提高提取率的一种技术。在微波提取过程中,微波辐射能 够导致植物细胞内的极性物质吸收微波能,产生大量热量,使细胞内温度迅速上升,液态水汽化,从而使产生的压力在细胞膜与细胞壁上形成微小孔洞,使胞外溶剂可以进入细胞内溶解并释放出胞内物质,因此可以有效的提高产率,降低反应时间,减少溶剂的使用量。由于目前微波的设备比较普遍,因此,微波提取植物多酚的方法为更多的人所接受与使用。宋薇薇等[3]人用微波辅助法提取石榴皮多酚类化合物,确定了石榴皮多酚提取的最优工艺条件:40%(体积分数)乙醇作溶剂,料液比(g:m1)l:35,微波功率为242 W,提取时间60 s,提取三次,以该优化条件提取时,多酚粗提物得率26.52%,这个结果较贾冬英[43以20%(体积分数)乙醇作溶剂,料液比(g:mL)1:20,温度50℃,提取时间1 h,以该优化条件提取所得石榴多酚得率22.86%高,与醇提法相比,微波辅助提取能强化浸取过程,体系受热均匀,提取物中多酚含量高,提取时间较短等优点。 1.3超声波辅助提取 超声波辅助提取法就是利用超声波产生的强烈振动、高加速度、强烈的空化效应、搅拌作用等,可加速有效成分进入溶剂,从而提高提取率,缩短提取时间,并可避免高温对提出成分的影响。超声波提取的操作具有简便快捷、提取温度低、时间短、提取率高、提取物结构不易被破坏的特点.该法的缺点就是获得产品纯度不高。陶令霞c5]等人对苹果渣中多酚的超声辅助提取工艺条件进行了优化研究,确定最佳工艺条件为:70%乙醇,提取时间50 min,提取功率200 W,料液比1:15,提取温度35℃,提取2次,苹果多酚得率为4.29g/kg。同时,超声波辅助提取方法在荷叶多酚大麦多酚、以及诃子多酚中也有相应的报道。 1.4生物酶解提取 生物酶解提取技术就是根据酶反应具有高度专一性的特点,选择相应的酶,水解或降解细胞壁组成成分纤维素、半纤维素与果胶,从而破坏细胞壁结构,使细胞内的成分溶解、混悬或交溶于溶剂中,达到提取目的。酶法提取最大的优势就是反应条件温与。由于酶法提取就是在非有机溶剂下进行,所得产物纯度、稳定性、活性都较高,无污染,解决了有机溶剂提取法有机溶剂回收困难、用量大等缺点。此外,酶法提取在缩短提取时闻、降低能耗、降低提取成本等方面也具有一定优势[6]。刘军海等人[7]以低档绿茶为原料,采用复合酶法在较低温度下提取茶多酚。以单因素试验考察了酶用量、提取温度、提取时间及pH对茶多酚提取率的影响。通过正交试验优化并确定最佳提取工艺条件:酶用量为0.20%、提取温度为60℃、提取时间80 min、pH为4.6,在此工艺下茶多酚提取率为13.6%,其中儿茶素占茶叶干重的含量比沸水提取法高出 2.31%。1.5离子沉淀法离子沉淀法就是利用多酚能与金属离子络合生成沉淀,使其在浸提液中与其它物质分离而出,从而得到纯度较高多酚。目前常用金属离子有A13+、Zn2+、Fe2+、M92+、Ba2+、Ca2+等,其中A13+、Zn2+较为理想。离子沉淀法优点就是不使

