搜档网
当前位置:搜档网 › Stress intensity factors evaluation for through-transverse crack

Stress intensity factors evaluation for through-transverse crack

Stress intensity factors evaluation for through-transverse crack
Stress intensity factors evaluation for through-transverse crack

Stress intensity factors evaluation for through-transverse crack in slab track system under vehicle dynamic

load

Shengyang Zhu a ,b ,Chengbiao Cai a ,?

a State Key Laboratory of Traction Power,Southwest Jiaotong University,No.111First Section,North of Second Ring Road,Chengdu 610031,PR China b

Department of Civil and Environmental Engineering,Rice University,6100Main Street,Houston,TX 77005,USA

a r t i c l e i n f o Article history:

Received 12May 2013

Accepted 11September 2014

Available online 22September 2014Keywords:

Slab track,Crack

Extended ?nite element method Vehicle–track coupled dynamics Stress intensity factors

a b s t r a c t

The stress intensity factors (SIFs)for through-transverse crack in the China Railway Track System (CRTS II)slab track system under vehicle dynamic load are evaluated in this paper.A coupled dynamic model of a half-vehicle and the slab track is presented in which the half-vehicle is treated as a 18-degree-of-freedom multi-body system.The slab track is modeled as two continuous Bernoulli–Euler beams supported by a series of elastic rectan-gle plates on a viscoelastic foundation.The model is applied to calculate the vertical and lateral dynamic wheel–rail forces.A three-dimensional ?nite element model of the slab track system is then established in which the through-transverse crack at the bottom of concrete base is created by using extended ?nite element method (XFEM).The wheel–rail forces obtained by the vehicle-track dynamics calculation are utilized as the inputs to ?nite element model,and then the values of dynamic SIFs at the crack-tip are extracted from the XFEM solution by domain based interaction integral approach.The in?uences of subgrade modulus,crack length,crack angle,friction coef?cient between cracked surfaces,and friction coef?cient between faces of concrete base and subgrade on dynamic SIFs are investigated in detail.The analysis indicates that the subgrade modulus,crack length and crack angle have great effects on dynamic SIFs at the crack-tip,while both of the friction coef?cients have negligible in?uences on variations of dynamic SIFs.Also the statistical characteristics of varying SIFs due to random wheel–rail forces are studied and results reveal that the distributions of dynamic SIFs follow an approximately Gaussian distribution with different mean values and standard deviations.The numerical results obtained are very useful in the maintenance of the slab track system.

ó2014Elsevier Ltd.All rights reserved.

1.Introduction

High-speed railway lines in the form of slab tracks have played an important role in ensuring the riding comfort and derailment safety of high-speed trains,owing to their advantages of better stiffness uniformity,higher running stability,and lower maintenance cost [1–3].Fig.1shows the CRTS II slab track and its components.The primary components of the track system are the rails,the rail pads,the concrete slab,the CA mortar layer,the concrete base,and the subgrade.Clearly,the slab track is a layered elastic system with the elastic modulus and material strength decreasing from the top

https://www.sodocs.net/doc/cc15790652.html,/10.1016/j.engfailanal.2014.09.0041350-6307/ó2014Elsevier Ltd.All rights reserved.

?Corresponding author.Tel.:+862886465537.

E-mail addresses:syzhu@https://www.sodocs.net/doc/cc15790652.html, (S.Zhu),cbcai@https://www.sodocs.net/doc/cc15790652.html, (C.Cai).

220S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

Fig.2.Through-transverse crack of concrete base in CRTS II slab track.

layer to bottom layer.To enhance the structural integrity and improve the riding comfort of high-speed trains,the track-lay-ers are connected into a whole through friction forces,bonding forces or force transition components between the track-layers.

Due to the fact that the application time of slab tracks is still short in the development of high-speed railways,the knowl-edge and experience of the design,the construction,and the operation and maintenance of the slab tracks are often quite limited among railway engineers.Therefore,premature structural damage can be found in nearly all kinds of slab tracks caused by a variety of factors.On the Chinese high-speed railway lines,the damage or deterioration of the concrete base with through-transverse cracks in the slab tracks are recognized as one of the most critical problems after a short time operation, as shown in Fig.2.Such damage modes not only increase the cost of railway operation,but also signi?cantly weaken the structural integrity of the slab track system,and contribute to the potential for failure of the slab tracks.During the service life of the CA mortar layers,the through-transverse cracks could be induced by several mechanisms.The vehicle dynamic load is one of the most dominant causes for this premature damage of the concrete base in the slab tracks.Although a nota-ble loss of the bearing capacity of the slab tracks as a direct result of the cracks of the concrete base has rarely been reported, the cracks have a signi?cant effect on the durability and service life of the concrete base because it can cause the rainwater to permeate into the cracks,accelerating the propagation of the cracks to the concrete slabs.Motivated by the desire to min-imize damage of track structures and to ensure the running safety,modern railway engineers require a fundamental under-standing of the damage or failure mechanisms under train and track interactions.However,most studies have focused on rail surface cracks in the ballast track system[4–9],and studied show the SIFs at crack-tip are related to the crack length,the crack angle,the contact patch size,and the friction coef?cient between cracked faces when a contact load moves over the crack.Whereas quite a few studies have been published concerning the damage or fracture mechanisms of slab track com-ponents.Takahashi[10]evaluated the factors contributing to the deterioration of track slabs in cold areas.He found that deterioration occurred more frequently on south facing sides of track slabs through visual inspections,and the track slab deterioration was caused by an alkali–silica reaction and frost damage.Muramoto[11]carried out tests with a full-scale bal-lastless track model laid on a saturated clayey roadbed.He clari?ed the defect mechanism of clayey roadbeds under ballast-less tracks and proposed two countermeasures against failures by means of the full-scale tests.Zhu and Cai[12]employed a cohesive zone model to model the interface damage between the CA mortar layer and the concrete slab,and investigated the

vertical dynamic coupled model of a vehicle and the double-block ballastless track with a track-bed crack modeled with3D singular elements,and studied the dynamic SIFs at the crack-tip due to the vehicle passing.Although this model is physically meaningful and illustrates the characteristics of the SIFs at crack-tip,it is limited in that the model made some simpli?ca-tions and the effect of lateral dynamic loads of the system was not considered.

Stress intensity factors(SIFs)at a crack-tip play an important role in linear elastic fracture mechanics as they govern crack propagation rate and trajectory.The objective of the present paper is to evaluate the SIFs for through-transverse crack at the bottom of concrete base in CRTS II slab track under vehicle dynamic load.The mechanisms of how the subgrade modulus, crack length,crack angle,friction coef?cient between cracked surfaces,and friction coef?cient between faces of concrete base and subgrade affect the dynamic SIFs are investigated in detail by using a calculation model which considers a combi-nation of three dimensional vehicle-track coupled dynamic theory and XFEM solution,and also the statistical characteristics of varying SIFs due to random wheel–rail forces are studied.The numerical results obtained are very useful in the design and maintenance of slab track system.

2.Finite element modeling

2.1.XFEM approximation for the crack

The extended?nite element method,a classic?nite element approximation enriched by additional special terms using the framework of partition of unity[14],has gained considerable attention in fracture mechanics to compute the SIFs for cracked structures.The crack is commonly presented by using the level set method.The introduction of the enriched discon-tinuous solutions into the?nite element basic functions allows for the simulation of crack growth or complicated crack geometries without remeshing and the?nite elements is independent of the crack topology.A literature review of the XFEM method for computational fracture mechanics and its advantages compared with the traditional?nite element method can be found in Yazid[15].The?rst publications of the XFEM models for solving dynamic problems were presented in Belytschko [16,17],and Zi[18].Recently,Motamedi and Mohammadi[19–21]extended the standard XFEM models for the orthotropic materials to investigate the dynamic crack propagation in composites.

For the purpose of fracture analysis,the crack-tip enrichment functions typically consist of the near-tip asymptotic func-tions that capture the singularity around the crack-tip and the Heaviside function that represents the jump in displacement across the cracked surfaces,and they were de?ned in the crack domain X=X1+X2as shown in Fig.3.For simplicity,illus-trations are given in a two-dimensional cracked problem but the generalization for three-dimensional problems is straight-forward.Note that in Fig.3,the circle symbols represent the elements enriched by the Heaviside function and the square symbols show the elements enriched by singular functions.The approximation for a displacement vector u with the partition of unity enrichment is expressed as follow[22]:

u?

X N

I?1N IexTu ItHexTa It

X4

a?1

F aexTb a

I

"#

e1T

where N I(x)are the usual nodal shape functions;the?rst term on the right-hand side of the above equation,u I,is the usual nodal displacement vector associated with the continuous part of the?nite element solution,and it is applicable to all the nodes in the model;the second term is the product of the nodal enriched degree of freedom vector,a I,and the associated Heaviside function H(x)across the cracked surfaces(Heaviside is+1on one side of the discontinuity andà1on other side of the discontinuity),noted that this term is valid for nodes whose shape function support is cut by the crack interior X1;

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237221

and the third term used only for nodes whose shape function support is cut by the crack-tip X2,is the product of the nodal enriched degree of freedom vector,b a

I

,and the associated elastic asymptotic crack-tip functions,F a(x).

