搜档网
当前位置:搜档网 › 石灰石石膏湿法烟气脱硫技术

石灰石石膏湿法烟气脱硫技术

石灰石石膏湿法烟气脱硫技术
石灰石石膏湿法烟气脱硫技术

1、石灰石/石膏湿法烟气脱硫技术特点:

1).高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到4.0 m/s。

2).技术成熟可靠,多于55,000 MWe 的湿法脱硫安装业绩。

3).最优的塔体尺寸,系统采用最优尺寸,平衡了SO2 去除与压降的关系,使得资金投入和运行成本最低。

4).吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。

从而达到:

? 脱硫效率高达95%以上,有利于地区和电厂实行总量控制;

? 技术成熟,设备运行可靠性高(系统可利用率达98%以上);

? 单塔处理烟气量大,SO2脱除量大;

? 适用于任何含硫量的煤种的烟气脱硫;

? 对锅炉负荷变化的适应性强(30%—100%BMCR);

? 设备布置紧凑减少了场地需求;

? 处理后的烟气含尘量大大减少;

? 吸收剂(石灰石)资源丰富,价廉易得;

? 脱硫副产物(石膏)便于综合利用,经济效益显著;

2、系统基本工艺流程

石灰石(石灰)/石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。其基本工艺流程如下:

锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元

制。

在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。

经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。

在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。

最后,洁净的烟气通过烟道进入烟囱排向大气。

石灰石(石灰)/石膏湿法脱硫工艺流程图

3、脱硫过程主反应

1)SO2 + H2O → H2SO3 吸收

2)CaCO3 + H2SO3 → CaSO3 + CO2 + H2O 中和

3)CaSO3 + 1/2 O2 → CaSO4 氧化

4)CaSO3 + 1/2 H2O → CaSO3?1/2H2O 结晶

5)CaSO4 + 2H2O → CaSO4 ?2H2O 结晶

6)CaSO3 + H2SO3 → Ca(HSO3)2 pH 控制

同时烟气中的HCL、HF与CaCO3的反应,生成CaCl2或CaF2。吸收塔中的pH值通过注入石灰石浆液进行调节与控制,一般pH值在5.5—6.2之间。

4、主要工艺系统设备及功能

1)烟气系统

烟气系统包括烟道、烟气挡板、密封风机和气—气加热器(GGH)等关键设备。吸收塔入口烟道及出口至挡板的烟道,烟气温度较低,烟气含湿量较大,容易对烟道产生腐蚀,需进行防腐处理。

烟气挡板是脱硫装置进入和退出运行的重要设备,分为FGD主烟道烟气挡板和旁路烟气挡板。前者安装在FGD系统的进出口,它是由双层烟气挡板组成,当关闭主烟道时,双层烟气挡板之间连接密封空气,以保证FGD系统内的防腐衬胶等不受破坏。旁路挡板安装在原锅炉烟道的进出口。当FGD系统运行时,旁路烟道关闭,这时烟道内连接密封空气。旁路烟气挡板设有快开机构,保证在FGD系统故障时迅速打开旁路烟道,以确保锅炉的正常运行。

经湿法脱硫后的烟气从吸收塔出来一般在46—55℃左右,含有饱和水汽、残余的SO2、SO3、HCl、HF、NOX,其携带的SO42-、SO32-盐等会结露,如不经过处理直接排放,易形成酸雾,且将影响烟气的抬升高度和扩散。为此湿法FGD系统通常配有一套气—气换热器(GGH)烟气再热装置。气—气换热器是蓄热加热工艺的一种,即常说的GGH。它用未脱硫的热烟气(一般130~150℃)去加热已脱硫的烟气,一般加热到80℃左右,然后排放,以避免低温湿烟气腐蚀烟道、烟囱内壁,并可提高烟气抬升高度。烟气再热器是湿法脱硫工艺的一项重要设备,由于热端烟气含硫最高、温度高,而冷端烟气温度低、含水率大,故气—气换热器的烟气进出口均需用耐腐蚀材料,如搪玻璃、柯登钢等,传热区一般用搪瓷钢。