实验室中常用的有机溶剂的纯化方法

实践室中常用的有机溶剂的纯化要领1.乙酸乙酯 市售的乙酸乙酯常含有微量水、乙醇和乙酸。可先用等体积的5%碳酸钠溶液洗涤,再用饱和氯化钙溶液洗涤,酯层倒入干枯的锥形瓶中,插手适量无水碳酸钾干枯1h后,蒸馏,搜集77.0。77.5℃馏分。 2.煤油醚 煤油醚是低级烷烃的混杂物。遵照沸程范畴分歧可分为30~60℃、60~90℃和90~120℃平分歧规格。 煤油醚中常含有小批沸点与烷烃相近的不饱和烃,难以用蒸馏法举行辞别,此时可用浓硫酸和高锰酸钾将其撤除。要领如下。 在150mL分液漏斗中,插手100mL煤油醚,用10mL浓硫酸分两次洗涤,再用10%硫酸与高锰酸钾配制的饱和溶液洗涤,直至水层中紫色不再消亡为止。用蒸馏水洗涤两次后,将煤油醚倒入干枯的锥形瓶中,插手无水氯化钙干枯lh。蒸馏,搜集必要规格的馏分。 3.氯仿 平凡氯仿中含有1%乙醇(这是为防备氯仿分化为有毒的光气,作为稳固剂加进去的)。 撤除乙醇的要领是用水洗涤氯仿5~6次后,将分出的氯仿用无水氯化钙干枯24h,再举行蒸馏,搜集60.5~61.5℃馏分。纯品应装在棕色瓶内,置于暗处避光留存。 4.苯 平凡苯中也许含有小批噻吩,撤除的要领是用小批(约为苯体积的15%)浓硫酸洗涤数次,再分别用水、10%碳酸钠溶液和水洗涤。辞别出苯,置于锥形瓶中,用无水氯化钙干枯24h后,水浴加热蒸馏,搜集79.5~80.5℃馏分。 在有机化学实践中,通常运用种种溶剂作为响应介质或用来辞别提纯粗产品。由于响应的特点和物质的性子分歧,对溶剂规格的要求也不相似。有些响应(如格氏试剂的制备响应)对溶剂的要求较高,纵使微量杂质或水分的存在,也会影响实践的正常举行。这种处境下,就需对溶剂举行纯化治理,以餍足实践的正常要求。这里引见几种实践室中常用的有机溶剂的纯化要领。 5.无水乙醚 市售乙醚中常含有微量水、乙醇和其他杂质,不及餍足无水实践的要求。可用下述要领举行治理,制得无水乙醚。 在250mL干枯的圆底烧瓶中,插手100mL乙醚和几粒沸石,装上回流冷凝管。将盛有10mL浓硫酸的滴液漏斗始末带有侧口的橡胶塞装置在冷凝管上端接通冷凝水后,将浓硫酸迟钝滴入乙醚中,由于吸水作用发生热,乙醚会自行沸腾。

常用有机溶剂纯化处理

沸点56.2℃,折光率1.358 8,相对密度0.789 9。 普通丙酮常含有少量的水及甲醇、乙醛等还原性杂质。其纯化方法有: ⑴于250mL丙酮中加入2.5g高锰酸钾回流,若高锰酸钾紫色很快消失,再加入少量高锰酸钾继续回流,至紫色不褪为止。然后将丙酮蒸出,用无水碳酸钾或无水硫酸钙干燥,过滤后蒸馏,收集55~56.5℃的馏分。用此法纯化丙酮时,须注意丙酮中含还原性物质不能太多,否则会过多消耗高锰酸钾和丙酮,使处理时间增长。 ⑵将100mL丙酮装入分液漏斗中,先加入4mL10%硝酸银溶液,再加入3.6mL1mol/L氢氧化钠溶液,振摇10min,分出丙酮层,再加入无水硫酸钾或无水硫酸钙进行干燥。最后蒸馏收集55~56.5℃馏分。此法比方法⑴要快,但硝酸银较贵,只宜做小量纯化用。 二氧六环 沸点101.5℃,熔点12℃,折光率1.442 4,相对密度1.033 6。 二氧六环能与水任意混合,常含有少量二乙醇缩醛与水,久贮的二氧六环可能含有过氧化物(鉴定和除去参阅乙醚)。二氧六环的纯化方法,在500mL二氧六环中加入8mL浓盐酸和50mL水的溶液,回流6~10h,在回流过程中,慢慢通入氮气以除去生成的乙醛。冷却后,加入固体氢氧化钾,直到不能再溶解为止,分去水层,再用固体氢氧化钾干燥24h。然后过滤,在金属钠存在下加热回流8~12h,最后在金属钠存在下蒸馏,压入饥丝密封保存。精制过的1,4-二氧环己烷应当避免与空气接触。 吡啶 沸点115.5℃,折光率1.509 5,相对密度0.981 9。 分析纯的吡啶含有少量水分,供一般实验用。如要制得无水吡啶,可将吡啶与粒氢氧化钾(钠)一同回流,然后隔绝潮气蒸出备用。干燥的吡啶吸水性很强,保存时应将容器口用石蜡封好。 石油醚 石油醚为轻质石油产品,是低相对分子质量烷烃类的混合物。其沸程为30~150℃,收集的温度区间一般为30℃左右。有30~60℃,60~90℃,90~120℃等沸程规格的石油醚。其中含有少量不饱和烃,沸点与烷烃相近,用蒸馏法无法分离。 石油醚的精制通常将石油醚用其体积的浓硫酸洗涤2~3次,再用10%硫酸加入高锰酸钾配成的饱和溶液洗涤,直至水层中的紫色不再消失为止。然后再用水洗,经无水氯化钙干燥后蒸馏。若需绝对干燥的石油醚,可加入钠丝(与纯化无水乙醚相同)。 甲醇 沸点64.96℃,折光率1.328 8,相对密度0.791 4。 普通未精制的甲醇含有0.02%丙酮和0.1%水。而工业甲醇中这些杂质的含量达0.5%~1%。为了制得纯度达99.9%以上的甲醇,可将甲醇用分馏柱分馏。收集64℃的馏分,再用镁去水(与制备无水乙醇相同)。甲醇有毒,处理时应防止吸入其蒸气。 乙酸乙酯 沸点77.06℃,折光率1.372 3,相对密度0.900 3。 乙酸乙酯一般含量为95%~98%, 含有少量水、乙醇和乙酸。可用下法纯化:于1000mL乙酸乙酯中加入100mL乙酸酐,10滴浓硫酸,加热回流4h,除去乙醇和水等杂质,然后进行蒸馏。馏液用20~30g无水碳酸钾振荡,再蒸馏。产物沸点为77℃,纯度可达以上99%。

