搜档网
当前位置:搜档网 › 对稳定同位素地球化学一个基本原理的反思

对稳定同位素地球化学一个基本原理的反思

对稳定同位素地球化学一个基本原理的反思
对稳定同位素地球化学一个基本原理的反思

地球化学复习总结题

《地球化学》复习题 一、各章重点 PPT第0章重点: 地球化学发展简史(尤其是引领地球化学发展的关键学者的学术观点) 地球化学的发展趋势,包括学科生长点,及理论突破点。 PPT第1章重点: 地球化学分带的依据,各个分带地球化学特征以及相互之间的差异性; 元素和核素在地壳中分布的计量单位,元素在地壳中的分布特征,元素在主要岩石类型中的分布; 元素在地球其它圈层,如水圈(尤其是海水)、大气圈、生物圈中的分布特征。 元素在地球演化的各大地质时期中的成矿特点。 PPT第2章重点: 元素结合规律 类质同像 过渡元素的结合规律 了解戈尔德施密特的元素地球化学分类方法和按照元素的地球化学亲合性分类方法。 PPT第3章重点: 元素在水溶液中存在状态和迁移的主控因素; 主要造岩元素在岩浆结晶分异过程中的演化 岩浆作用中微量元素的定量模型 PPT第4章重点: 掌握讲解的每一种放射性同位素定年方法的原理及适用范围 稳定同位素在地球各个储库中的分布特征,影响稳定同位素分馏的主要控制反应。 PPT第5章重点: 太阳系元素分布特征,陨石分类体系及依据。 二、练习题 ---------------------------------------------------------------------------------- 1. 概述地球化学学科的特点。 2. 简要说明地球化学研究的基本问题。 3. 简述地球化学学科的研究思路和研究方法。 4. 地球化学与化学、地球科学其它学科在研究目标和研究方法方面的异同。-----------------------------------------------------------------------------------------

地球化学复习题汇总

地球化学赵伦山张本仁 韩吟文马振东等 P 1:地球化学基本问题) P 5:克拉克值,地球化学发展简史(几个发展阶段) P31:元素丰度,表示单位元素在地壳平均化学丰度―――确定方法,克拉克值, P37:元素克拉克值的地球化学意义 P68:类质同象和固溶作用 P81:元素的赋存状态――1,5种 P88: 元素迁移 P 123: 相律 P169: 衰变定律 P181:痕量元素地球化学,稀土元素的研究方法和意义(痕量元素=微量元素) 复习内容及答案汇总 一、地球化学研究的基本问题、学科特点及其在地球科学中的地位(P1-) 地球化学是研究地球及相关宇宙体的化学组成、化学作用和化学演化的科学,在地球化学发展历史中曾经历了较长时间的资料积累过程,随后基于克拉克、戈尔施密特、维尔纳茨基、费尔斯曼等科学家的出色工作,地球化学由分散的资料描述逐渐发展为有系统理论和独立研究方法的学科。目前地球化学已发展成为地球科学领域的重要分支学科之一,与岩石学、构造地质学等相邻学科相互渗透与补充,极大地丰富了地球科学研究内容,在地质作用过程定量化研究中已不可或缺。 地球化学的研究思路和学科特点是:(1)通过分析常量、微量元素和同位素组成的变化,元素相互组合和赋存状态变化等追索地球演化历史;(2)利用热力学等现代科学理论解释自然体系化学变化的原因和条件,探讨自然作用的机制;(3)将地球化学问题置于地球和其子系统(岩石圈、地壳、地幔、地核等)中进行分析,以个系统的组成和状态约束作用过程的特征和元素的行为。 围绕原子在自然环境中的变化及其意义,地球化学研究主要涉及四个基本问题:(1)研究地球和动质体中元素和同位素的组成;(2)研究元素的共生组合和赋存形式;(3)研究元素的迁移和循环;(4)研究元素和同位素迁移历史和地球的组成、演化历史、地球化学作用过程。 二、简述痕量元素地球化学研究解决的主要问题 痕量元素地球化学理论使许多地质难题迎刃而解,其可解决的主要问题有:

铅同位素地球化学

铅同位素地球化学 铅同位素地球化学 lead isotope geochemistry 研究自然物质中铅同位素的丰度、变异规律及其地质意义。自然界铅由204Pb、206Pb、207Pb和208Pb4个稳定同位素组成,它们的丰度分别为1.4%、24.1%、22.1%和52.4%。204Pb是非放射成因的,206Pb、207Pb、208Pb是由238U和235U 和232Th 3个天然放射性同位素经过一系列α、β衰变后最终形成的稳定同位素。这3个衰变系列可分别用下列简化式来表示: 238U→8α+6β-+206Pb 235U→7α+4β-+207Pb 232Th→6α+4β-+208Pb 铅同位素地球化学主要用于研究含放射性元素极低的矿物或岩石中的铅同位素组成。这些铅同位素组成自矿物或岩石形成之后不再发生变化,即不再有放射成因铅的加入,如方铅矿、白铅矿、长石、云母等及其所形成的矿石和岩石中的铅均属此类,把此类铅叫做普通铅。根据普通铅的演化历史和源区性质可分为单阶段铅和多阶段铅。 单阶段铅是指封闭体系中铅同位素组成保持恒定。如果一组样品是同源的,那么,它们的铅同位素比值如206Pb/204Pb、207Pb/204Pb、208Pb/204Pb等应该也是相同的。多阶段铅是指开放体系中普通铅同位素组成的变化。这种铅曾与具有不同U/Pb、Th/Pb比值的体系伴生过,而且铅在这些体系中存在的时间也各异,因此,铅同位素比值就会发生相应的变化。为追索这种铅的复杂历史,已建立了多种数学模式。 通过铅同位素地球化学研究,不仅可以确定成矿时代(见区域成矿学)或模式年龄(按照某种理论模式确立的公式计算年龄),而且还可判断成矿物质来源、矿床成因等。例如根据铅同位素组成及其特点,认为成矿物质的最初来源可分为幔源、壳源和混合来源。207Pb/204Pb比值或μ值(238U/204Pb)高的铅来自上地壳,低μ值的铅来自下地壳或上地幔。造山带(岛弧)铅被认为是地壳铅与地幔铅混合的结果。再如,矿床是单成因还是多成因、成矿物质是单一来源还是多种来源等问题均可利用铅同位素比值来判断。

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

同位素地球化学复习题

同位素地球化学复习题 1.1同位素地球化学的基本任务 1)研究自然界同位素的起源、演化和衰亡历史; 2)研究同位素在宇宙体、地球和各地质体中的分布分配、不同地质体中的丰度及典型地质过程中活化与迁移、富集与亏损、衰变与增长的规律;阐明同位素组成变异的原因。据此来探讨地质作用的演化历史及物质来源; 3)利用放射性同位素的衰变定律建立一套行之有效的同位素计时方法,测定不同天体事件和地质事件的年龄,并作出合理的解释,为地球和太阳系的演化确定时标。 4 )研究同位素分馏与温度的关系,建立同位素温度计,为地质体的形成与演化研究提供温标。 1.2 同位素地球化学的一些基本概念 核素同位素同量异位素稳定同位素放射性同位素重稳定同位素轻稳定同位素 2.1 质谱仪的基本结构 四个部分:进样系统离子源质量分析器离子接收器 2.2 衡量质谱仪的技术标准有哪些 质量数范围分辨率灵敏度精密度与准确度 2.3 固体质谱分析为什么要进行化学分离 具相同质量的原子和分子离子的干扰; 主要元素基体中微量元素的稀释; 低的离子化效率; 不稳定发射。 2.5 同位素稀释法是用于元素含量分析还是用于同位素比值分析?元素含量分析 2.6 氢气的制取方法?(有哪些还原剂) U-还原法Zn -还原法Mg -还原法Cr -还原法 2.7 氧同位素的制样方法有哪些? 1. 大量水样氧同位素制样方法? 2. 硅酸盐氧同位素的BrF5法制样原理? 3. 碳酸盐样品的磷酸盐制样法(McCrea法) 2.8 水中溶解碳的提取与制样McCrea法 2.9 硫化物硫同位素直接制样法 2.10硫酸盐的硫同位素制样法(直接还原法) 把硫酸盐、氧化铜、石英粉按一定比例混合(置于石英管中)在真空条件下加热到1120 ℃左右时,硫酸盐被还原而转变成二氧化硫。 2.11 了解下列质谱仪

