搜档网
当前位置:搜档网 › ANSYS实常数和材料定义总结

ANSYS实常数和材料定义总结

ANSYS实常数和材料定义总结
ANSYS实常数和材料定义总结

【转】ANSYS实常数和材料定义总结

2010-07-08 20:46

定义实常数

实常数用于描述那些用单元几何形状不能完全确定的几何参数。壳单元通过四边形和三角形定义了壳的表面,实常数用来定义其厚度;而梁单元的实常数相对复杂。主要包括截面积、截面对zz轴、yy轴的惯性短、沿z轴、y 轴的厚度(最大应力发生在离轴最远点)等。

对于简单截面梁,其几何特性这里不再赘述。但对于实体结构复杂的复合梁,其截面特性的定义具有技巧。在有限元建模过程中,为简化结构,减少单元数量,通常将其简化为单根梁。如下图所示结构,经过受力分析可知,主要承力构件为4根立柱,其余斜杆只是起辅助支撑作用,因此其截面应简化如右图所示。但是,经过计算会发现,计算结果数据中位移和应力明显偏小,与实际情况有出入。经过分析不难发现,造成这种情况的原因是截面的选择只考虑了截面积和惯性矩,忽视了梁单元的质量,从而造成重力变形减小。解决这个问题,不能简单增大截面积,那样会使计算应力不可信。我们可以采取2种方法:

(1)沿梁轴线均匀加载一个沿重力方向的线性载荷;

(2)将梁单元材料密度乘一个系数。

上述2种方法均切实可行,也得到了工程实践的验证。单元的材料特性定义

绝大多数单元类型都需要材料特性。根据应用的不同,材料特性可以是线性或非线性。与单元类型、实常数一样,ANSYS软件对每一组材料特性有一个材料参考号。但值得注意的是,材料库中的特性值是为了方便而提供的,这些数值是材料的典型值,供用户进行基本分析及一般应用场合,特殊情况用户应自己输人数据。

线性材料特性可以是常数或温度相关的,各向同性或正交异性的,对各向同性材料只需指定其一个方向的特性。非线性材料特性通常是表格数据,如塑性数据、磁场数据、蛹变数据、膨胀数据、超弹性材料数据等。材料特性主要由材料本身物理特性决定,在此不再赞述。

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

ANSYS建模两种方法和给材料添加材料属性

ansys 实体建模详细介绍3--体 用于描述三维实体,仅当需要体单元的时候才需要定义体。生成体时自动生成低级别的对象,如点、线、面等。 Main menu / preprocessor / modeling / create / volumes 展开体对象创建菜单 1.1 Arbitrary :定义任意形状 a) Through kps :通过关键点定义体 b) By areas :通过边界面生成体 1.2 Block :定义长方体 a) By 2 corners & Z :通过一角点和长、宽、高来确定长方体。 b) By center,corner,Z:用外接圆在工作平面定义长方体的底,用Z方向的坐标定义长方体的厚度。 c) By dimensions :通过指定长方体对角线两端点的坐标来定义长方体。 1.3 Cylinder :定义圆柱体 a)solid cylinder :圆柱体,通过圆柱底面的圆心和半径,以及圆柱的长度定义圆柱 b)hollow cylinder(空心圆柱体):通过空心圆柱体底面圆心和内外半径,以及长度定义空心圆柱 c)partial cylinder(部分圆柱):通过空心圆柱底面圆心和内外半径,以及圆柱开始和结束角度,长度来定义任意弧长空心圆柱。 d)by end pts&Z :通过圆柱体底面直径两端的坐标和圆柱长度来定义圆柱 e)By dimensions:通过圆柱内外半径、圆柱两底面Z坐标、起始和结束角度来定义圆柱。 1.4 Prism :棱柱体 a) Triangular:通过定义正三棱柱底面外接圆圆心与棱柱高度来定义正三棱柱 b) Square、pentagonal、hexagonal、septagonal、octagonal分别为正四棱柱、五棱柱、六棱柱、七棱柱、八棱柱。其体操作与正三棱柱生产方法类似。 c) By inscribed rad:通过正棱柱底面内切圆和棱柱高来定义正棱柱。 d) By circumscr rad:通过正棱柱底面外接圆和棱柱高来定义正棱柱。 e) By side length:通过正棱柱底面边长、边数、棱柱高来定义正棱柱。 f) By vertices :通过棱柱底面多边形定点和棱柱高来定义不规则的棱柱。 1.5 Sphere :球体 a) Solid sphere(实心球体):通过球心和半径来定义实心球体。 b) Hollow sphere(空心球体):通过球心和内外球半径来定义空心球体。 c) By end points:通过球直径定义球体。 d) By dimensions:通过球的尺寸定义球体。 1.6 Cone :圆锥体 a) By picking:通过在工作平面上定位圆锥体底部圆的圆心和半径以及圆锥体的高来定义圆锥体。 b) By dimensions:通过圆锥体尺寸定义圆锥体 1.7 Torus :圆环体