另外,从电除尘器出来的烟气温度高达130~150℃,因此进入FGD前要经过GGH降温器降温,避免烟气温度过高,损坏吸收塔的防腐材料和除雾器。

2)吸收系统

吸收系统的主要设备是吸收塔,它是FGD设备的核心装置,系统在塔中完成对SO2、SO3等有害气体的吸收。湿法脱硫吸收塔有许多种结构,如填料塔、湍球塔、喷射鼓泡塔、喷淋塔等等,其中喷淋塔因为具有脱硫效率高、阻力小、适应性、可用率高等优点而得到较广泛的应用,因而目前喷淋塔是石灰石/石膏湿法烟气脱硫工艺中的主导塔型。

喷淋层设在吸收塔的中上部,吸收塔浆液循环泵对应各自的喷淋层。每个喷淋层都是由一系列喷嘴组成,其作用是将循环浆液进行细化喷雾。一个喷淋层包括母管和支管,母管的侧向支管成对排列,喷嘴就布置在其中。喷嘴的这种布置安排可使吸收塔断面上实现均匀的喷淋效果。

吸收塔循环泵将塔内的浆液循环打入喷淋层,为防止塔内沉淀物吸入泵体造成泵的堵塞或损坏及喷嘴的堵塞,循环泵前都装有网格状不锈钢滤网(塔内)。单台循环泵故障时,FGD系统可正常进行,若全部循环泵均停运,FGD系统将保护停运,烟气走旁路。

氧化空气系统是吸收系统内的一个重要部分,氧化空气的功能是保证吸收塔反应池内

生成石膏。氧化空气注入不充分将会引起石膏结晶的不完善,还可能导致吸收塔内壁的结垢,因此,对该部分的优化设置对提高系统的脱硫效率和石膏的品质显得尤为重要。

吸收系统还包括除雾器及其冲洗设备,吸收塔内最上面的喷淋层上部设有二级除雾器,它主要用于分离由烟气携带的液滴,采用阻燃聚丙烯材料制成。

3)浆液制备系统

浆液制备通常分湿磨制浆与干粉制浆两种方式

不同的制浆方式所对应的设备也各不相同。至少包括以下主要设备:磨机(湿磨时用)、粉仓(干粉制浆时用)、浆液箱、搅拌器、浆液输送泵。

浆液制备系统的任务是向吸收系统提供合格的石灰石浆液。通常要求粒度为90%小于325目。

4)石膏脱水系统

石膏脱水系统包括水力旋流器和真空皮带脱水机等关键设备。

水力旋流器作为石膏浆液的一级脱水设备,其利用了离心力加速沉淀分离的原理,浆液流切进入水力旋流器的入口,使其产生环形运动。粗大颗粒富集在水力旋流器的周边,而细小颗粒则富集在中心。已澄清的液体从上部区域溢出(溢流);而增稠浆液则在底部流出(底流)。

真空皮脱水机将已经水力旋流器一级脱水后的石膏浆液进一步脱水至含固率达到90%以上。

5)排放系统

排放系统主要由事故浆池、区域浆池及排放管路组成。

6)热工自控系统

为了保证烟气脱硫效果和烟气脱硫设备的安全经济运行,系统装备了完整的热工测量、自动调节、控制、保护及热工信号报警装置。其自动化水平将使运行人员无需现场人员配合,在控制室内即可实现对烟气脱硫设备及其附属系统的启、停及正常运行工况的监视、控制和调节,系统同时具备异常与事故工况时的报警、连锁和保护功能。

石灰石石膏湿法脱硫原理 (2)

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目 前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当 前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得 的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅 拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制 成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二 氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除, 最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴, 经换热器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。 由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是 为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配 套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了 应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广

4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解 (2) SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2 在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷

石灰石石膏湿法脱硫原理

深度脱硫工艺流程简介 班级:应化141 :段小龙寇润宋蒙蒙 王春维贺学磊

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组火电厂烟 气脱硫的基本工艺。它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破 碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化 处理后加水制成吸收剂浆液。在吸收塔,吸收浆液与烟气接触混合,烟气中的二 氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产 物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排 入烟囱。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收 剂的利用率很高。最初这一技术是为发电容量在100MW以上、要求脱硫效率较 高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾 电站上得到了应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用围广 4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料