《水文地球化学》教学大纲

《水文地球化学》教学大纲 Hydrogeochemistry-Course Outline 第一部分大纲说明 一、课程的性质、目的与任务 《水文地球化学》是水文与水资源工程专业本科生必修的一门主要专业基础课。通过本课程的学习,使学生掌握水文地球化学的基本原理和学会初步运用化学原理解决天然水的地球化学问题和人类对天然水的影响问题的方法与手段,为学习后续课程和专业技术工作打下基础。 二、与其它课程的联系 学习本课程应具备普通地质学、综合地质学、工程化学和水文地质学的基础。后续课程为水质分析实验、铀水文地球化学、环境水文地质学和水文地质勘察。 三、课程的特点 1.对基本概念、基本规律与常见的应用方法的理解并重。 2.对基本理论与常见水文地球化学问题的定量计算方法的掌握并重。 3. 采用英文教材,中、英语混合授课。 四、教学总体要求 1.掌握水文地球化学的基本概念、基本规律与研究方法。 2.掌握控制地下水与地表水化学成分的主要作用:酸碱反应与碳酸盐系统;矿物风化与矿物表面过程;氧化-还原反应;有机水文地球化学作用等。 3.通过理论讲述、研究实例分析与习题课,使学生理解天然水中常见的化学组份与同位素组成,掌握最基本的地球化学模拟方法与整理水化学数据的能力。 五、本课程的学时分配表 编 号教学内容课堂讲 课学时 习题课 学时 实验课 学时 自学 学时 1 引言及化学背景 (Introduction and Chemical Background) 6 2 酸碱反应与碳酸盐系统 (Acid-Base Reactions and the Carbonate System) 4 2 3 矿物风化与矿物表面过程 Mineral weathering and mineral surface processes 6

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

水文地球化学习题讲解学习

水文地球化学习题 第一章 第二章水溶液的物理化学基础 1.常规水质分析给出的某个水样的分析结果如下(浓度单位:mg/L): Ca2+=93.9;Mg2+=22.9;Na+=19.1;HCO3-=334;SO42-=85.0;Cl-=9.0;pH=7.2。求: (1)各离子的体积摩尔浓度(M)、质量摩尔浓度(m)和毫克当量浓度(meq/L)。 (2)该水样的离子强度是多少? (3)利用扩展的Debye-Huckel方程计算Ca2+和HCO3-的活度系数。 2.假定CO32-的活度为a CO32- =0.34?10-5,碳酸钙离解的平衡常数为4.27?10-9,第1题中的水样25℃时CaCO3饱和指数是多少?CaCO3在该水样中的饱和状态如何? 3.假定某个水样的离子活度等于浓度,其NO3-,HS-,SO42-和NH4+都等于10-4M。反应式如下: H+ + NO3- + HS- = SO42- + NH4+ 问:25℃和pH为8时,该水样中硝酸盐能否氧化硫化物? 4.A、B两个水样实测值如下(mg/L): 组分Ca2+Mg2+Cl-SO42-HCO3-NO3- A水样706 51 881 310 204 4 5.请判断下列分析结果(mg/L)的可靠性,并说明原因。 组分Na+K+Ca2+Mg2+Cl-SO42-HCO3-CO32-pH A水样50 6 60 18 71 96 183 6 6.5 B水样10 20 70 13 36 48 214 4 8.8 6.某水样分析结果如下: 离子Na+Ca2+Mg2+SO42-Cl-CO32-HCO3-含量(mg/l) 8748 156 228 928 6720 336 1.320 试计算Ca2+的活度(25℃)。 4344 含量(mg/l)117 7 109 24 171 238 183 48 试问: (1)离子强度是多少? (2)根据扩展的Debye-Huckel方程计算,Ca2+和SO42-的活度系数? (3)石膏的饱和指数与饱和率是多少? (4)使该水样淡化或浓集多少倍才能使之与石膏处于平衡状态? 8.已知温度为298.15K(25℃),压力为105Pa(1atm)时,∑S=10-1mol/l。试作硫体系的Eh-pH图(或pE-pH图)。 9.简述水分子的结构。 10.试用水分子结构理论解释水的物理化学性质。 11.温、压条件对水的物理、化学性质的影响及其地球化学意义。 12.分别简述气、固、液体的溶解特点。