Since the crack is not explicitly meshed,the location of the crack is no more included in the mesh.This method therefore requires another way to simulate the crack.In the XFEM model,a powerful tool,the level set method,is used to describe the through-transverse crack,and the crack is treated as a single surface.In level set approach,a crack is described by crack-tip and level set function[23–25],and two level sets are necessary to represent the crack in the level set function,i.e.normal level set(a signed distance function,W which is the closest point to the crack surface)and tangent level set(tangent to the crack surface at the closest point,U).For simplicity,Fig.4illustrates the use of both level set functions to de?ne the geom-etry of a2D crack.

The crack-tip enrichment function,which de?nes the discontinuity near the crack-tip,takes the form of four functions as follow:

F aexT?

???

r

p

sin

h

2

;

???

r

p

cos

h

2

;

???

r

p

sin h sin

h

2

;

???

r

p

sin h cos

h

2

e2T

where r and h are polar coordinates in the local crack-tip coordinate system.

The stress intensity factors K I,K II,and K III play an important role in linear elastic fracture mechanics.They characterize the in?uence of load or deformation on the magnitude of the crack-tip stress and strain?elds and measure the propensity for crack propagation or the crack driving forces.Furthermore,the stress intensity can be related to the energy release rate (the J-integral)for a linear elastic material through.

J?

1

8p

K TáBà1áKe3T

where K=[K I,K II,K III]T and B is called the pre-logarithmic energy factor matrix[26,27].For homogeneous,isotropic materials B is diagonal and the above equation simpli?es to:

J?1

E K

2

I

tK2

II

t

1

2G

K2

III

e4T

where E?E for plane stress and E?E=e1àm2Tfor plane strain,axisymmetry,and three dimensions.And then the domain based interaction integral approach[27]is used to extract the stress intensity factors for the crack under mixed-mode loading.

2.2.Finite element model of the slab track

In order to evaluate the stress intensity factors for through-transverse crack of concrete base under vehicle dynamic load, a three-dimensional?nite element model of the CRTS II slab track system with through-transverse crack at the bottom of concrete base is built up based on the commercial software ABAQUS,as shown in Fig.5.

In this study,series of spring elements are employed to represent rail fastening system at each node and they are parallel at both sides of the rail foot.The nodes of these spring elements can move in the vertical and lateral directions with corre-sponding stiffness.Hinged boundaries are adopted for the rails to prevent free body motions.Linear line elements of type B31are used for the rails,and linear hexahedral elements of type C3D8R are applied for the other components of the slab track system,all the elements in the present study are assumed to behave pure elastically.The slab track system is repre-sented by10,935solid elements and15,800degrees of freedom,and the mesh has a total length of10m and is long enough to be considered as an in?nite slab track compared to the size of the crack.In the current investigation,a through-transverse crack at the bottom of concrete base is assumed to be located right below the rail fastening system,as shown in Fig.5b.A small-sliding formulation have been employed between cracked surfaces to model crack closure,and a?nite-sliding formu-lation have been applied between faces of concrete base and subgrade to consider the friction effect.It should be emphasized

222S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

that the present study deals only with stationary crack subjected to dynamic loads,it does not need to model crack propa-gation.To achieve more accurate results,a relatively ?ner mesh of elements is used close to the crack but larger elements are employed elsewhere.All the displacements of the nodes at the bottom of the slab track are restricted,and all the nodes at the both ends are applied symmetry constraints.In the present FE model,the XFEM described above is utilized to investigate the dynamic SIFs for the through-transverse crack under vehicle dynamic load.

The rail support pitch is 0.65m.The coef?cients of equivalent spring stiffness in the vertical and lateral directions are both selected to be 2.5?107N/m.The coef?cients of equivalent damper in the vertical and lateral directions are selected to be 2.5?104N s/m,respectively.The concrete slab has a Young’s modulus of 3.6?1010Pa,a Poisson ratio of 0.2,and a (a)

Through-transverse

crack

Crack angle θ

(b)

Rail fastener

Concrete slab

CA mortar layer

Concrete base

Subgrade

Rail

(c)

model:(a)The entire ?nite element mesh,(b)through-transverse crack at the bottom of concrete base,and S.Zhu,C.Cai /Engineering Failure Analysis 46(2014)219–237223

224S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

2400kg/m3.The concrete base has a Young’s modulus of2.55?1010Pa,a Poisson ratio of0.2,and a density of2400kg/m3. The subgrade has a Poisson ratio of0.25and a density of1950kg/m3.In order to investigate the in?uences of subgrade mod-ulus E s,crack length l,crack angle h,friction coef?cient k1between cracked surfaces,and friction coef?cient k2between faces of concrete base and subgrade on dynamic SIFs at the crack-tip,we select subgrade modulus E s=1.0?108,2.0?108, 3.0?108Pa,crack length l=0.1,0.15,0.2m,crack angle h=30°,60°,90°,friction coef?cient k1=0.0,0.15,0.3,and friction coef?cient k2=0.0,0.15,0.3,respectively.

3.Coupled dynamic model of a vehicle and the slab track

Fig.6illustrates the three-dimensional coupled dynamic model of a half-vehicle and the CRTS II slab track which is used to predict the dynamic wheel–rail forces when a vehicle moves along the slab track.

3.1.Motion equations of vehicle

The half vehicle is considered as a rigid multi-body model in which the car body is supported on two double-axle bogies with the primary and the secondary suspension systems.It should be noted that since the half vehicle is considered in the dynamics analysis as shown in Fig.1,it cannot be balanced when it runs on the track.Therefore,the pitching and yaw

motions of the half car body have to be neglected[28,29].Therefore the total number of degrees of freedom of the vehicle model is18,as listed in Table1.Based on the system of coordinates moving along the track at a constant speed of the vehicle, the motion equations of the half-vehicle can be easily described in the form of second-order differential equations in the time domain:

M V A VtC VeV VTV VtK VeX VTX V?F VeX V;V V;X T;V TTe5Twhere M V is the mass matrix of the vehicle;C V and K V are the damping and the stiffness matrices,depending on the current state of the vehicle subsystem to describe nonlinearities within the suspension;X V,V V and A V are the vectors of displace-ments,velocities and accelerations of the vehicle subsystem,respectively;X T and V T are the vectors of displacements and velocities of the track subsystem;F V(X V,V V,X T,V T)is the system load vector representing the nonlinear wheel/rail contact forces which is the function of the motions X V and V V of the vehicle and X T and V T of the track.

3.2.Motion equations of slab track

For the modeling of the CRTS II slab track,each rail is treated as continuous Bernoulli–Euler beam resting on railpads,and the vertical,lateral,and torsion motions of the rails are simultaneously taken into account.According to the Ritz’s method the fourth-order partial differential equations of the rails can be given in form of second-order ordinary differential equa-tions:for the vertical vibration:

€q V k etTt

EI Y

m r

k p

l

4

q

V k

etT?à

X N

i?1

P r

Vi

Z kex siTt

X4

j?1

P j Z kex wjTk?1$N Ve6T

for the lateral vibration:

€q L k etTt

EI Z

r

k p

4

q

L k

etT?à

X N

i?1

P r

Li

Y kex siTt

X4

j?1

Q j Y kex wjTk?1$N Le7T

and for the torsional vibration:

€q T k etTt

GK

q I0

k p

l

2

q

T k

etT?à

X N

i?1

M si H kex siTt

X4

j?1

M wj H kex wjTk?1$N Te8T

where q V k(t),q L k(t)and q T k(t)are the generalized coordinates,describing the vertical,lateral and torsional motions of the rail, respectively;EI Y,EI Z and GK are the vertical bending,lateral bending and torsional stiffness of the rail;m r is the mass per unit longitudinal length;I0is the torsional inertia of the rail;q is the density of the rail;Z k,Y k and H k are the k th mode functions of vertical bending,lateral bending,and torsion of the rail,respectively;x si are the coordinates of the rail-supporting points, and x wj are the coordinates of the contact points of the wheel and rail;N V,N L and N T are the total numbers of the rail mode functions which are all selected to be100in the calculation;P j and Q j are the vertical and lateral wheel/rail forces;M si and

M wj are the equivalent calculation moments on the rail;P r

Vi and P r

Li

are the vertical and lateral rail-supporting forces.When

q V k(t),q L k(t)and q T k(t)are obtained through the dynamic calculation,the vertical,lateral and torsional displacements of the rail can be written as:

Z rex;tT?

X N V

k?1

Z kexTq V ketTe9TY rex;tT?

X N L

k?1

Y kexTq L ketTe10T

/rex;tT?

X N T

k?1H kexTq

T k

etTe11T

Table1

Degrees of freedom of the half-vehicle model.

Vehicle component Type of motion

Lateral Vertical Roll Yaw Pitch Wheelset1Y w1Z w1u w1w w1b w1

Wheelset2Y w2Z w2u w2w w2b w2

Bogie frame Y t Z t u t w t b t

Car body Y c Z c u c––

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237225

The concrete slab and concrete base of the slab track are described as elastic rectangle plates supported on viscoelastic foundation.As shown in Fig.6,the three layers of discrete springs and dampers represent the elasticity and damping effects of the rail fastener,the CA mortar layer and the subgrade,respectively.By using the Ritz’s method,the vertical vibrations of the slab can be expressed as a series of second-order ordinary differential equations in terms of the generalized coordinates, as expressed by Eq.(13),which can be solved with the time-stepping integration method.