6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO 2 )的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为: (1)气态SO 2 与吸收浆液混合、溶解 (2)SO 2 进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO 2 在吸收塔中转化,其反应简式式如下: CaCO 3+2 SO 2 +H 2 O=Ca(HSO 3 ) 2 +CO 2 在此,含CaCO 3 的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气 中。在吸收塔中SO 2被吸收,生成Ca(HSO 3 ) 2 ,并落入吸收塔浆池中。 当pH值基本上在5和6之间时,SO 2 去除率最高。因此,为了确保持续高 效地俘获二氧化硫(SO 2 )必须采取措施将PH值控制在5和6之间;为了确保要 将PH值控制在5和6之间和促使反应向有利于生成2H+和SO 3 2-的方向发展,持 续高效地俘获二氧化硫(SO 2 ),必须采取措施至少从上面方程式中去掉一项反应

石灰石-石膏湿法烟气脱硫工艺的化学原理题库

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO 2 烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, 3、气液界面处:参加反应的主要是SO 2和HSO 3 -,它们与溶解了的CaCO 3 的反应 是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO 2 在气流中的扩散, 2、扩散通过气膜 3、 SO 2 被水吸收,由气态转入溶液态,生成水化合物 4、 SO 2 水化合物和离子在液膜中扩散 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO 2 水化合物与溶解的石灰石粉发生反应) 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧 化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO 2 的物理、化学性质:无色有刺激性气味的有毒气体。密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能 溶解40体积的二氧化硫,成弱酸性。SO 2 为酸性氧化物,具有酸性氧化物的通性、

还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO 2 无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。 ②. 三氧化硫SO 3的物理、化学性质:由二氧化硫SO 2 催化氧化而得,无色易挥 发晶体,熔点16.8℃,沸点44.8℃。SO 3为酸性氧化物,SO 3 极易溶于水,溶于 水生成硫酸H 2SO 4 ,同时放出大量的热, ③. 硫酸H 2SO 4 的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点 为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO 2被液相吸收的反应:SO 2 经扩散作用从气相溶入液相中与水生成亚硫 酸H 2SO 3 亚硫酸迅速离解成亚硫酸氢根离子HSO 3 -和氢离子H+,当PH值较高时, HSO 3二级电离才会生成较高浓度的SO 3 2-,要使SO 2 吸收不断进行下去,必须中和 电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸 度迅速提高,PH值迅速下降,当SO 2溶解达到饱和后,SO 2 的吸收就告停止,脱 硫效率迅速下降 2、吸收剂溶解和中和反应:固体CaCO 3的溶解和进入液相中的CaCO 3 的分解, 固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。Ca2+的形 成是一个关键步骤,因为SO 2正是通过Ca2+与SO 3 2-或与SO 4 2-化合而得以从溶液中 除去, 3、氧化反应:亚硫酸的氧化,SO 32-和HSO 3 -都是较强的还原剂,在痕量过渡金属 离子(如锰离子Mn2+)的催化作用下,液相中的溶解氧将它们氧化成SO 4 2-。反应的氧气来源于烟气中的过剩空气和喷入浆液池的氧化空气,烟气中洗脱的飞灰和石灰石的杂质提供了起催化作用的金属离子。 4、结晶析出:当中和反应产生的Ca2+、SO 32-以及氧化反应产生的SO 4 2-,达到一 定浓度时这三种离子组成的难溶性化合物就将从溶液中沉淀析出。沉淀产物: ①. 或者是半水亚硫酸钙CaSO 3·1/2H 2 O、亚硫酸钙和硫酸钙相结合的半水固溶 体、二水硫酸钙CaSO 4·2H 2 O。这是由于氧化不足而造成的,系统易产生硬垢。

石灰石石膏湿法脱硫原理

石灰石石膏湿法脱硫原理

深度脱硫工艺流程简介 班级:应化 141 姓名:段小龙寇润宋蒙蒙 王春维贺学磊 石灰石- 石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆

液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是为发电容量在100MW 以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10 多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80% 左右。在湿法烟气脱硫技术中,石灰石/ 石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广 4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/ 石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道, 主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO)的基本工艺 过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为: (1) 气态SO2 与吸收浆液混合、溶解 (2)SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SQ在吸收塔中转化,其反应简式式如下:

石灰石石膏湿法脱硫原理

深度脱硫工艺流程简介 班级:应化141 姓名:段小龙寇润宋蒙蒙 王春维贺学磊

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺就是湿法脱硫的一种,就是目前世界上 应用范围最广、工艺技术最成熟的标准脱硫工艺技术。就是当前国际上通行的大 机组火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石或石灰作脱硫吸收剂, 石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石 灰粉经消化处理后加水制成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合, 烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除, 最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加 热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用, 脱硫吸收剂的利用率很高。最初这一技术就是为发电容量在100MW以上、要求脱 硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅 炉与垃圾电站上得到了应用、 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术就是最主要的技术,其优点就是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广 4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,就是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道, 主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO )的基本工艺过 2

脱硫工艺-强制氧化石灰石石膏法计算步骤

脱硫工艺-强制氧化石灰石石膏法计算步骤2008-06-17 17:51:25) 由于本人并非工艺设计人员,所以这个计算步骤有可能存在不足之处;但应该是脱硫工艺入门同行有的参考价值的计算向导。 首先,根据所给的烟气成分,计算烟气的分子量,烟气的湿度等。 其次,要先行计算出吸收塔的进口及出口烟气的状况。 1 假定吸收塔出口的温度T1(如果有GGH,则需要先行假定两个温度,即吸收塔进口T0及出口温度。) 2 利用假定的出口温度,查表可以知道对应改温度的饱和蒸汽压P as。 3 由H as=0.622P as/(P-Pas)可以求出改温度下的饱和水湿度 4 由已知的进口温度T0、r0、C H(C H= 1.01+1.88H0)、H0,可以求出 T as=T0-(r0*(H as-H0)/(1.01+1.88 H0))(H0:初始烟气的湿度,r0=2490) 5 如果T as接近于 T1,那么这个假定温度可以接受,若果与假定温度相距太远,则该温度不能接受,需要重新假定。 (上述为使用试差法的绝热饱和计算过程,对于技术上涉外的项目,一般外方公司会提供,上面一部分的计算软件无须人工手算的) 6 有GGH时,假定吸收塔出口温度经已确定后,判断该温升是否符合GGH出口与入口的烟温差,假如烟温差同样适合的话,再校验GGH的释放热量问题。 再次,在确定好吸收塔出口气体的流量后,利用除雾器的最大流速限值,计算出吸收塔的直径。再根据进口烟气限速,计算出烟气进口的截面积。 7 由提供的液气比L/G可以计算出,喷淋所需的吸收液流量。由这个吸收液流量,再按照经验停留时间,可以计算出循环水箱的容积。同样根据经验需要的氧化时间及设计的氧气上升速度,可以计算出循环水箱的液位高度。那么就可以计算出整个吸收塔基循环水箱的截面积。 8 计算消耗的石灰石用量 由入口的二氧化硫浓度以及设计的二氧化硫脱除率可以知道脱除的二氧化硫。 对于烟气的三氧化硫而言,其脱除率达100%,所以多氧化硫物质的脱除量可以计算出来。

湿法烟气脱硫系统中石灰石品质的要求.

湿法烟气脱硫系统中石灰石品质的要求 湿法烟气脱硫系统中石灰石品质要求如下: 序号项目 单 位 推荐值最低值 1 CaCO 3 %≥95≥90 2 MgC O3* %≤2≤5 3其它%≤3≤5 4粒径μm ≤44≤63 * MgCO3不应以白云石的形态存在,否则应计入其它。 石灰石中的杂质对脱硫系统的性能将产生重要的影响,常见的杂质包括MgCO3、SiO2、Al2O3和Fe2O3。其中MgCO3的一部分可以溶解,从而对脱硫过程产生重要的影响,而其它杂质不会溶解,通常是惰性物质。石灰石品质除了影响到FGD系统的石灰石用量以及钙硫比以外,其中主要的杂质影响如下:

一、 MgCO 3: 一般来说,石灰石中总会含有一定量的碳酸镁,MgCO 3在石灰石中的存 在形式通常为置换固溶体(CaCO 3晶格中Mg 置换了Ca )或者白云石。 置换固溶体通常在FGD 系统中是可溶解的,而白云石中的MgCO 3通常不 可溶解。 石灰石中碳酸镁的含量对FGD 的影响有利有弊,主要影响如下: 1、MgCO 3本身可以参与脱硫反应;而且适度含量的Mg 2+ 会增加浆液的 吸收能力,这主要是因为如果浆液中存在Mg 2+,则由于MgSO 3离子对 的存在,浆液中SO 32-浓度大大增加。而SO 32-可以参与脱硫反应,从 而促进对SO 2的吸收,反应方程式如下: SO 32-+SO 2+H 2O →2HSO 3- 2、MgCO 3含量过高容易阻碍石灰石的溶解从而降低脱硫效率,这主要是 因为Mg 2+的存在对氟-铝钝化膜的形成有很强的促进作用,这种钝化膜 的包裹引起石灰石的溶解速率降低,也就降低了石灰石的利用率。另一方 面,易溶的镁盐在吸收塔内累积,浆液中高浓度的镁离子和亚硫酸根离子 将降低石灰石的溶解速率,从而增加石灰石耗量。 3、高含量可溶性盐在塔内浆液中的浓度富集,会导致循环浆液浓度过 高,致使系统运行负荷增大,耗电量也增加。

石灰石石膏湿法脱硫培训教材

灰-膏湿法烟气脱硫工艺 灰(灰)-膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上 应用围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通 行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得的灰或灰作 脱硫吸收剂,灰经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用 灰为吸收剂时,灰粉经消化处理后加水制成吸收剂浆液。在吸收塔, 吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及 鼓入的氧化空气进行化学反应被脱除,最终反应产物为膏。脱硫后的 烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。 脱硫膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收 剂的利用率很高。最初这一技术是为发电容量在100MW以上、要 求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫 工艺也在工业锅炉和垃圾电站上得到了应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,灰/灰—膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用围广 4、系统运行稳定,变负荷运行特性优良

5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 灰/灰—膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在灰一膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的膏副产品。基本工艺过程为: (1)气态SO2与吸收浆液混合、溶解 (2)SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用灰作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。在吸收塔中SO2被吸收,生成Ca(HSO3)2 ,并落入

石灰石石膏法

石灰石石膏法

石灰/石灰石-石膏法脱硫 石灰/石灰石一石膏法烟气脱硫技术最早是由英国皇家化学工业公司提出的,该方法脱硫的基本原理是用石灰或石灰石浆液吸收烟气中的SO2,先生成亚硫酸钙,然后将亚硫酸钙氧化为硫酸钙。副产品石膏可抛弃也可以回收利用。 (1)反应原理 用石灰石或石灰浆液吸收烟气中的二氧化硫分为吸收和氧化两个工序,先吸收生成亚硫酸钙,然后再氧化为硫酸钙,因而分为吸收和氧化两个过程。 1)吸收过程在吸收塔内进行,主要反应如下。 石灰浆液作吸收剂:Ca(OH)2+SO2一CaSO3.1/2H2O 石灰石浆液吸收剂:Ca(OH)2+1/2SO2一CaSO3.1/2H2O+CO2 CaSO3.1/2H2O+SO2+1/2H2O一Ca(HSO3)2 由于烟道气中含有氧,还会发生如下副反应。 2CaSO3.1/2Hz0+O2+3 H2O一2CaSO4.2H20 ②氧化过程在氧化塔内进行,主要反应如下。 2 CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20 Ca(HSO3)2+1/2O2+H2O一CaSO4·H2O+SO2

传统的石灰/石灰石一石膏法的工艺流程如图所示。将配好的石灰浆液用泵送人吸收塔顶部,经过冷却塔冷却并除去90%以上的烟尘的含Sq烟气从塔底进人吸收塔,在吸收塔内部烟气与来自循环槽的浆液逆向流动,经洗涤净化后的烟气经过再加热装置通过烟囱排空。石灰浆液在吸收so:后,成为含有亚硫酸钙和亚硫酸氢钙的棍合液,将此混合液在母液槽中用硫酸调整pH值至4左右,送人氧化塔,并向塔内送人490kPa的压缩空气进行氧化,生成的石膏经稠厚器使其沉积,上层清液返回循环槽,石膏浆经离心机分离得成品石膏。 现代石灰/石灰石一石膏法工艺流程主要有原料运输系统、石灰石浆液制备系统、烟气脱硫系统、石膏制备系统和污水处理系统。 ①原料运输系统烟气脱硫所需的石灰石粉(粒度为250目,筛余量为5%),采用自卸封罐车运输,并卸人石灰石料仓。每个料仓可有多个进料口,能同时进行多台运料车卸料作业。在每个仓底设有粉碎装置,仓顶安装布袋除尘器。 ②浆液制备系统石灰石粉料从料仓下部出来,经给料机及输送机送人石灰石浆液槽。 石灰石浆液槽为混凝土结构,内衬树脂防腐,容积为l00m3”左右。浆液浓度约为30%,用调节给水量来控制浆液浓度。 ③烟气脱硫系统烟气脱硫系统主要由吸收塔、烟气再加热装置、旁路系统、有机剂 添加装置及烟囱组成。 吸收塔是脱硫装置的核心设备,现普遍采用的集冷却、再除尘、吸收和氧化为一体的新型吸收塔。常见的有喷淋空塔、