同位素水文地球化学

第四章同位素水文地球化学 环境同位素水文地球化学是一门具有良好的前景、发展迅速的新兴学科,也是水文地球化学的一个重要分支。目前,地下水资源可持续利用中的重要问题是地下水补给的更新能力及地下水污染程度的评价。用环境同位素技术研究地下水补给和可更新性,追踪地下水的污染是当前国内外较为新颖的方法之一。目前世界上许多国家已将同位素方法列为地下水资源调查中的常规方法。近年来,国内外环境同位素的研究从理论到实践都有较快的发展。除了应用氢氧稳定同位素确定地下水的起源与形成条件,应用氚、14C测定地下水年龄,追踪地下水运动,确定含水层参数等常规方法外;在应用3H-3He、CFCs示踪干旱、半干旱地区浅层地下水的补给,应用14C、36Cl确定深层地下水的年龄,追溯地下水的入渗史,应用34S研究地下水中硫酸盐的来源,分析地下水的迁移过程,应用11B/10B研究卤水成因等方面都有重要进展。 4.1 同位素基本理论 4.1.1 地下水中的同位素及分类 我们知道,原子是由原子核与其周围的电子组成的,通常用A Z X N来表示某一原子。这里,X为原子符号,Z为原子核中的质子数目,N为原子核中的中子数目,A为原子核的质量数,它等于原子核中的质子数与中子数之和,即: A=Z+N( 4-1-1 ) 为简便起见,也常用A X表示某一原子。 元素是原子核中质子数相同的一类原子的总称。同一元素由于其原子核中中子数不同可存在几种原子质量不同的原子,其中每一种原子称为一种核素,如C原子有12C、13C、14C等核素,氧原子有16O、17O、18O等核素。某元素的不同几种核素称为该元素的同位素(蔡炳新等,2002),或者说同位素指的是在门捷列耶夫周期表中占有同一位置,其原子核中的质子数相同而中子数不同的某一元素的不同原子。同位素可分为稳定同位素和放射性同位素两类,稳定同位素是指迄今为止尚未发现有放射性衰变(即自发地放出粒子或射线)的同位素;反之,则称为放射性同位素。 地下水中的同位素一方面包括水自身的氢、氧同位素,另一方面还包括水中溶质的同位素。

同位素地球化学作业

同位素地球化学论文 近年来,随着同位素样片制备技术的改进和高精度质谱的问世,大大地提高了同位素测试结果的精度和准确性,使同位素地球化学的理论和方法进一步成熟和完善,研究领域不断拓宽。 同位素地球化学研究内容 同位素地球化学是根据自然界的核衰变、裂变及其他核反应过程所引起的同位素变异,以及物理、化学和生物过程引起的同位素分馏,研究天体、地球以及各种地质体的形成时间、物质来源与演化历史。 同位素地质年代学已建立了一整套同位素年龄测定方法,为地球与天体的演化提供了重要的时间座标。比如已经测得太阳系各行星形成的年龄为45~46亿年,太阳系元素的年龄为50~58亿年等等。 另外在矿产资源研究中,同位素地球化学可以提供成岩、成矿作用的多方面信息,为探索某些地质体和矿床的形成机制和物质来源提供依据。 ①自然界同位素的起源、演化和衰亡历史。 ②同位素在宇宙体、地球及其各圈层中的分布分配、不同地质体中的丰度及其在地质过程中活化与迁移、富集与亏损、衰变与增长的规律;同位素组成变异的原因;并据此探讨地质作用的演化历史和物质来源。 ③利用放射性同位素的衰变定律建立一套有效的同位素计时方法,测定不同天体事件的年龄,并作出合理的解释,为地球和太阳系的演化确定时间坐标。 根据同位素的性质,同位素地球化学研究领域主要分稳定同位素地球化学和同位素年代学两个方面。稳定同位素地球化学主要研究自然界中稳定同位素的丰度及其变化。同位素年代学随研究领域的深入,又分为同位素地质年代学和宇宙年代学。同位素地质年代学主要研究地球及其地质体的年龄和演化历史。宇宙年代学则主要研究天体的年龄和演化历史。 自然界同位素成分变化