€T mn etTtC s q

s

h s

_T

mn

etTtD s q

s

h s

B3B2t2B4B5tB1B6

B1B2

T mnetT

?1

q s h s B1B2

X N p

i?1P rVietTX mex piTY ney piTà

X N b

j?1

F sVjetTX mex biTY ney biT

"#

e12Tsurroundings of the through-transverse crack in the concrete base at deformed FEM

226S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

where

B1?R L s

X2

m

exTdx

B2?R W s

Y2

n

eyTdy

B3?R L s

X0000

m

exTX mexTdx

B4?R L s

X00

m

exTX mexTdx

B5?R W s

Y00

n

eyTY neyTdy

B6?R L s

Y0000

n

eyTY neyTdy

8

>>>

>>>

>>>

>>>

><

>>>

>>>

>>>

>>>

>:

e13T

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237227

According to the elastic thin slab theory,the solution of the vertical motions of the slab can be obtained as:

wex;y;tT?

X N x

m?1X N y

n?1

X mexTY neyTT mnetTe14T

Regarding the lateral motions,the slab is considered as a rigid body.Thus,the lateral vibrations are written as:

q s L s W s h s€yetT?

X N p

i?1

P rLietTà

X N b

i?1

F sLjetTe15T

in Eqs.(12)–(15),X m(x)and Y n(y)are the mode functions of the slab with x and y coordinates respectively;T mn(t)are the generalized coordinates,and describes the vertical motion of the slab;m and n are the mode numbers of X m(x)and Y n(y), respectively,and N x=N y=5;C s is the damping of the slab D s is the vertical bending stiffness of the slab;q s,L s,W and h s

228S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237229 are the density,length,width and thickness of the slab;F sVj(t)and F sLj(t)are the vertical and lateral dynamic forces at the j th supporting point under the slab;N p and N b are,respectively,the total number of rail fasteners on the slab and the total num-ber of discrete supporting points under one slab used in the calculation.

Similarly,the equations of motions of the concrete base can be easily obtained and are omitted in the paper for brevity. Detailed descriptions of the equations of the vehicle-track coupled dynamic system can be found in Refs.[30,31].

3.3.Model of wheel/rail contact

As shown in Fig.6,the vehicle and the slab track are spatially coupled by the wheel–rail interface.When calculating the dynamic response of the vehicle/track,the nonlinear Hertzian elastic contact theory is used to calculate the wheel/rail nor-mal contact forces which depends on the displacements of wheels and rails,and the tangential wheel/rail creep forces are calculated?rst by using the Kalker’s linear creep theory and then modi?ed by the Shen–Hedrick–Elkins nonlinear model

230S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

[32].If rail surface irregularities are known,the dynamic wheel–rail forces can be obtained with the help of the coupled vehi-cle-track dynamic model solved by means of a new explicit integration method[33].

4.Results and discussion

4.1.Variations of SIFs

In this paper,the axle load of the vehicle is155kN,and the vehicle speed is300km/h.Typical rail irregularities charac-terized by wavelengths between1and30m are selected to excite the vehicle/track coupled system.

Fig.7a and b shows the time histories of vertical and lateral wheel–rail forces when the vehicle moves along the CRTS II slab track with above rail irregularities,respectively.They are utilized as the inputs to?nite element model in order to inves-tigate the variations of dynamic SIF values when the vehicle moves over the crack.Under the condition of crack length l=0.15m,crack angle h=90°,subgrade modulus E s=200MPa,friction coef?cient k1=0.3,and friction coef?cient k2=0.3, dynamic analysis was conducted by using the ABAQUS dynamic implicit code.

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237231 Fig.8shows the von Mises stress state in the surroundings of the through-transverse crack for the concrete base at deformed FEM mesh.Fig.9shows the time histories of the SIFs at the crack-tip due to the vertical and lateral wheel–rail forces induced by vehicle and track interaction,respectively.It is worth noticing that the value of stress intensity factor K I increases dramatically and reaches the peak value of0.131MPa m1/2when the axle of vehicle is above the crack,and it decreases quickly to small positive magnitude as the vehicle moves away from the crack.It can also be seen from Fig.9that the value of stress intensity factor K II and K III take on positive and negative alternatively while the vehicle passes through the crack,and the peak values of K II and K III are found to beà0.019,à0.014MPa m1/2,respectively.Clearly,the peak value of K I is approximately7times that of K II,and is almost9times that of K III.Therefore it is mainly the presence of K I rather than K II or K III that drives the crack to propagate in this case.

Since the SIFs varied from point to point along the through-transverse crack,it is proper to show the changes at each point along the crack-tip under the vehicle dynamic load.Fig.10shows the absolute values of peak SIFs distribution along the crack-tip in normalized coordinates L P/L B due to the vehicle passing.It is found that the stress intensity factors K I and K II have their maximum value at the point B,below the rail,and the peak value of stress intensity factor K III occurs at location of point

232S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

A(Point A,B are indicated in Fig.1),therefore,the crack would initially start to propagate closer to these points.Hence,for clarity,the following analysis will focus only on the two critical points.

4.2.Effect of subgrade modulus on SIFs

To investigate the effect of subgrade modulus on the dynamic SIFs,three different subgrade modulus(100,200,300MPa) are investigated with the same crack length l=0.15m,crack angle h=90°,friction coef?cient k1=0.3,and friction coef?cient k2=0.3.It is clearly shown in Fig.11that the value of K I decreases with the increase of the Young’s modulus of subgrade due to the fact that lower modulus of the subgrade result in higher bending moment of concrete base,and thus makes more bending displacement occur and increases the associated K I.The peak value of K I for the model with subgrade modulus 100MPa is found to be0.176MPa m1/2,which is larger than that for the model with subgrade modulus200MPa by34%, and that for the model with subgrade modulus300MPa by59%.Therefore,lower subgrade modulus might increase the chance of crack formation.This fact makes clear why many cracks are found where the concrete base could occur relatively

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237233 large deformation due to weak subgrade.However,subgrade modulus has a negligible contribution to the value of K II and K III because the bending moment would closes the crack and cannot affect K II and K III signi?cantly.

4.3.Effect of crack length on SIFs

To study how the variation of crack length affect dynamic SIFs,three different crack lengths(0.10,0.15,0.20m)are inves-tigated with the same subgrade modulus E s=200MPa,crack angle h=90°,friction coef?cient k1=0.3,and friction coef?cient k2=0.3.As shown in Fig.12,the values of K I,K II,and K III for models with crack length0.10and0.15m are very close.When the crack length increases to0.20m,the peak values of K I,K II and K III improve considerably and are found to be around0.183,à0.060,à0.017MPa m1/2,respectively.This is because the crack length0.20m is closer to the critical length which has the highest SIFs.Thus,compared to the model with relatively small length(0.10,0.15m),it can be predicted that large crack length(0.20m)with higher SIFs will lead to higher crack propagation rate.

234S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

4.4.Effect of crack angle on SIFs

Fig.13shows the in?uence of the crack angle on dynamic SIFs for three different crack angles(30°,60°,90°)with the same subgrade modulus E s=200MPa,crack length l=0.15m,friction coef?cient k1=0.3,and friction coef?cient k2=0.3. It can be found from Fig.6that K II is quite sensitive to the crack angle.It can change totally and switches from negative to positive when the angle of the crack decreases to30°.In higher angles(i.e.crack angle90°)the bending stress cannot affect the K II and K III signi?cantly as it closes the crack.With this angle,negative shear occurs when the vehicle pass over the crack.While with a low angle(crack angle30°),the bending stress has more contribution in shear mode(K II and K III), and this low angle cannot cancel bending effects and increases K I signi?cantly.In this case the peak value of K I is found to be0.283MPa m1/2which is much larger than that of models with90°angle by about116%.And for the K II,its value switches to positive when the vehicle pass over the crack,and it starts and ends with a small positive magnitude,but has a signi?cantly high peak value of0.449MPa m1/2at the crack-tip during loading.In regard to K III,it increases when crack angle decreases as illustrated in Fig.13c and has its maximum value of0.030MPa m1/2in the crack with30°angle.

4.5.Effect of friction coef?cients on SIFs

The in?uences of friction coef?cient between cracked surfaces,and friction coef?cient between faces of concrete base and subgrade on dynamic SIFs are investigated in this analysis,where three different friction coef?cients k1(0,0.15and0.3)and k2(0,0.15and0.3)are selected respectively with the same subgrade modulus E s=200MPa,crack length l=0.15m,crack angle h=90°.It can be seen from Figs.14and15that by increasing the friction coef?cients,all the SIFs cannot be effected signi?cantly and they keep nearly unchanged,This occurs because the friction forces occur at those surfaces are not large enough to signi?cantly reduce the opening and shearing displacements of the crack during loading.Therefore,the dynamic SIFs when the vehicle passes over the crack are not sensitive to those friction coef?cients.

4.6.Statistical characteristics of SIFs under vehicle dynamic load

As the rail irregularities at the location where the through-transverse crack of concrete base occurs are found to be ran-dom,the corresponding wheel–rail forces vary with the irregularities.In order to investigate statistical characteristics of SIFs under vehicle dynamic load,the rail irregularities are assumed to move backward at the speed of the vehicle,and the vehicle is static with respect to the slab track system.Therefore,the varying vertical and lateral wheel–rail forces can be obtain with

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237235 the coupled dynamic model,as shown in Fig.16.Noted that the sample size of wheel–rail forces here is large enough to make sure the statistical analysis is statistically signi?cant.