(推荐)多酚提取方法

1.1溶剂提取法 多酚是多羟基化合物,它的结构特点决定多酚易溶或可溶于水、醇类、醚类、酮类、酯类等,所以,溶剂提取法主要有水溶剂提取和有机溶剂提取两种。水溶剂提取植物多酚类物质早90年代就有报道,该法由于工艺简便、成本低、纯度高而被广泛使用,但此法提取率低。有机溶剂提取是利用多酚在不同溶剂中的溶解度不同进行回流提取,常用的溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,此法可提高提取率、缩短反应时间。姚永志[2]等人在比较水溶剂及乙醇溶剂提取花生红衣多酚物质的研究中报道,当以水作溶剂提取花生红衣多酚物质时,最佳工艺:水浴温度40℃、液料比75、提取时间lh、提取率为6.41%,而乙醇作溶剂时最佳工艺:乙醇浓度55%、水浴温度60℃、提取时间0.5 h、料液比1:37.5,提取率达到7.858%。但有机溶剂成本高、回收困难,有毒易燃,不利于安全生产。 1.2微波辅助提取 微波辅助提取技术是利用微波能来提高提取率的一种技术。在微波提取过程中,微波辐射能够导致植物细胞内的极性物质吸收微波能,产生大量热量,使细胞内温度迅速上升,液态水汽化,从而使产生的压力在细胞膜和细胞壁上形成微小孔洞,使胞外溶剂可以进入细胞内溶解并释放出胞内物质,因此可以有效的提高产率,降低反应时间,减少溶剂的使用量。由于目前微波的设备比较普遍,因此,微波提取植物多酚的方法为更多的人所接受和使用。宋薇薇等[3]人用微波辅助法提取石榴皮多酚类化合物,确定了石榴皮多酚提取的最优工艺条件:40%(体积分数)乙醇作溶剂,料液比(g:m1)l:35,微波功率为242 W,提取时间60 s,提取三次,以该优化条件提取时,多酚粗提物得率26.52%,这个结果较贾冬英[43以20%(体积分数)乙醇作溶剂,料液比(g:mL)1:20,温度50℃,提取时间1 h,以该优化条件提取所得石榴多酚得率22.86%高,与醇提法相比,微波辅助提取能强化浸取过程,体系受热均匀,提取物中多酚含量高,提取时间较短等优点。 1.3超声波辅助提取 超声波辅助提取法是利用超声波产生的强烈振动、高加速度、强烈的空化效应、搅拌作用等,可加速有效成分进入溶剂,从而提高提取率,缩短提取时间,并可避免高温对提出成分的影响。超声波提取的操作具有简便快捷、提取温度低、时间短、提取率高、提取物结构不易被破坏的特点.该法的缺点是获得产品纯度不高。陶令霞c5]等人对苹果渣中多酚的超声辅助提取工艺条件进行了优化研究,确定最佳工艺条件为:70%乙醇,提取时间50 min,提取功率200 W,料液比1:15,提取温度35℃,提取2次,苹果多酚得率为4.29g/kg。同时,超声波辅助提取方法在荷叶多酚大麦多酚、以及诃子多酚中也有相应的报道。 1.4生物酶解提取 生物酶解提取技术是根据酶反应具有高度专一性的特点,选择相应的酶,水解或降解细胞壁组成成分纤维素、半纤维素和果胶,从而破坏细胞壁结构,使细胞内的成分溶解、混悬或交溶于溶剂中,达到提取目的。酶法提取最大的优势是反应条件温和。由于酶法提取是在非有机溶剂下进行,所得产物纯度、稳定性、活性都较高,无污染,解决了有机溶剂提取法有机溶剂回收困难、用量大等缺点。此外,酶法提取在缩短提取时闻、降低能耗、降低提取成本等方面也具有一定优势[6]。刘军海等人[7]以低档绿茶为原料,采用复合酶法在较低温度下提取茶多酚。以单因素试验考察了酶用量、提取温度、提取时间及pH对茶多酚提取率的影响。通过正交试验优化并确定最佳提取工艺条件:酶用量为0.20%、提取温度为60℃、提取时间80 min、pH为4.6,在此工艺下茶多酚提取率为13.6%,其中儿茶素占茶叶干重的含量比沸水提取法高出2.31%。1.5离子沉淀法离子沉淀法是利用多酚能与金属离子络合生成沉淀,使其在浸提液中与其它物质分离而出,从而得到纯度较高多酚。目前常用金属离子有A13+、Zn2+、Fe2+、M92+、Ba2+、Ca2+等,其中A13+、Zn2+较为理想。离子沉淀法优点是不使用大量有机溶剂,工艺较简单,生产安全性好,在一定程度上可降低能耗,部分