水文地球化学研究现状与进展

本文由国土资源部地质调查项目“全国水资源评价”和“鄂尔多斯自留盆地地下水赋存运移规律的研究”项目资助。改回日期:2001212217;责任编辑:宫月萱。 第一作者:叶思源,女,1963年生,在读博士生,副研究员,从事矿水、地热水及水文地球化学研究。 水文地球化学研究现状与进展 叶思源1) 孙继朝2) 姜春永3) (1)中国矿业大学,北京,100083;2)中国地质科学院水文地质环境地质研究所,河北正定,050803; 3)山东地质工程勘查院,山东济南,250014) 摘 要 1938年,“水文地球化学”术语提出,至今水文地球化学作为一门独立的学科得到长足的发展,其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究,以及人类开发资源和保护生态的需要,水文地球化学必将在多学科的交叉和渗透中拓展研究领域,并在基础理论及定量化研究方面取得新的进展。关键词 水文地球化学 研究现状 进展 Current Situ ation and Advances in H ydrogeochemical R esearches YE Siyuan 1)  SUN Jichao 2)  J IAN G Chunyong 3 ) (1)Chi na U niversity of Mi ni ng and Technology ,Beiji ng ,100083;2)Instit ute of Hydrogeology and Envi ronmental Geology ,CA GS , Zhengdi ng ,Hebei ,050803;3)S handong Instit ute of Geological Engi neeri ng S urvey ,Ji nan ,S handong ,240014) Abstract Hydrogeochemistry ,as an independent discipline ,has made substantial development since the term “hydrogeochemistry ”was created in 1938.At present hydrogeochemical theories have been applied to various fields such as oil field water ,ocean water ,geothermal water ,groundwater quality ,endemic diseases and groundwater microorganism ,and related research methods have also become mature.With the further development of chemical thermodynamics ,kinetics method and isotope method ,hydrogeochemistry will surely extend its research fields in the course of multi 2discipline interaction and make new progress in basic theory and quantifica 2tion research ,so as to meet the demand of human exploration and exploitation as well as ecological protection.K ey w ords hydrogeochemistry current state of research advance 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开,在地下水的勘探开发利用方面取得了可喜的成果(沈照理,1985)。水文地球化学在利用地下水化学成分资料,特别是在查明地下水的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20世纪60年代后,水文地球化学向更深更广的领域延伸,更多地是注重地下水在地壳层中所起的地球化学作用(任福弘,1993)。1981年,Stumm W 等出版了《水化学———天然水化 学平衡导论》专著,较系统地提供了定量处理天然水环境中各种化学过程的方法。1992年,C P 克拉 依诺夫等著《水文地球化学》分为理论水文地球化学及应用水文地球化学两部分,全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题,以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等,概括了20世纪80年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解 答(谭凯旋,1998),逐渐构架起更为严密的科学体系。 第23卷 第5期2002210/4772482 地 球 学 报ACTA GEOSCIEN TIA SIN ICA Vol.23 No.5 Oct.2002/4772482

碳同位素组成特征及其在地质中的应用

同位素地球化学

目录 一、碳的同位素组成及其特征 (1) 1.碳同位素组成 (1) Ⅰ、碳的同位素丰度 (1) Ⅱ、碳的同位素比值(R) (1) Ⅲ、δ值 (2) 2.碳同位素组成的特征 (2) Ⅰ.交换平衡分馏 (2) Ⅱ.动力分馏 (3) Ⅲ.地质体中碳同位素组成特征 (3) 二、碳同位素在地质科学研究中的应用 (8) 1. 碳同位素地温计 (8) 2.有机矿产的分类对比及其性质的确定 (9) Ⅰ.煤 (9) Ⅱ.石油 (9) Ⅲ. 天然气 (11)

碳同位素组成特征及其在地质科研中的应用 一、碳的同位素组成及其特征 1.碳同位素组成 碳在地球上是作为一种微量元素出现的,但分布广泛,在地质历史中有着重要作用。碳的原子序数为6 ,原子量为12.011,属元素周期表第二周期ⅣA族。碳在地壳中的丰度为2000×10-6,是一个比较次要的微量元素。在地球表面的大气圈、生物圈和水圈中,碳是最常见的元素之一,是地球上各种生命物质的基本成分馏。碳既可以呈固态形式存在,又能以液态和气态形式出现。它既广泛分馏布于地球表面的各层圈中,也能在地壳甚至地幔中存在。总之,碳可呈多种形式存在于自然界中。在有机物质和煤、石油中,以还原碳的形式存在,在二氧化碳气体和水溶液中,以氧化碳形式出现。碳还可呈自然元素形式出现在某些岩石中(如金刚石和石墨)。一般用同位素丰度、同位素比值和δ值来表示同位素的组成。 Ⅰ、碳的同位素丰度 同位素丰度指同位素原子在元素总原子数中所占的百分比,自然界中的碳有2个稳定同位素:12C和13C。习惯采用的平均丰度值分别为98.90%和1.10%。由此可见,在自然界中碳原子主要主要是以12C的形式存在。另外碳还有一个放射性同位素14C,半衰期为5730a。放射性14C的研究,目前已发展成为一种独立的同位素地质年代学测定方法,主要应用于考古学和近代沉积物的年龄测定。适合用于作碳稳定同位素分馏析的样品包括:石墨、金刚石等自然碳矿物,方解石、文石、白云石、菱铁矿、菱锰矿等碳酸盐矿物;石灰岩、白云岩、大理岩等全岩样品;各种矿物包裹体中的C O2和CH4气体以及石油、天然气及有机物质中的含碳组分馏等。 Ⅱ、碳的同位素比值(R) 同位素比值R=一种同位素丰度/另一种同位素丰度 对于非放射性成因稳定同位素比值: R=重同位素丰度/轻同位素丰度 由此可见,碳的同位素比值R=1.1%/98.9%=0.011