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO )由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 3 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其他污染物

石灰石 石膏湿法脱硫技术的工艺流程 反应原理及主要系统

石灰石-石膏湿法脱硫技术的工艺流程 如下图的石灰石-石膏湿法烟气脱硫技术的工艺流程图。 图一常见的脱硫系统工艺流程 图二无增压风机的脱硫系统 如上图所示引风机将除尘后的锅炉烟气送至脱硫系统,烟气经增压风机增压后(有的系统在增压风机后设有GGH换热器,我们一、二期均取消了增压风机,和旁路挡板,图二),进入脱硫塔,浆液循环泵将吸收塔的浆液通过喷淋层的喷嘴喷出,与从底部上升的烟气发生接触,烟气中SO2的与浆液中的石灰石发生反应,生成CaSO3,从而除去烟气中的SO2。经过净化后的烟气在流经除雾器后被除去烟气中携带的液滴,最后从烟囱排出。反应生成物CaSO3进入吸收塔底部的浆液池,被氧化风机送入的空气强制氧化生成CaSO4,结晶生成石膏。石灰石浆液泵为系统补充反应消耗掉的石灰石,同时石膏浆液输送泵将吸收塔产生的石

膏外排至石膏脱水系统将石膏脱水或直接抛弃。同时为了防止吸收塔内浆液沉淀在底部设有浆液搅拌系统,一期采用扰动泵,二期采用搅拌器。 石灰石-石膏湿法脱硫反应原理 在烟气脱硫过程中,物理反应和化学反应的过程相对复杂,吸收塔由吸收区、氧化区和结晶区三部分组成,在吸收塔浆池(氧化区和结晶区组成)和吸收区,不同的层存在不同的边界条件,现将最重要的物理和化学过程原理描述如下:(1)SO2溶于液体 在吸收区,烟气和液体强烈接触,传质在接触面发生,烟气中的SO2溶解并转化成亚硫酸。 SO2+H2O<===>H2SO3 除了SO2外烟气中的其他酸性成份,如HCL和HF也被喷入烟气中的浆液脱除。装置脱硫效率受如下因素影响,烟气与液体接触程度,液气比、雾滴大小、SO2含量、PH值、在吸收区的相对速度和接触时间。 (2)酸的离解 当SO2溶解时,产生亚硫酸,同时根据PH值离解: H2SO3<===>H++HSO3-对低pH值 HSO3-<===>H++SO32-对高pH值 从烟气中洗涤下来的HCL和HF,也同时离解: HCl<===>H++Cl-F<===>H++F- 根据上面反应,在离解过程中,H+离子成为游离态,导致PH值降低。浆液中H+离子的增加,导致SO2在浆液中的溶解量减少。因此,为使浆液能够再吸收SO2,必须清除H+离子。H+离子的清除采用中和的方式。