第七章 ansys梁单元分析和横截面形状

第七章梁分析和横截面形状 7.1 梁分析概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元求解效率更高。 本章的内容只适用于 BEAM44(三维变截面单元)和另两种有限元应变单元 BEAM188 和 BEAM189 (三维梁单元)。这些梁单元与ANSYS 的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。参阅《ANSYS Elements Reference》中关于 BEAM44、BEAM188 和 BEAM189 单元的描述。 注意--如要对 BEAM44 单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。此外,本章所述的后处理可视化功能不能应用于 BEAM44 单元。 注意--用户定义横截面功能可能不能应用CDWRITE命令。 7.2 何为横截面 横截面定义为垂直于梁轴的截面的形状。ANSYS提供有11种常用的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9节点的数值模型来确定梁的截面特性(Iyy,Izz 等),并求解泊松方程得到扭转特征。 图7-1是一个标准的Z型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。 图7-1 Z型横截面图

横截面和用户自定义截面网格将存储在横截面库文件中。如果用BEAM44、BEAM188、BEAM189 单元来模拟线实体,可用LATT命令将梁横截面属性赋予线实体。 7.3 如何生成横截面 用下列步骤生成横截面: 1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。 2、定义截面的几何特性数值。 ANSYS 提供了表7-1 所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。 表7-1 ANSYS 横截面命令 命令GUI菜单路径目的 PRSSOL MainMenu>GeneralPostproc>ListRes ults> SectionSolutionUtilityMenu> List>Results>SectionSolution 打印梁截面结果 (BEAM44不支持) SECTYP E MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 用SEID关联截面子类 型 SECDAT A MainMenu>Preprocessor>Sections>- Beam-CommonSectns 定义截面几何数据 SECOFF SET MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 定义梁截面的截面偏 离 SECCON TROLS MainMenu>Preprocessor>Sections>- Beam-Add/Edit 覆盖程序计算的属性 值 SECNUM MainMenu>Preprocessor>-Attribute s-Define>DefaultAttribsMainMenu> Preprocessor>-Modeling-Create>El ements>ElemAttributes 识别关联到一个单元 的SECID

ANSYS单元特性之命令流算例

EX1.1 (LINK1) (1)进入后处理模块,显示节点位移和杆件内力 MID_NODE = NODE (A/2,-B,0 )! 寻找距离位置(A/2,-B,0)最近的点,存入MID_NODE *GET,DISP,NODE,MID_NODE,U,Y!提取节点MID_NODE上的位移UY,若果已知要求的节点,直接提取即可。 LEFT_EL = ENEARN (MID_NODE)! 需找距离节点MID_NODE最近的单元,存入LEFT_EL ETABLE,STRS,LS,1! 用轴向应力SAXL的编号“LS,1”定义单元表STRS *GET,STRSS,ELEM,LEFT_EL,ETAB,STRS! 从单元表STRS中提取LEFT_EL单元的应力结果,存入变量STRSS。注意:提取的轴向应力结果具体到指定的单元。 (2)申明数组,提取计算结果,并比较计算误差 *DIM,LABEL,CHAR,2!定义2个元素的字符型数组LABEL *DIM,V ALUE,,2,3!定义2*3的数值型数组V ALUE LABEL(1) = 'STRS_MPa','DEF_mm' ! 给字符型数组的第1个元素赋值 *VFILL,V ALUE(1,1),DATA,1,-0.05498 ! 给其他数值型数组中的元素赋值 *VFILL,V ALUE(1,2),DATA,STRSS,DISP *VFILL,V ALUE(1,3),DATA,ABS(STRSS /1 ) ,ABS( DISP /0.05498 ) /OUT,EX1_1,out !将输出内容重定向到文件EX1_1.out /COM ! 以注释形式输出内容 /COM,------------------- EX1.1 RESULTS COMPARISON --------------------- /COM, /COM, | TARGET | ANSYS | RATIO /COM, *VWRITE,LABEL(1),V ALUE(1,1),V ALUE(1,2),V ALUE(1,3) (1X,A8,' ',F10.3,' ',F10.3,' ',1F5.3) /COM,---------------------------------------------------------------- /OUT ! 结束数据重定向,关闭输出文件 FINISH *LIST,EX1_1,out ! 列表显示文件EX1_1.out的内容 EX1.2 (LINK1) /PNUM, NODE,1!打开节点编号显示 /NUMBER, 2!只显示编号,不使用色彩 列表显示节点位移和单元的计算结果 PRDISP! 列表显示节点位移值计算结果 ETABLE, MFORX,SMISC,1!以杆单元的轴力为内容,建立单元表MFORX ETABLE, SAXL, LS, 1 !以杆的轴向应力为内容,建立单元表SAXL ETABLE, EPELAXL, LEPEL, 1! 以杆单元的轴向应变为内容,建立单元表EPELAXL PRETAB! 显示单元表中的计算结果