同位素地球化学 34

S TABLE I SOTOPES IN P ALEONTOLOGY AND A RCHEOLOGY I NTRODUCTION The isotopic composition of a given element in living tissue depends on: (1) the source of that ele-ment (e.g., atmospheric CO2 versus dissolved CO2; seawater O2 vs. meteoric water O2), (2) the proc-esses involved in initially fixing the element in organic matter (e.g., C3vs. C4photosynthesis), (3) subsequent fractionations as the organic matter passes up the food web. Besides these factors, the iso-topic composition of fossil material will depend on any isotopic changes associated with diagenesis, including microbial decomposition. In this lecture, we will see how this may be inverted to provide insights into the food sources of fossil organisms, including man. This, in turn, provides evidence about the environment in which these organisms lived. I SOTOPES AND D IET: Y OU ARE WHAT YOU EAT In Lecture 28 we saw that isotope ratios of carbon and nitrogen are fractionated during primary pro-duction of organic matter. Terrestrial C3 plants have d13C values between -23 and -34‰, with an av-erage of about -27‰. The C4 pathway involves a much smaller fractionation, so that C4 plants have d13C between -9 and -17‰, with an average of about -13‰. Marine plants, which are all C3, can util-ize dissolved bicarbonate as well as dissolved CO2. Seawater bicarbonate is about 8.5‰ heavier than atmospheric CO2; as a result, marine plants average about 7.5‰ heavier than terrestrial C3 plants. In contrast to the relatively (but not perfectly) uniform isotopic composition of atmospheric CO2, the carbon isotopic composition of seawater carbonate varies due to biological processes. Because the source of the carbon they fix is more variable, the isotopic composition of marine plants is also more variable. Finally, marine cyanobacteria (blue-green algae) tend to fractionate carbon isotopes less during photosynthesis than do true marine plants, so they tend to average 2 to 3 ‰ higher in d13C. Nitrogen isotopes are, as we saw, also fractionated during primary uptake. Based on their source of nitrogen, plants may also be divided into two types: those that can utilized N2directly, and those utilize only “fixed” nitrogen as ammonia and nitrate. The former include the legumes (e.g., beans, peas, etc.) and marine cyanobac-teria. The legumes, which are exclusively C3 plants, utilize both N2 and fixed nitrogen (though symbiotic bacteria), and have an average d15N of +1‰, whereas modern non-leguminous plants average about +3‰. However, it seems likely that prehistoric nonleguminous plants were more positive, averaging perhaps +9‰, because the iso-topic composition of present soil nitrogen has been affected by the use of chemical fer-tilizers. For both groups, there was proba-bly a range in d15N of ±4 or 5‰, because the isotopic composition of soil nitrogen varies and there is some fractionation involved in uptake. Marine plants have d15N of +7±5‰, whereas marine cyanobacteria have d15N of –1±3‰. Figure 34.1 summarizes the 15 10 5 --5 d13C PDB ‰ d15N ATM ‰ Figure 34.1. Relationship between d13C and d15N among the principal classes of autotrophs.