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

石灰石石膏湿法脱硫技术原理简介

石灰石-石膏湿法脱硫技术原理简介 技术特点 1. 高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到 4.0m/s。 2?技术成熟可靠,多用于55,000MWe的湿法脱硫安装业绩。 3 ?最优的塔体尺寸,系统采用最优尺寸,平衡了SO2去除与压降的关系,使得资金投入和 运行成本最低。 4 ?吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。从而达到: a. 脱硫效率高达95%以上,有利于地区和电厂实行总量控制; b. 技术成熟,设备运行可靠性高(系统可利用率达98%以上); c. 单塔处理烟气量大,SO2脱除量大; d. 适用于任何含硫量的煤种的烟气脱硫; e对锅炉负荷变化的适应性强(30%~100%BMCR ); f. 设备布置紧凑减少了场地需求; g. 处理后的烟气含尘量大大减少; h. 吸收剂(石灰石)资源丰富,价廉易得; i. 脱硫副产物(石膏)便于综合利用,经济效益显著。 工艺流程 石灰石(石灰)——石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。其基本工艺流程如下: 锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的 喷嘴喷射到吸收塔中,以便脱除S02、S03、HCL和HF,与此同时在强制氧化工艺”的处 理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充 分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。 在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除 雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46~55 C左右,且为水蒸气所饱和。通过GGH将烟气加热到80C以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 脱硫过程主反应 1. SO2 + H2O T H2SO3 吸收 2. CaCO3 + H2SO3 T CaSO3 + CO2 + H2O 中和 3. CaSO3 + 1/2 O2 T CaSO氧化 4. CaSO3 + 1/2 H2O T CaSO3?1/2H2黠晶 5. CaSO4 + 2H2O T CaSO4?2H2O结晶

石灰石石膏湿法脱硫技术原理简介

石灰石石膏湿法脱硫技 术原理简介 Hessen was revised in January 2021

石灰石-石膏湿法脱硫技术原理简介 技术特点 1.高速气流设计增强了物质传递能力,降低了系统的成本,标准设计烟气流速达到4.0m/s。 2.技术成熟可靠,多用于55,000MWe的湿法安装业绩。 3.最优的塔体尺寸,系统采用最优尺寸,平衡了SO2去除与压降的关系,使得资金投入和运行成本最低。 4.吸收塔液体再分配装置,有效避免烟气爬壁现象的产生,提高经济性,降低能耗。从而达到: a.效率高达95%以上,有利于地区和电厂实行总量控制; b.技术成熟,设备运行可靠性高(系统可利用率达98%以上); c.单塔处理烟气量大,SO2脱除量大; d.适用于任何含硫量的煤种的烟气; e.对锅炉负荷变化的适应性强(30%~100%BMCR); f.设备布置紧凑减少了场地需求; g.处理后的烟气含尘量大大减少; h.吸收剂()资源丰富,价廉易得; i.副产物(石膏)便于综合利用,经济效益显着。 工艺流程 (石灰)——石膏湿法工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。其基本工艺流程如下:经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。 在吸收塔中,与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46~55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 过程主反应 1.SO2 + H2O → H2SO3 吸收 2.CaCO3 + H2SO3 → CaSO3 + CO2 + H2O 中和

脱硫系统典型工艺流程(石灰石-石膏湿法脱硫技术)

电厂烟气脱硫系统典型工艺(石灰石-石膏湿法脱硫技术) 1.石灰石-石膏湿法脱硫工艺及脱硫原理 从电除尘器出来的烟气通过增压风机BUF进入换热器GGH,烟气被冷却后进入吸收塔Abs,并与石灰石浆液相混合。浆液中的部分水份蒸发掉,烟气进一步冷却。烟气经循环石灰石稀浆的洗涤,可将烟气中95%以上的硫脱除。同时还能将烟气中近100%的氯化氢除去。在吸收器的顶部,烟道气穿过除雾器Me,除去悬浮水滴。 离开吸收塔以后,在进入烟囱之前,烟气再次穿过换热器,进行升温。吸收塔出口温度一般为50-70℃,这主要取决于燃烧的燃料类型。烟囱的最低气体温度常常按国家排放标准规定下来。在我国,有GGH 的脱硫,烟囱的最低气温一般是80℃,无GGH 的脱硫,其温度在50℃左右。大部分脱硫烟道都配备有旁路挡板(正常情况下处于关闭状态)。在紧急情况下或启动时,旁路挡板打开,以使烟道气绕过二氧化硫脱除装置,直接排入烟囱。 石灰石—石膏稀浆从吸收塔沉淀槽中泵入安装在塔顶部的喷嘴集管中。在石灰石—石膏稀浆沿喷雾塔下落过程中它与上升的烟气接触。烟气中的SO2溶入水溶液中,并被其中的碱性物质中和,从而使烟气中的硫脱除。 石灰石中的碳酸钙与二氧化硫和氧(空气中的氧)发生反应,并最终生成石膏,这些石膏在沉淀槽中从溶液中析出。石膏稀浆由吸收塔沉淀槽中抽出,经浓缩、脱水和洗涤后先储存起来,然后再从当地运走。 2.脱硫过程主反应 1.SO2 + H2O → H2SO3 吸收 2.CaCO3 + H2SO3 → CaSO3 + CO2 + H2O 中和 3.CaSO3 + 1/2 O2 → CaSO4 氧化 4.CaSO3 + 1/2 H2O →CaSO3?1/2H2O结晶 5.CaSO4 + 2H2O →CaSO4?2H2O结晶