In the current analysis,the leading wheel of the bogie is assumed to be above the crack,and the second wheel of a bogie is almost2.5m from the leading wheel.The vertical and lateral wheel–rail forces due to the rail irregularities are utilized as the inputs to?nite element model.Under the condition of crack length l=0.15m,crack angle h=30°,subgrade modulus E s=200MPa,friction coef?cient k1=0.3,and friction coef?cient k2=0.3,with which the values of SIFs are the highest among the above sensitivity analysis,the varying SIFs under vehicle dynamic load can be obtained with the dynamic implicit anal-ysis,as plotted in Fig.17.The statistical characteristic values of dynamic SIFs are illustrated in Table.2.It can be clearly seen that in this case the mean value,maximum value,minimum value and standard deviation of K II are all found to be the high-est compared to K I and K III.Fig.18shows the frequency histogram of the dynamic SIFs and a Gaussian distribution?tted to the same dynamic SIFs,it can be concluded that the distribution of K I follows an approximately Gaussian distribution with a mean of0.239MPa m1/2and a standard deviation of0.032MPa m1/2,the distribution of K II can be well represented by a

Table2

Statistical characteristic values of dynamic SIFs due to random wheel–rail forces(unit:MPa m1/2).

Mean Maximum Minimum Standard deviation

K I0.2390.3810.1060.032

K II0.3710.5630.1710.045

K III0.0190.0440.0020.005

236S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237

Gaussian distribution with a mean of0.371MPa m1/2and a standard deviation of0.045MPa m1/2,and the distribution of K III is approximately subject to a Gaussian distribution with a mean of0.019MPa m1/2and a standard deviation of 0.005MPa m1/2.

5.Conclusions

In this paper,a three-dimensional?nite element model of the CRTS II slab track system is built up to evaluate dynamic SIFs for through-transverse crack of concrete base created by using the XFEM.A coupled dynamic model of a half-vehicle and the slab track is applied to calculate the dynamic wheel–rail forces which are utilized as the inputs to?nite element model. The values of SIFs at the crack-tip under vehicle dynamic load are extracted from the XFEM solution by domain based inter-action integral approach.Sensitivity analysis using parameters such as subgrade modulus,crack length,crack angle,friction coef?cient between cracked surfaces,and friction coef?cient between faces of concrete base and subgrade are performed in detail.Also the statistical characteristics of varying SIFs due to random wheel–rail forces are analyzed.The numerical results

S.Zhu,C.Cai/Engineering Failure Analysis46(2014)219–237237

(1)The subgrade modulus substantially effects the K I at crack-tip.The subgrade modulus of100MPa can increase K I up to

59%compared with that of higher subgrade modulus of300MPa,but it has a negligible contribution to the value of K II and K III.Thus lower subgrade modulus might increase the chance of crack formation.

(2)Compared to the model with relatively small crack length,large crack length(0.20m)results in higher SIFs and con-

sequently lead to higher crack growth rate.Therefore large crack length might speed up the destruction of the structure.

(3)The dynamic SIFs are quite sensitive to the crack angle.With a low angle(crack angle30°),the peak values of SIFs at

crack-tip are all found to be much larger that of cracks with60°and90°angles during loading,especially for K II,it can change totally and switches from negative to positive when the angle of the crack decreases to30°.

(4)Friction coef?cients have negligible effect on variations of dynamic SIFs.

(5)The distributions of the varying SIFs due to random dynamic wheel–rail forces are subject to an approximately Gauss-

ian distribution with different mean values and standard deviations.

Acknowledgements

This work was supported by the National Basic Research Program of China(‘‘973’’Program)(Grant No.2013CB036202 and No.2013CB036206),the National Natural Science Foundation of China(Grant No.51478397),the Independent Research Project of State Key Laboratory of Traction Power(Grant No.2014TPL_T01),the2013Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University,and the Funds from China Scholarship Council.

References

[1]Esveld C.Modern railway track.Zaltbommel,Nezerlands:MRT-Productions;2001.

[2]Galvin P,Romero A,Dominguez J.Vibrations induced by HST passage on ballast and non-ballast tracks.Soil Dyn Earthq Eng2010;30:862–73.

[3]Lei X,Zhang B.Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements.J Transp Eng–ASCE

2011;137:227–40.

[4]Beretta S,Boniardi M,Carboni M,Desimone H.Mode II fatigue failures at rail butt-welds.Eng Fail Anal2005;12:157–65.

[5]Bogdanski S,Lewicki P.3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails.Wear2008;265:1356–62.

[6]Fletcher D,Smith L,Kapoor A.Rail rolling contact fatigue dependence on friction,predicted using fracture mechanics with a three-dimensional

boundary element model.Eng Fract Mech2009;76:2612–25.

[7]Sandstrom J,A E.Predicting crack growth and risks of rail breaks due to wheel?at impacts in heavy haul operations.Proc Inst Mech Eng,Part F:J Rail

Rapid Transit2009;223:151–61.

[8]Seo J,Kwon S,Jun H,Lee D.Fatigue crack growth behavior of surface crack in rails.Proc Eng2010;2:865–72.

[9]Tillberg J,Larsson F,K R.A study of multiple crack interaction at rolling contact fatigue loading of rails.Proc Inst Mech Eng,Part F:J Rail Rapid Transit

2009;223.

[10]Takahashi T,Sekine E.Evaluation of factors contribution to deterioration of track-slab in cold areas.QR RTRI2011;52:149–55.

[11]Muramoto K,Sekine E,Nakamura Takahisa.Roadbed degradation mechanism under ballastless track,and its countermeasures.QR RTRI

2006;47:222–7.

[12]Zhu SY,Cai CB.Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads.Int J Non-Linear Mech

2014;58:222–32.

[13]Zhu S,Cai C.Analysis on vertical vibration characteristic of double-block ballastless roadbed with cracks.J China Railway Soc2012;34:82–6.

[14]Melenk J,Babuska I.The partition of unity?nite element method:Basic theory and https://www.sodocs.net/doc/cc15790652.html,puter Meth Appl Mech Eng1996;139:289–314.

[15]Yazid A,Abdelkader N,Abdelmadjid H.A state-of-the-art review of the X-FEM for computational fracture mechanics.Appl Math Model

2009;33:4269–82.

[16]Belytschko T,Chen H,Xu J,Zi G.Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment.Int J Numer Methods

Eng2003;58:1873–905.

[17]Belytschko T,Chen H.Singular enrichment?nite element method for elastodynamic crack propagation.Int J Comput Meth2004;1:1–15.

[18]Zi G,Chen H,Xu J,Belytschko T.The extended?nite element method for dynamic fractures.Shock Vibration2005;12:9–23.

[19]Motamedi D,Mohammadi S.Dynamic analysis is of?xed cracks in composites by the extended?nite element method.Eng Fract Mech

2010;77:3373–93.

[20]Motamedi D,Mohammadi S.Dynamic crack propagation analysis of orthotropic media by the extended?nite element method.Int J Fract

2010;161:21–39.

[21]Motamedi D,Mohammadi S.Fracture analysis of composites by time independent moving-crack orthotropic XFEM.Int J Mech Sci2012;54:20–37.

[22]Mo?s N,Dolbow J,Belytschko T.A?nite element method for crack growth without remeshing.Int J Numer Methods Eng1999;46:131–50.

[23]Ventura G,JX X,Belytschko T.A vector level set method and new discontinuity approximations for crack growth by EFG.Int J Numer Methods Eng

2002;54:923–44.

[24]Ventura G,Budyn E,Belytschko T.Vector level sets for description of propagating cracks in?nite elements.Int J Numer Methods Eng

2003;58:1571–92.

[25]Sukumar N,Chopp D,Moes N,Belytschko T.Modeling holes and inclusions by level sets in the extended?nite element https://www.sodocs.net/doc/cc15790652.html,put Meth Appl

Mech Eng2001;190:6183–200.

[26]Gao H,Abbudi M,Barnett DM.Interfacial crack-tip?elds in anisotropic elastic solids.J Mech Phys Solid1992;40:393–416.

[27]Shih CF,Asaro RJ.Elastic-plastic analysis of cracks on bimaterial interfaces.Part I.Small scale yielding.J Appl Mech1988;55:299–316.

[28]Zhai WM,Cai CB,Guo SZ.Coupling model of vertical and lateral vehicle/track interactions.Veh Syst Dyn1996;26:61–79.

[29]Jin X,Wen Z,Wang K,Zhou Z,Liu Q,Li C.Three-dimensional train-track model for study of rail corrugation.J Sound Vibr2006;293:830–55.

[30]Zhai W.Vehicle-track coupled dynamics.3rd ed.Beijing:Science Press;2007.in Chinese.

[31]Zhai W,Wang K,Cai C.Fundamentals of vehicle-track coupled dynamics.Veh Syst Dyn2009;47:1349–76.

[32]Shen Z,Hedrick J,Elkins J.A comparison of alternative creep-force models for rail vehicle dynamic analysis.In:Proceedings of the8th IAVSD

symposium;1984.p.591–605.

[33]Zhai W.Two simple fast integration methods for large-scale dynamic problems in engineering.Int J Numer Methods Eng1996;39:4199–214.