地幔流体的稳定同位素地球化学综述

地幔流体的稳定同位素地球化学综述 王先彬 吴茂炳张铭杰 (中国科学院兰州地质研究所,兰州,730000) 摘 要 总结了20年来国内外学者对地幔流体研究的成果和认识。主要包括地幔流体的性质和组成; 地幔 流体中同位素的含量、组成和赋存形式;同位素分馏和地幔脱气等作用对地幔组分的影响等。在不同地区和不同构造环境条件的地幔流体中,各种组分含量和同位素组成变化可以很大,从一个侧面指示地幔组分的不均一性,反映了不同地幔物质的形成历程不同或来自不同的地幔源区。此外,还讨论了目前存在的几个疑点。 关键词 地幔流体 稳定同位素地球化学 同位素分馏 地幔脱气作用 地幔源 第一作者简介 王先彬 男 1941年出生 研究员 主要从事稀有气体地球化学、非生物成因天然气及同位素地球化学等领域的研究工作 随着高精度探测技术的出现和地球科学知识的积累,人们对地球的认识进入到更深的层次。从传统的地壳到壳-幔作用,近几年来又深入到核-幔边界以至对地核的认识[1],使得对地球深部物质的研究与深部地球物理和地球化学进一步结合成为可能,并为提出全面统一的地球演化动力理论和模式准备了条件。地幔流体的研究是了解地球深部的重要手段之一。本文就地幔流体中稳定同位素方面的近期研究进展作一综述。 1 地幔流体的性质 作为地球内部的一种重要介质流体,是研究地球深部地质作用、了解深部物质的物理化学环境乃至地球发展演化的重要组分,其重要性愈来愈被更多的人所认识,是近20年来地学研究的热点。 流体,在地球科学研究中,常常是挥发组分的液相、气相及其超临界相以及硅酸盐熔体的统称,但在许多情况下不包括硅酸盐熔体。因此,地幔流体是指在地幔条件下(物相、温度、压力和氧逸度等)处于平衡并稳定共存的挥发组分[2],其形成温度大约在900℃至1400℃之间,其化学组成不均一,受多种因素控制,一般地以C、H、O、N和S(CHONS)为主要化学组分并以含较高的氢为特征,且含微量的稀有气体、F、P、Cl等。地幔挥发 1999年11月2日收稿,12月8日改回。份具有与地幔高p-t条件相适应的物理化学特性(如高的气体密度等),其地球化学性质以易溶于硅酸盐熔体(特别是富碱硅酸盐熔体)为特征,促进低熔点并且饱和挥发份的高钾原始岩浆和地幔交代熔体的形成,同时对于微量元素有高的溶解度(如大离子半径亲石元素、高价阳离子和稀土元素等),并且具有使溶质及各种微量元素产生再沉淀作用(如地幔交代作用导致地幔富集事件)。地幔流体的性质决定了它是地球内部能量和质量传输最活跃的组分,它控制着地幔岩浆作用、交代作用以及地幔变质变形等地质、地球化学作用的发生和发展,是对地球形成、发展和演化起重要作用的组分,具有重要的研究意义。 2 地幔流体的稳定同位素地球化学研究进展 自R oedder(1965)观察到全球碱性玄武岩的超镁铁质捕虏体中均找到CO2包裹体以来,地幔流体的研究工作陆续展开。许多学者采用各种测试方法(如电子探针、离子探针、激光拉曼探针、质谱计等)对认为是来自地幔的岩石矿物样品(如金刚石、金伯利岩、碳酸岩、大洋玄武岩、地幔包体等)进行了包裹体挥发组分及熔体主要元素的测定,发现不同地区、不同环境条件的地幔流体中各组分的含量变化很大,从一个侧面指示了地幔组分的不均一性。 96 2000年第28卷第3期Vol.28,No.3,2000 地 质 地 球 化 学 GEOLO GY2GEOCHEMISTR Y

地球化学复习资料详解

地球化学复习资料 第一章绪论 一、地球化学的定义 地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学(涂光炽)。 地球化学是研究地球的化学成分及元素在其中分布、分配、集中、分散、共生组合与迁移规律、演化历史的科学。 二、地球化学研究的基本问题 第一:元素(同位素)在地球及各子系统中的组成(量) 第二:元素的共生组合和存在形式(质) 第三:研究元素的迁移(动) 第四:研究元素(同位素)的行为 第五:元素的地球化学演化 第二章自然体系中元素的共生结合规律 一、元素地球化学亲和性的定义 在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。 二、亲氧元素、亲硫元素与亲铁元素的特点 亲氧(亲石)元素亲硫(亲铜)元 素 亲铁元素 离子结构阳离子最外层8 个电子的惰性气 体结构 离子最外层18个 电子(s2 P6d10)结构 离子最外层具有8-18个电子的过渡结构 电负 性 较小较大电离能高,不易与其他元素结合 化学 键 离子键共价键金属键 氧化 物的 生成 热 大于氧化铁FeO 小于氧化铁氧化物、硫化物的生成热小于亲氧、亲硫元素集中主要分布于岩石地球硫化物-氧化地球的铁-镍核