石灰石-石膏湿法脱硫系统简介

0.1 Plant description 脱硫岛介绍 The FGD plant consists of flue gas path, which includes the absorber vessel, booster fan, GGH and bypass dampers, which ensure the operation of the boiler in two modes – FGD operation and a bypass operation. Limestone slurry preparation system gets ready the absorbent needed in the process. The only by-product is gypsum slurry, which is transported to the dewatering system consisting primary and secondary dewatering stages. Gypsum, as a byproduct of dewatering is temporary storied for further use and water is partly led back to the process, partly to the waste water treatment. 脱硫岛包括烟气系统、石灰浆液制备系统、石膏浆液脱水系统、石膏库和废水处理等。在烟气系统中包括吸收塔、升压风机和旁路档板,旁路 档板的作用是它能够满足锅炉在两种模式下运行,一是在脱硫岛在线,二 是脱硫岛旁路。石灰浆液制备系统的功能是准备工艺流程中所需的吸收 剂。反应后生成的唯一的辅产品是石膏浆液,石膏浆液分别经过一级脱水 和二级脱水,经过脱水产生的辅产品是石膏被临时储存起来为以后用,脱 出的水一部分返回系统中,而另一部分被送到废水处理站。 0.1.1 Absorber system 吸收塔系统 A wet limestone process with forced oxidation with the SO2 absorber system is used to remove flue gas SO2 and to produce a gypsum by-product. SO2 removal efficiency of 96% is reached for all specified boiler loads and scope of the fuels. The absorber utilizes a perforated scrubber tray and four absorber spray levels for SO2removal, which are above the absorber tray. The absorber recirculation pumps feed separately each header when operating.

石灰石石膏湿法脱硫物料衡算(简单步骤)

石灰石石膏湿法脱硫物料衡算 首先,根据所给的烟气成分,计算烟气的分子量,烟气的湿度等。 其次,要先行计算出吸收塔的进口及出口烟气的状况。 1 假定吸收塔出口的温度T1(如果有GGH,则需要先行假定两个温度,即吸收塔进口T0及出口温度。) 2 利用假定的出口温度,查表可以知道对应改温度的饱和蒸汽压P as。 3 由H as=0.622P as/(P-Pas)可以求出改温度下的饱和水湿度 4 由已知的进口温度T0、r0、C H(C H= 1.01+1.88H0)、H0,可以求出 T as=T0-(r0*(H as-H0)/(1.01+1.88 H0))(H0:初始烟气的湿度,r0 =2490) 5 如果T as接近于T1,那么这个假定温度可以接受,若果与假定温度相距太远,则该温度不能接受,需要重新假定。 (上述为使用试差法的绝热饱和计算过程,对于技术上涉外的项目,一般外方公司会提供,上面一部分的计算软件无须人工手算的) 6 有GGH时,假定吸收塔出口温度经已确定后,判断该温升是否符合GGH 出口与入口的烟温差,假如烟温差同样适合的话,再校验GGH的释放热量问题。 再次,在确定好吸收塔出口气体的流量后,利用除雾器的最大流速限值,计算出吸收塔的直径。再根据进口烟气限速,计算出烟气进口的截面积。 7 由提供的液气比L/G可以计算出,喷淋所需的吸收液流量。由这个吸收液流量,再按照经验停留时间,可以计算出循环水箱的容积。同样根据经验需要的氧化时间及设计的氧气上升速度,可以计算出循环水箱的液位高度。那么就可以计算出整个吸收塔基循环水箱的截面积。 8 计算消耗的石灰石用量 由入口的二氧化硫浓度以及设计的二氧化硫脱除率可以知道脱除的二氧化硫。 对于烟气的三氧化硫而言,其脱除率达100%,所以多氧化硫物质的脱除量可以计算出来。

相关主题