让多媒体技术为小学英语教学插上翅膀

让多媒体技术为小学英语教学插上翅膀 摘要:随着科学技术的发展,多媒体技术应用的领域越来越广,在小学英语课堂中的应用给课堂带来了新的面貌,它以生动形象的画面、鲜明多姿的色彩、直观清楚的演示在教育领域逐渐取代传统教学方式,与传统教学方式相比较,多媒体教学有着无法比拟的优势。 关键词:多媒体技术小学英语课堂 正文: 科技日新月异,伴随着科技的进步,多媒体技术也日趋成熟,逐渐地应用到了教育领域,多媒体技术的使用,使得教育领域发生了巨大的变化。多媒体技术贯穿了现代教育中的各个方面,各个学科,新教学手段(媒介)取代旧的就学手段这是教育发展的必然要求,多媒体运用到课堂,使得教育更具时代色彩,这也是事物发展的客观规律。 多媒体技术运用到小学英语教学中,对此我有切身感受,它颠覆了我们传统的教学方式,使得过去单一的教学模式因注入科技成果的运用而发生质的飞跃,如今的英语课堂用“高效优质”、“多姿多彩”、“有声有色”、“精彩纷呈”等这样的词语来形容并不为过。 一、利用多媒体充分调动学生学习积极性 多媒体技术就是利用电脑把文字、图形、影象、动画、声音及视频等媒体信息都数位化,并将其整合在一定的交互式界面上,使电脑具有交互展示不同媒体形态的能力,多媒体技术具有声形俱全与图文并茂的特点,能使一些枯燥抽象的概念、复杂的变化过程、现象各异的运动形式直观而形象地显现在学生面前。。传统的教学手段只有简单的板书和口述,新课标要求教师的角色转换,传统教学中教师是主导,而新课标要求学生的主体地位,教师应该是课堂的组织者。而多媒体技术在英语课堂中的应用就是组织者教师与主体学生联系的一个纽带。而这个纽带不像传统教学的填鸭式教育手段,而是多姿多彩,有声有色的多媒体教学,这样的教学方式,能引起了学生们极大的学习兴趣,而兴趣是最好的老师,有了兴趣他们就愿意用心学,花时间去学,甚至自觉地学,这样久儿久之,就能将

小学英语自我介绍简单七篇-最新范文

小学英语自我介绍简单七篇 小学的时候我们就开始学习英语了,用英语进行自我介绍是我们值得骄傲的哦,以下是小编为大家带来的小学英语自我介绍简单,欢迎大家参考。 小学英语自我介绍1 Goodafternoon, teachers! Today, I`m very happy to make a speech here. Now, let me introduce myself. My name is ZhuRuijie. My English name is Molly. I`m 12. I come from Class1 Grade 6 of TongPu No.2 Primary School. I`m an active girl. I like playing basketball. Because I think it`s very interesting. I`d like to eat potatoes. They`re tasty. My favourite colour is green. And I like math best. It`s fun. On weekend, I like reading books in my room. I have a happy family. My father is tall and strong.My mother is hard-working and tall, too. My brother is smart. And I`m a good student. My dream is

to be a teacher, because I want to help the poor children in the future. Thank you for listening! Please remember me! 小学英语自我介绍2 Hello,everyone,Iamagirl,mynameisAliceGreenIaminClasstwoGrad efive,Iamveryoutgoing,Icandomanyhousework,suchascooking,swe epingthefloor,andIlikesinginganddancing,IamgoodatpiayingSoc cer,IhopeIcanmakegoodfriendswithyou.Thankyou! 小学英语自我介绍3 Hi, boys and girls, good morning, it is my plearsure to take this change to introduce myself, my name is ---, i am 10 years old. About my family, there are 4 people in my family, father, mother, brother and me, my father and mother are all very kind, welcome you to visit my family if you have time! I am a very outgoing girl(boy), I like reading、playing games and listening to music, of course, I also like to make friends with all the

小学生英语自我介绍演讲稿五篇

小学生英语自我介绍演讲稿五篇 小学生英语自我介绍演讲稿(1) Good afternoon, teachers! My name is YangXiaodan. I`m 11 now. I`m from Class2 Grade 5 of TongPu No.2 Primary School. My English teacher is Miss Sun. She`s quiet and kind. She`s short and young. My good friend is ZhangBingbing. She`s 12. She`s tall and pretty. We`re in the same class. We both like English very much. I like painting , listening to music, playing computer games and reading books. My favourite food is chicken. It`s tasty and yummy. I often do my homework and read books on Saturdays. This is me. Please remember YangXiaodan. Thank you very much! 小学生英语自我介绍演讲稿(2) Hi everybody, my name is XX ,what’s your name? I’m 11 years old, how old are you? My favourite sport is swimming, what’s your favourite sport? My favourite food is hamburgers,what food do you like?

小学英语课堂教学活动设计的有效性

小学英语课堂教学活动设计的有效性 在小学英语教学中,活动是实施课堂教学的主要形式,而课堂教学又是在教学活动中得以体现的。因此,作为一名小学英语教师就应在课前精心设计有针对性、实效性的课堂教学活动。教师在课堂教学中应努力引导学生通过活动去体验、感悟、发现和探究,创设贴近学生实际的活动,组织并开展活动教学,提高学生运用英语的能力。因此如何加强小学英语教学有效性,不断提高教学质量,是每一位小学英语教师急需解决的问题。听了这次晋江市举行的研讨课及结合自己的教学实践,我就课堂教学活动设计的有效性谈几点体会。 一、教学目标是教学活动的出发点和回归点 一堂好课必须有一个恰当、实际的教学目标。新课程改革背景下,教师在表述教学目标时,不仅要做到意思明确,还要符合课改的精神和要求;不仅要涉及知识目标,还要涉及能力、情感和价值观。科学、合理的教学目标的设计才能使课堂教学活动更具有方向性、针对性和有效性。因此,教师对课堂教学设计和安排的各个环节的教学活动都必须有明确的目的,每个活动都应以达成教学目标为导向。教师要思考和明确设计活动的目的和意图是什么,通过活动是否能达成教学目标,活动与教学主题和教学目标是否相关,活动是否必要,活动是否体现了教育价值等。在活动实施过程中生成的新目标也应以预设的教学目标为基础。因此,活动从设计到实施都应在教学目标的调控下进行。 二、培养兴趣是有效教学活动的出发点 小学生在刚接触英语时,有新颖感出于好奇,兴趣盎然。但随着学习时间的增加,年级的升高,内容难度的加大,学习的兴趣就会逐渐降低,有的甚至会产生畏惧感。因而,教师在设计小学英语课堂教学活动时应注意以下几点:1、活动要符合小学生的年龄特征小学生具有好动、对新鲜事物易感兴趣。因此,设计教学活动时应形式多样,如对话、唱歌、叙述、演示、游戏、小制作、全身反应法、chant等,让学生的眼、耳、口和四肢都参与到活动中来。2、新课程标准明确指出,要重视从学生的日常生活出发,培养学生实际运用语言的能力。因此活动设计要贴近学生的生活。实践表明,学生对源于自己生活的活动特别感兴趣,并有强烈的参与欲望。教师要关注来自学生生活的各种信息,在设计活动时要以学生的生活为基础,选择符合学生生活经验和认知水平的活动,力图真实地反映学生的生活。让学生融入到学习活动中去,同时让学生享受在用中学英语和在学中用英语的喜悦。如在教学《A new house》一课后,我让学生设计了自己的理想之家,画室内房间图,然后用英语标出图中物品的名称,并用英语作简单的介绍,课后写成小短文。由于活动内容和形式十分贴近学生的生活经历。又富有挑战性,学生兴趣盎然,积极参与,他们发挥了丰富的想像力,设计出的房子五花

让多媒体走进小学英语课堂

让多媒体走进小学英语课堂 多媒体技术整合于英语学科教学,主动适应课程的发展,并与其和谐自然融为一体。作为课程改革不可或缺的条件,多媒体技术在教学中的飞速发展,必将使教师更新教学观念,营造学习环境,完善教学模式,变革评价方法,促进科学与人文统一,让课堂更精彩。那么,多媒体技术在小学英语教学过程中到底有什么作用呢?笔者认为主要表现在以下几个方面: 一、运用多媒体,激发学习兴趣 托尔斯泰说:“成功的教学所需要的不是强制而是激发学生兴趣。”培养学生学习英语的兴趣无疑是小学英语教学的关键所在。学生只有对自己感兴趣的东西才会开动脑筋、积极思考,外国学者在研究可靠学习发生的条件时指出:学生只能学到那些他们有兴趣的东西,在缺乏适当的环境﹑背景和铺垫的时候,学习不能发生。因此,在教学中要重视培养和引导学生学习英语的兴趣爱好。现代信息技术具有形象性﹑直观性﹑色彩鲜艳﹑图像逼真等特点,能将抽象的教学内容变成具体的视听形象,激发情趣,调动学生多种感官同时参与,从而激发学生的学习兴趣,使学生从多角度轻松舒畅地接受知识,并使其记忆长久。 二、运用多媒体,突破教学难点 小学生的思维正处在由具体形象向抽象思维过渡的时期,而有些教学内容之所以成为学生学习的难点就是因为缺乏语境而显得不具体。如果仅凭教师的描述和讲解,往往是教师花了很大精力,教学效果却事倍功半。而运用多媒体演示就能够突破时空限制,化静为动,使抽象的概念具体化、形象化,不仅突破了教材的难点,还可以加深学生对教学内容的理解和掌握,从而提高教学效率,达到事半功倍的效果。 例如:在教学“in、on、behind、under、near”这几个表示空间关系的方位介词时,我利用多媒体设计了这样的动画:通过点按鼠标,一只小猫一会儿跳到书桌上,一会儿藏在桌子里,一会儿蹦到书桌下,一会儿躲到桌子后,一会儿又窜到桌子旁。随着小猫的位置移动,电脑会问:Where is the cat?这样连续演示几次,学生通过观察、思考,就能快速地回答:It’s on the desk\in the desk\under the desk……,动画刺激了学生的感官,诱发了思维,难点不仅易于突出,更易于突破。 三、运用多媒体,提高创新能力 创新能力是未来人才的重要素质,是一个民族兴旺发达的灵魂。因此发挥每个学生潜在的创造因素,培养学生的创新能力,是当前教育工作者研究的重要课题。要想培养创新能力,就要力求使学生处于动眼、动手、动口的主体激活状态。多媒体技术对文本、图形、声音、动画和视频等信息具有集成处理的能力,使教学手段趋于全方位、多层次,它能加速学生感知过程,促进认识深化、加深理解、