实验室常用试剂提纯方法

Preface to the Sixth Edition THERE IS a continuing demand for the Purification of Laboratory Chemicals book,to the extent that the 5th edition which was published in early 2003 was carefully translated into Chinese (ISBN 978-7-5025-94367) by Ying-Jie Lin, Wei Liu, Hui-Ping Wang, Xiao-Bo Sun, Qing-Shan Li and Jun-Gang Cao from Jilin University (People’s Republic of China) in 2007. In response to the demand, it was timely to update the 5th edition to include the more recently developed purification procedures, as well as add to the list of compounds for purification. The latter comprise some commercially available compounds that have gained usefulness and popularity in the past few years. The first two chapters have been updated, sections of current interest have been expanded and new sections added. Chapter 3 has been rewritten so that areas of work that have lost popularity have been reduced in size or deleted and sections on recent, and now commonly adopted, technologies have been inserted. Chapters 4, 5 and 6 are now completely reorganized, and each is subdivided into several sections which will make it easier for the reader to locate compounds of similar classification. Chapter 4 is subdivided into aliphatic, alicyclic, aromatic and heterocyclic compounds, Chapter 5 has been subdivided into inorganic and metal-organic compounds, and Chapter 6 has been subdivided into amino acids and peptides, proteins, enzymes, DNA and RNA, carotenoids, carbohydrates, steroids and a miscellaneous section which includes small biologically active substances such as antibiotics, coenzymes, co-factors, lipids, phospholipids, polynucleotides and vitamins. Some useful compounds that have been added recently to commercial catalogues have been included in these three chapters. A large number of derivatives of previous entries with their physical properties and purifications have been inserted together with extensive referencing to the original literature including Beilstein references. This resulted in an increase in size of the 5th edition, in text and number of compounds, by over 20%. The purifications of some 7400 substances are described. As in the 5th edition, substance entries are in alphabetical order within subsections and each substance is defined by its Chemical Abstracts Service (CAS) Registry Number. An index of these numbers with their respective page numbers at the end of the book will make it possible to locate the purification of a desired substance readily and to check if the substance is contained in the book. For this purpose we thank Rodney Armarego for setting up a Macro on the MacBook Pro computer used for collating the CAS Registry Numbers for the index. There is also a General Index of Contents. Website references of distributors of substances and/or of equipment have been included in the text. However, since these may change in the future, users should check for current websites of suppliers. The bibliographies have been updated, and websites of a few publishers and book suppliers have been included. Several texts with publication dates older than fifteen years have been deleted except for a few very useful textbooks which are out of print and where recent editions have not been produced. In these cases it is usually possible to obtain used copies from good suppliers of old books, for which there are several websites, e.g. visit Google under “old books suppliers”; also visit websites such as , , , . Further information for almost every entry in Chapters 4, 5 and 6 of the 6th edition can be obtained from the references to the original literature, which are cited under each entry together with their respective Beilstein reference(s). We thank readers who have provided advice, constructive criticism and new information. We are grateful for any further comments, suggestions, amendments and criticisms which could, perhaps, be inserted in a second printing of this edition. We thank Joe Papa BS MS (EXAXOL in

相关主题