地球的组分分异,由元素的性质决定。元素在周期表中的位置: 亲铁元素: 地核 亲石元素: 地幔与地壳 亲气元素: 大气圈和水圈 三、其它的概念 离子电位(π):是离子电价(W )与离子半径(R )的比值,即π=W/R 电离能:指从原子电子层中移去电子所需要的能量。电离能愈大,则电子与原子核之间结合得愈牢固。 电子亲和能:原子得到电子所放出的能量(E)叫电子亲和能。E 越大,表示越容易得到电子成为负离子。 电负性:中性原子得失电子的难易程度。或者说原子在分子中吸引价电子的能力叫电负性。表示为:X=I+E (X :电负性;I :电离能;E :电子亲和能)周期表上,以Li 的电负性为1.0,得出其它元素相对电负性。 化学键:离子键(电子交换),共价键(电子共用),金属键(价电子自由移动),范德华键(分子间或惰性原子间,存在弱的偶极或瞬时偶极),氢键(也属分子间静电力,含H 的分子与其它极性分子或负离子间) 四、元素的地球化学化学分类(戈式分类) 亲氧(亲石)、亲硫(亲铜)、亲铁、亲气 根据地球中阴离子中氧丰度最高,其次是硫(主要形成氧的化合物和硫化物);而能以自然金属形式存在的丰度最高的元素是铁,因此,元素的地球化学亲和性主要分为以下三类: ①亲氧性(亲石)元素;②亲硫性(亲铜)元素;③亲铁元素。 亲氧元素:能与氧以离子键形式结合的金属(半金属)元素称为亲氧元素。 亲硫元素:能与硫结合形成高度共价键的金属(半金属)元素称为亲硫元素。 亲铁元素:元素在自然界以金属状态产出的一种倾向。铁具有这种倾向,在自然界中,特别是O ,S 丰度低的情况下,一些元素 往往以自然金属状态存在,常常与铁共生,称之为亲铁元素。 亲铁元素基本特征:不易与其他元素结合,因为它们的价电子不易丢失(具有较高电离能)。 亲铁元素特点: 原子(注意不是指离子)具有d 亚层充满或接近充满,接近18-18+2的外电子层结构(惰性金属型构型),电负性中等,第一电离能较高(原子中电子不易被剥夺,也难以夺取外来电子),常形成金属键晶体(单质或金属互化物);其氧化物和硫化物的生成热都较小;位于原子容积曲线的最低部分;主要集中于铁-镍核 ,地壳较少 ;亲铁元素具有多亲合性,也可亲氧、亲硫,Fe 是典型代表。 分布情况 圈 物过渡圈 容积曲线 下降部分 上升部分 最低部位

水文地球化学课后思考题

复习题与思考题 1. 名词解释 (1)阳离子交换容量; (2)弥散通量; (3)水文地球化学; (4)水动力弥散; (5)弥散问题数学模型;(6)大陆效应;地下水污染;(7)碱度; (8)酸度; (9)硬度; (10)永久硬度; (11)暂时硬度; (12)碳酸盐硬度; (13)非碳酸盐硬度; (14)生化耗氧量(BOD);(15)化学耗氧量(COD)(16)物理吸附; (17)化学吸附; (18)离子交替吸附作用;(19)阳离子交换容量; (20)同位素效应; (21)同位素分馏; (22)同位素交换反应;(23)射性同位素的半衰期;(24) TDS; (25)全等溶解; (26)非全等溶解;

2.思考并回答下列问题 绪论 (1)试说明水文地球化学的含义。 (2)试说明水文地球化学作为一个独立学科的发展历史。 (3)说明水文地球化学的研究意义。 第一章地下水的化学成分 (1)试说明水的结构特征。 (2)水有那些特异性质,试分别对其予以说明。 (3)地下水的化学成分有那几类,分别予以简要说明。 (4)通常有哪些方法可用来对水质分析结果进行检验? (5)地下水化学成分的图示方法有哪些?试分别予以简要说明。 第二章地下水化学成分的形成作用 (1)怎样根据化学反应的自由能资料计算反应的平衡常数? (2)水溶液中组分活度系数的计算方法主要有哪些?试说明其适用条件。 (3)试说明影响矿物在水中溶解度的因素。 (4)试分别说明纯水中石膏、萤石、石英、三水铝石溶解度的计算方法。 (5)试说明矿物稳定场图的绘制方法。 (6)试定性地说明为什么在CO2-H2O系统中水溶液显酸性,而在CaCO3-H2O系统中水溶液显碱性。 (7)已知H2CO3的一、二级电离常数分别为K a1和K a2,试导出CO2──H2O系统中:溶解碳总量为C T、氢离子浓度为[H+]时,H2CO3、HCO3-和CO32-含量的计算公式。若25℃时,K a1=10-6.35、K a2=10-10.33,试分析说明上述组分中那一种组分在什么样的pH区间内含量最大? (8)在CO2分压(p)已知的CO2—H2O系统中,已知下述反应的平衡常数分别为CO2分压为10-3.5(atm),水的离子积为10-14,且上述反应均已达到平衡状态。试计算系统中各组分存在形式的含量及水溶液的pH值。 (9)对于下述的电极反应: OX+n e = RED 已知其电极电位可由下式计算: 式中:F为法拉第常数;R为气体常数;n为得失电子地数目;E0为标准电极电位,E0的计算

相关主题