小学生英文自我介绍及故事(精选多篇)

小学生英文自我介绍及故事(精选多篇) 第一篇:小学生英文自我介绍 good afternoon everyone! my name is max. my chinese name is dong li zhen. i am six years old. i am in the primary school of jinling high school hexi branch.my family have four people. one,myfather, his name is dongning, he is a worker; two,my mother, her name is liqing,she is a housewife; three,my pet yoyo ,he is a dog; there is one more. now let me see….oh,yes,that is me! i love my family. i have many toys,a car ,a helicopter, two balls, three jumpropes. i like jumpropes best of all,because i jumprope very good. i have a pencilcase ,it’s bule. i have an brown eraser. i have five pencils,they are many colors, and one ruler,it’s white. i like english,i like speak english thank you! 第二篇:小学生英文自我介绍 自我介绍 各位老师好,我叫邵子豪,今年15岁,现在是红星海学校初中二年级学生。 我是一个善良、自信、幽默、乐于助人的阳光男孩,平时我喜欢和同学一起打篮球,还喜欢和爸爸谈古论今,我自引以为豪的是我有一个善解人意的妈妈和博学多才的爸爸,我为我生活在这样一个充满爱和民主的家庭中感到幸福! hello , teachers: mynameisshaoziha o. i’mfifteenyearsold. istudy in hongxinghaimiddeleschool..iamingradetwonow. iamakind,confident,humourousandhelpfulboy..ilikeplaying basketballwithmyfriends. andialsoliketotalkaboutthehsitoryandthecurrent newswithmyfather. i amveryproudofmyfatherandmymotherbecauseoftheirknowledge.

(完整)如何提高小学英语课堂教学的有效性

如何提高小学英语课堂教学的有效性 -----浅析小学英语趣味教学爱因斯坦说过:“兴趣是最好的老师。”为了激发学生的学习兴趣,一个成功的英语教师会创造和谐融洽的师生关系和轻松愉快的学习环境,采用灵活多变的教学方法,让学生在做中学,学中用,学得主动,提高效率。在教学中有意识的培养学生对英语的持久兴趣,激励学生不断处于较佳的学习状态之中,使他们对英语乐学、善学、会学,学而忘我,乐此不疲;还要通过多种手段激发学生实践的热情,加强学生对英语的兴趣,完成新课程标准要求的任务。 一、融洽的师生关系,营造良好的学习氛围 作为一名21世纪的英语教师,要懂得尊重和热爱自己的学生,同他们建立起一种新型、平等、合作的师生关系。教育是充满情感和爱的事业,教师应多于学生进行情感方面的交流,做学生的知心朋友,让学生觉得老师是最值得信任的人,跟老师无话不说、无事不谈,达到师生关系的最佳状态。这就要求教师要深入学生,了解学生的兴趣、爱好、喜怒哀乐情绪的变化,要时时处处关心学生,爱护学生,尊重学生,有的放矢的帮助学生。老师在学生眼中不仅是可敬的师长,更是他们可亲可近的亲密朋友,用爱来激发学生学习英语的兴趣。 二、创设英语教学环境,调动多种感官参与活动 好的开始是成功的一半。在课堂教学中,教师首先要特别注意利用上课前的十分钟创造出一个良好的课堂气氛(Warming up)。比如唱一些英语歌曲,开展如“Let me guess.”或“Follow me.”等有趣的复习知识型游戏,活跃课堂气氛,增加英语课堂的趣味性,引发学生的求知欲。

其次,创造一个轻松愉快的学习环境,教师要以蛮强的热情,全心地投入课堂教学,仪表要洒脱;精神要饱满;表情要轻松愉快;目光要亲切;态度要和蔼;举止要大方、文雅;言吐简洁;语言要纯正、地道、流利;书法要规范、漂亮;版面设计要合理、醒目等。 再次,调动学生多种感官参与学习,学生单靠视觉回忆能再现原内容的70%,而视觉并用能再现原内容的86.5%,所以应该让学生尽可能多的处于英语环境中,并调动多种感官参与活动,让学生从多个角度接受信息。多种感官的运用有益于学生对知识的理解,记忆的加深。它能激发学习兴趣,使学生全面发展。教学中让学生动嘴说、用眼看、用耳听、用笔画、手脑并用,同时可以加强学生对所学语言国家文化的了解。 三、不断更新教学方法,以此获趣 教学不仅是一门技巧,更是一门艺术。教师必须在教学中尽量让学生感到有趣、新奇,这就要求教师顺应时代的发展,与时俱进,充分运用现代教育技术手段,通过模型、图片、幻灯、录像、投影、多媒体课件等,激发学生的想象能力,变抽象为具体,使教学活动变得生动,使学生学得轻松、练得扎实。在教学中教师要善于用各种方法。如“表演法”、“竞赛法”、“游戏法”等。 1.当“小老师”、“模仿秀” 比如“talk about it”这一模块中,我们就可以鼓励学生大胆地模仿,带表情说句子。还可以鼓励学生上讲台当“小老师”,领读句子。让他们模仿教师平时上课时的表情、动作,鼓励他们学者使用课堂用语。 2.把身体语言带入课堂 在教单词或句子时,我们可以带领学生做动作,甚至做夸张的动作或

多媒体对小学英语教学的作用.docx

一、多媒体的设计要符合学生认知规律多媒体的设计应依据学生学习的需求来分析,并采用解决问题的最佳方案,使教学效果达到最优化。 多媒体教学的手段能化被动为主动,化生硬为生动,化抽象为直观,化理论为实践。 根据小学生的认知规律,他们缺乏坚实的理论基础,但直观的操作演示可以弥补这项弱点,可以帮助他们更好地理解和掌握。 对此,学者们已渐有共识这种直观生动的教学形式极大地激发了学生的学习兴趣,也引发了学生丰富的想象力和创造力。 在教学设计过程中,一方面,要运用多媒体的功能优势,将课本中抽象原理形象化,从而激发学生学习的兴趣,提高学习效果;另一方面必须让教学过程符合学生的认知规律,要多为学生创设动手操作的机会。 例如,在教学?一课时,我利用多媒体设计了一次动物聚会,森林里有很多小动物,有些通过图片来呈现,有些通过动画来呈现。 我带领学生边欣赏多媒体演示边复习了小动物的单词,然后引导学生猜每种小动物都来了几个,通过猜测的方式,强调复数的用法。 这里我使用了链接的方式,让学生像在欣赏魔术表演一样,使其出于好奇而变得主动。 通过设计符合学生知识基础和认知能力的多媒体教学内容,不仅能够激发学生学习的积极性和主动性,而且能够促进学生对知识的自我建构和内化。 此外,考虑到学生的年龄特点,在每节课的教学过程中我还格外重视评价的作用,而多媒体技术在这方面也表现出独特的优势。

不论是学习单词、句型,还是与电脑进行互动交流,每个知识点 都有图案背景,并提供过程性评价,随之出现的评价语言和动画无不让学生兴奋异常。 这种符合学生认知规律和个性化特征的内容设计与反馈,不仅使学生们感受到获得成功的喜悦,更达到了快乐交互学习的目的。 二、多媒体的应用要适时、适度和适量信息技术整合于课程不是 简单地将信息技术应用于教学,而是高层次地融合与主动适应。 必须改变传统的单一辅助教学的观点,创造数字化的学习环境,创设主动学习情景,创设条件让学生最大限度地接触信息技术,让信息技术成为学生强大的认知工具,最终达到改善学习的目的。 为保证多媒体与英语教学有效的融合,充分发挥多媒体技术应用的效果,在利用多媒体进行教学设计过程中,要遵循适时、适度和适量的原则,即在恰当的时间选择合适的媒体,适量地呈现教学内容。 在设计多媒体的过程中,要把握教学时机,不同的教学内容和教学环节,决定了多媒体运用的最佳时机也不同,精心策划才能妙笔生花,不能为使用多媒体而使用,不要一味追求手段的先进性、豪华性,而造成课堂教学过程中的画蛇添足。 这就要求教师熟悉多媒体的功能和常用多媒体的种类、特点,以便在教学设计和应用过程中将多媒体与课程学习进行有效地融合,最终提高课堂教学效果。 例如,在学习?这一知识点时,传统的英语课常常是借助钟表或模型来解释某一时刻,讲解整点、几点几分、差几分几点。

小学简单英语自我介绍范文(精选3篇)

小学简单英语自我介绍范文(精选3篇) 小学简单英语自我介绍范文 当换了一个新环境后,我们难以避免地要作出自我介绍,自我介绍可以满足我们渴望得到尊重的心理。但是自我介绍有什么要求呢?下面是收集整理的小学简单英语自我介绍范文,仅供参考,希望能够帮助到大家。 小学简单英语自我介绍1 Good afternoon, teachers! I`m very happy to introduce myself here. I`m Scott. My Chinese name is SunZijing. I`m 13. I`m from Class1 Grade 6 of TongPu No.2 Primary School. I have many hobbies, such as playing ping-pong, playing badminton, listening to music, reading magazines and so on. My favourite food is chicken. It`s tasty and yummy. So I`m very strong. I`m a naughty boy. I always play tricks. And I just like staying in my room and reading books. But I have a dream, I want to be a car-designer. Because I`m a car fan.This is me. Please remember SunZijing! Thank you very much! 小学简单英语自我介绍2 Goodafternoon, teachers! Today, I`m very happy to make a speech here. Now, let me introduce myself. My name is ZhuRuijie.

小学英语教学的有效性

小学英语教学的有效性 发表时间:2011-05-10T09:13:26.643Z 来源:《少年智力开发报》(小学英语)2011年第27期供稿作者:宋晓云[导读] 在小学英语教学中,创设情境让学生感知语言,在真实情境中运用语言会收到意想不到的效果。 河北平泉县榆树林子学区宋晓云 英语教师作为实施新课程标准的主体,应学会如何巧妙自然地寓英语学习于生活体验之中,把新理念推向课堂班级层面,变理想的课程为现实的课程,从而改变学生的学习和思维方式,释放学生的创造潜能。为此在教学中我进行了一些尝试,做到了以下几点,也从中感受到了新课改的实效。 一、采用任务型教学模式 对于一年级的小学英语课堂来讲,“任务型”的课堂教学就是在英语学科的教学目标确定之后,教师需要分析和设计具体任务,完成任务所需要的其他前提知识以及需要采用的教学方法和技巧等,旨在将每一个教学目标拓展为教学活动中可用的具体内容。由于在我的课堂上采用了任务型的教学模式,学生在课堂上都有事可做,并且在做事的过程中体验到了英语的乐趣,英语课也变得丰富多彩,学生从中也体验到了成功的喜悦。 二、创设英语的教学情境 在小学英语教学中,创设情境让学生感知语言,在真实情境中运用语言会收到意想不到的效果。在课堂中我经常利用多媒体设备来突破教学重点和难点,把文字、声音、图像等融为一体,创设学生主动参与语言交际活动的情境,让学生走入情境、理解情境、表演情境以此突破语言关。学生在真实的情境中更容易进入角色,课堂气氛也异常活跃。 三、运用现代教育技术 在小学英语课堂教学上,教师恰当运用现代教育技术,利用多媒体的优势,可以最大限度地激发学生学习的积极性,帮助他们提高学习英语的兴趣。在小学英语课堂中运用现代教育技术,创设教学情景,可以优化课堂教学,有效地培养学生初步运用英语进行交际的能力,激活儿童的思维,促进学生综合能力的提高。 四、使用合理的评价手段 评价也是一门艺术,好的评价手段不仅可以满足学生的成功感,而且可以激励学生产生不断向上的精神。学习评价可采用多种形式:形式性评价与终结性评价相结合,个人评与他人、小组评组合、等级与评语相结合,在教学中要灵活地使用。这样,对学生的评价才是全面的、合理的。 总之,通过教学中的这些尝试,我的英语课堂气氛异常活跃,学生学习积极主动,听说能力大大提高,合作意识和交往能力也大大增强,学生学习英语的兴趣空前高涨。作为教师,我由衷地感到高兴,也切身体会到了新课改所带来的欣慰和喜悦。但这只是一个开端,我们要做的还有很多,还需要不断学习新课改的有关理论,并运用到教学实践中去,不断充实我们的小学英语课堂!

小学生英语自我介绍演讲稿带翻译

小学生英语自我介绍演讲稿带翻译 篇一:小学英语自我介绍演讲稿 Good morning everyone! Today I am very happy to make a speech(演讲) here. Now, let me introduce myself. My name is Chen Qiuxiang. I am from Dingcheng center Primary School. I live in our school from Monday to Friday. At school, I study Chinese, Math, English, Music, Computer, and so on. I like all of them. I am a monitor, so I often help my teacher take care of my class. I think I am a good help. And I like Monday best because we have English, music, computer and on Tuesdays. There are four seasons in a year , but my favourite season is summer. Because I can wear my beautiful dress . When I am at home, I often help my mother do some housework. For example, wash clothes , clean the bedroom, do the dishes and so on . and my mother says I am a good help, too. In my spare time, I have many hobbies. I like reading books , going hiking, flying kites .But I like singing best, and my favourite English song is “The more we get

小学英语运用多媒体教学案例

小学英语运用多媒体教学案例 PEP 三年级上册 Unit 5 Where is my ruler? 案例片段描述:片段一: 在呈现本课重点句型“Where is …?”及其回答“It’s in / on / under …”时,我利用多媒体课件,将此句型形象生动地展现给学: T: Boys and girls, look at the screen,what is it? S: It’s a pencil. T: Wh ere is my pencil? Help to answer: It’s in the desk. 课件变化铅笔的位置,教师继续呈现本课重点: T:Look, where is my pencil now? Help to answer: It’s on the desk. It’s under the desk. 片段二: 在操练和巩固环节,我设计了一个“捉迷藏”的游戏。课件播放动画,本册书中的小松鼠Zip 是本段对话的中心人物。它不断地变换在森林里的位置,然后同学们和它一起捉迷藏,猜猜它在哪里。 ( 课件 ) Zip: Hello, boys and girls, I’m Zip. Can you guess where I am? 之后,画面变化,Zip 藏了起来。这时学生们开始猜测Zip的位置: S1: It’s under the tree. S2: It’s in the house. S3: It’s on the chair. 学生们争先恐后地猜着Zip 的位置,而且都能运用英语的方位词来表达。学生的感受:课后,我对学生在这堂课上的感受进行了一下调查,学生对本节课的方位词都掌握得很不错,还有的同学到下课了还用英语跟同学在玩刚刚zip捉迷藏的游戏。虽然已经下课了,但学生依然沉浸在刚刚课堂上轻松快乐的学习之中。可见多媒体调动学生开口说英语的积极性。

小学生英语自我介绍12篇

小学生英语自我介绍12篇 Hellow,everyone,my name is XX,I e fromXX,now I will tell you something about myself。 I study at XX school my school is very large ,there are at least 1000students in it。I like all my subjects ,such as Chinese,Maths,English and so on。I like Chinese best between these subjects,I think it is very interesting and amazing。this is me,do you know me now? if you want to know me more,please let me know as soon as possible。 Introducing yourself is very important when you meet new people。You always want to make a good impression when telling others about yourself。Allow me to introduce myself。 My name is XX and I'm from XX 。Right now,I'm a student。I study very hard every day。I like going to school because I'm eager to learn。I enjoy learning English。It's my favorite class。I like to make friends and I get along with everyone。This is the introduction I give whenever I meet new people。It tells people a little bit about me and about what I like to do。 小学生英语自我介绍(二十二): Hello,my name is_______。I am_______ years old。Now I am studying in_______PrimarySchool。I am in Grade _______,Class_______。 I live in_______。There are _______ members in my family—

小学英语有效性教学

小学英语有效性教学 小学英语课堂教学应体现有趣,有用,有效。有趣、有用、有效,构成了一个三角形,使得老师展开课堂教学能更有意义。“有效”是指教师的教学方式能促使学生较好地达到三维目标,在整个过程中达到事半功倍之效。“有趣”是指学生具有有意义学习的心向。它需要教师在课堂教学中能够激发学生的学习兴趣,在平时注意培养学生的学习动机。“有用”是指学习的材料使学生感到有价值。它需要教师在课堂教学中,使学生感受到所学知识能够协助他们解决生活中的实际问题。 关键词:课堂教学有效性有趣有用有效教学目标新教材给我们教师带来了新的教学理念,也给我们教师的教与学生的学带来了新的挑战。在新课程理念的指导下,现在的小学英语课堂中教师的教学方式在改变,学生的学习方法在改变,课堂上学生学习英语的兴趣提升了,积极性增强了。小学英语教学的主要途径是课堂教学,而课堂教学又是在教学活动中得以体现的。 所以,注重学生学习,如何使小学英语教学科学有效地发展,怎样使教学成为有意义的教学已成为广大教育工作者共同思考的问题。 教师在日常教学中应该牢固树立以下有效教学的理念:有趣、有用、有效,构成了一个三角形,使得老师展开课堂教学能更有意

义。“有效”是指教师的教学方式能促使学生较好地达到三维目标,在整个过程中起到事半功倍的作用。有效教学注重学生的进步和发展,教师必须确立学生的主体地位,树立“一切为了学生的发展”的思想。“有趣”是指如何使用游戏教学、故事教学、TPR的教学等新的教学方法,来调动学生参与课堂活动的积极性?“有用”是指学习的材料,使学生感到有价值。它需要教师在课堂教学中使学生感受到所学知识能够协助他们解决生活中的实际问题。有效教学需要教师具备一种反思的意识,经常实行行动研究。要求每一位教师持续地反思自己的日常教学行为,持续地改进自己的教学。 有效教学强调教学效果,注重学生通过一段时间在教师引导下努力学习所获得的进步与发展。有效教学应该包括有效果和有效率两个层面。我们知道,小学英语教学的主要途径是课堂教学,而课堂教学又是在教学活动中得以体现的。所以,有效的课堂教学活动是顺利达到教学目标的可靠保障。作者认为提升小学英语课堂教学的有效性,教师应从以下几方面考虑: 一、课堂教学活动要目标明确 新课程理念下,基础教育阶段英语课程的总体目标是:培养学生的综合语言使用水平,学生能够用英语做事情是课堂教学目标达成的主要体现。在小学英语课堂教学中,教师广泛采用贴近学生生活的,易于学生参与体验的任务型教学活动。例如,在教学 PEP 四年级上册 Unit 5“What would you like?”Part A的教学内容时,

小学生英语自我介绍范文(9篇)

小学生英语自我介绍范文(9篇) 如今英语交流越来越普遍了,英语版的自我介绍也很普遍,那 么你知道如何写好英语自我介绍吗?下面是收集的小学生英语自我 介绍范文,欢迎阅读借鉴。更多资讯自我介绍栏目。 Good afternoon, teachers! My name is YangXiaodan. I`m 11 now. I`m from Class2 Grade 5 of TongPu No.2 Primary School. My English teacher is Miss Sun. She`s quiet and kind. She`s short and young. My good friend is ZhangBingbing. She`s 12. She`s tall and pretty. We`re in the same class. We both like English very much. I like painting , listening to music, playing puter games and reading books. My favourite food is chicken. It`s tasty and yummy. I often do my homework and read books on Saturdays. This is me. Please remember YangXiaodan. Thank you very much! Gooda fternoon, teachers! My name is XuLulu. I`m 11. I e from Class1 Grade 5 of TongPu No.2 Primary School. There are 4 people in my family. My father is tall. My mother is pretty.My sister has a long hair. And I`m a good student. However, my home is near the school, I often get up early. Because I must work hard. after school, I like playing puter games and reading books. I`d like to eat apples. They are sweet and healthy. And I like

小学英语教学有效性的策略研究

小学英语教学有效性的策 略研究 Revised by Hanlin on 10 January 2021

《小学英语教学有效性的策略研究》 研究课题鉴定成果概况 课题名称:小学英语教学有效性的策略研究 课题类别:甘肃省教育科学“十二五”规划重点课题 课题批准号:GS(2010)Z045 课题鉴定证书号:GSGB【2013】J005 课题负责人:张旭东 所在单位:金昌市金川区第一小学 课题组参与人员:姚兴瑞刘婷娟杨兆光王文君李其霞张莉杨永涛武 功颜张海生顾秀文 鉴定等级:优秀 为了适应教育发展的趋势,让教师真正走进新课程,构建新课堂,我们结合本市区小学实际,根据自身条件,在充分酝酿的基础上,经多方论证,精心选题,确定《新课改理念下的小学英语有效学习策略研究》上报为省级课题,2010年10月被省教育科研组批复立项为甘肃省教育科学“十一五”重点课题。 三年多来,经过课题组成员不断的实践、反思、总结,我们对新课改理念下的小学英语有效学习的策略、教师的教学手段、有效学习的组织形式、课堂教学的模式、合作学习的有效策略等,进行了具体的研究,下面将我校的课题研究工作总结如下: 一、课题提出的背景 1.新一轮课程改革的需要 《英语课程标准》“倡导学生主动参与合作,交流与探究等多种学习活动,改进学习方式,促进学生相互帮助,体验集体荣誉感和成就感,发展合作精神,使学生真正成为学习的主人。”它要求把学生的交往活动即合作学习纳入语言学习活动。但是随着社会经济的不断发展,很多农民工进城打工创业,他们也渴望自

己的孩子拥有城里孩子所能得到的优质教育,这就造成了城市学校班额太大,再加上学生层次不齐,给我们教育教学提出了严峻的挑战,为了很快适应和扭转这种局面,不断提高教育教学质量,我们提出了在《新课改理念下的小学英语有效学习策略研究》。小组合作学习是一种教学策略,既能充分调动学生学习英语的兴趣和积极性,又能提高学习效果,在大班额环境下实施小组合作学习策略尤为重要。 2.我市教育现状的需要 截至目前,全市原有的162所完全小学已调整为142所;20所独立初中调整为16所,撤并了中小学24所。虽然通过集中力量办较大规模的寄宿制农村中小学,农村中小学教育资源进行有效整合后,改善了办学条件,使农村中小学生接受了良好的学校教育,对提高办学效益和教学质量,缩小城乡教育水平差距起到了推动作用,但是教育资源有效整合的力度还是不大,跟不上时代发展的需要,跟不上广大农村家长对高质量学校的需求。望子成龙、望女成凤的愿望使他们不惜一切代价将孩子送往城市学校读书。目前我市农村学校生源越来越少,班额越来越小,老师过剩。相反,城市学校生源越来越多,班额越来越大。如何解决大班额环境下的教学质量问题,就显得尤为重要。 3.我校实际情况的需要 我校在金昌市范围内是一所比较特殊的城市小学,说特殊是因为我校属城市小学,但是区属职工的子女少,而来自金川区宁远和双湾两镇和外来进城打工的子女多,虽学校各年级都增加了班级,还是满足不了源源不断增加的学生,每个班级学生都在60人左右,这样学校班额大、学生多,班级人数远远超过了正常班级人数的要求。一个专职的小学英语教师要负责的有近三百五十个学生,甚至更多。在英语课堂上,一方面教师感到力不从心;另一方面如果还依然采用“一刀切”的办法进行教学,在长期“齐步走”“一言堂”的课堂教学环境下,小组合作学习也只是简单的分组进行个别的合作学习而已,教师在有限的课堂40分钟内难以真正做到面向全体学生,让每个学生真正参与到活动中,鉴于此我们提出了“大班额环境下小学英语教学小组合作学习有效性”的课题,结合本校的实际,力争以其作为深化并打造我校英语特色学校的着力点,借他人肩膀,加

小学英语多媒体课件的设计思路

小学英语多媒体课件的设计思路 一、多媒体辅助教学的优势和特点 多媒体辅计算机助教学具有生动形象、信息储存量大、交互性强、适合个别化学习等特点。在多媒体环境中,学生可以根据自己和学习水平与需要选择学习内容,高度体现了学生的主体作用。多媒体辅助教学的应用非常灵活,可以进行课堂计算机辅助教学,也可以进行网络教学。它不同于传统教学,其教学质量与教学效率远高于传统教学。特别是用多媒体计算机辅助英语教学,可以提供形象逼真的情景,正确标准的发音,生动有趣的练习游戏,从而大大地激发了小学生学习英语的兴趣,提高教学效率。然而,在多媒体辅助教学条件下,学校育人环境的改善、教学过程的优化、教学质量的提高,都离不开教学课件的质量支持和保证。这不仅取决于计算机硬件的装备和决策水平,而且取决于教学课件的设计水平。因此,制作高质量的多媒体辅助教学课件,首先要设计好课件的脚本。 二、教学课件设计的指导思想和遵循的原则 课件设计的总指导思想是现代教育理论。“现代教育”认为在科学技术飞速发展的今天,人们开始极为重视人的智能开发。“传统教育”这中再现型教学,不利于发挥学生的独创性和知识的综合利用;过分地不恰当地强调教师的主导作用,也会约束以至压抑学生主体作用的发挥。因此,在教

学中必须以学生为中心,尊重学生的需要,培养有个性的学生,强调独立自主地学习,从而形成学生多方面的能力,特别是学生主动的学习能力和学习态度。现代教育的教育教学观,为开发多媒体辅助教学课件的主旨是不谋而合的。因此,课件的设计思路是以现代教育理论为指导思想,同时必须遵循以下几个原则: 1、课件设计的科学性。因为科学设计教学课件是多媒体辅助教学的核心和关键,它决定整个教学系统的成败。优秀的多媒体辅助教学课件应围绕教学大纲,将教学目标、教学内容和教学方法巧妙地贯穿在整个课件的设计制作中,并通过与计算机硬件相结合充分发挥计算机高密度、大容量、迅速准确、灵活高效的优点,调动学习者各种感官,激活其思维,消除其心理障碍,使其生动地去活学活用。具体表现在:紧扣教学大纲,量化教学目标;运用外语教学原则,开发配套课件;具备优良的教学方法。 2、要适应小学生的个性特点。小学阶段的学生年龄一般为6—12周岁。根据皮亚杰的儿童认识发展理论,该年龄阶段的儿童跨越了前运算阶段、具体运算阶段,向形式运算阶段过渡,因此在设计课件时必须使之符合小学生的年龄特征。英语课件中可能受学生年龄特征影响的组合因素有:课件界面、人机交互控制的难易程度、教学信息内容、文本、图形图像、声音、动画、视频、色彩搭配等。因此,课件界

相关主题