ansys workbench 常见材料设置

Ansys workbench常用材料属性 1. isotropic secant coefficient of expansion 各向同性的热胀系数 需要输入基准温度、热膨胀系数。 基准温度,默认22度热膨胀系数 2. orthotropic secant coefficient of expansion 各向异性的热胀系数 需要输入基准温度、三个方向的热膨胀系数。 3. isotropic instantaneous coefficient of expansion 各向同性的热胀系数(随温度变化)需要输入基准温度、热膨胀系数。(随温度变化)

4. orthotropic instantaneous coefficient of expansion 各向异性的热胀系数(随温度变化)需要输入基准温度、三个方向的热膨胀系数。(随温度变化) 5. 阻尼系数、质量阻尼、刚度阻尼

6.Isotropic elasticity 各项同性的线弹性材料 需要输入弹性模量与泊松比 7.orthotropic elasticity 各项异性的线弹性材料 需要输入各方向的弹性模量与泊松比 8 Bilinear isotropic/kinematic hardening 双线性材料(非线性材料)需要输入屈服强度及切向模量,需要配合isotropic elasticity使用。

9.multilinear isotropic/kinematic hardening 多线性材料(非线性材料,应力应变曲线)需要配合isotropic elasticity使用,输入应力应变曲线。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

ANSYS命令流解释大全

A N S Y S命令流解释大 全 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:

MP,EX,1,1E8 MP,NUXY,1, TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点 ESEL,ALL !选择所有单元

ansys关于薄板、厚板、壳单元的特性区别要点

一、板壳弯曲理论简介 1. 板壳分类 按板面内特征尺寸与厚度之比划分: 当L/h < (5~8) 时为厚板,应采用实体单元。 当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元 当L/h > (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分: 当R/h >= 20 时为薄壳结构,可选择薄壳单元。 当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。 当R/h <= 6 时为厚壳结构。 上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。2. 薄板理论的基本假定 薄板所受外力有如下三种情况: ①外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ②外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③面内荷载与侧向荷载共同作用。 所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。 薄板通常采用Kirchhoff-Love 基本假定: ①平行于板中面的各层互不挤压,即σz = 0。 ②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。 ③中面内各点都无平行于中面的位移。 薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。 3. 中厚板理论的基本假定 考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。 自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。 厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。 4. 薄壳理论的基本假定 也称为Kirchhoff-Love(克希霍夫-勒夫)假定: ①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

ansys材料定义

混凝土 $ *MAT_ELASTIC_PLASTIC_HYDRO $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4,0.126,2.5E-4,,-5.E-5,0.4 ,,3. *EOS_GRUNEISEN 2,0.2500,1.0,0.,0.,1.9,0.0 0.,1. $ $国际单位 *MAT_ELASTIC_PLASTIC_HYDRO_SPALL $1,2.3,0.13,3.2E-4,,-5.E-5,1. $,,3 2,2.4E+03,0.126E+11,2.5E+7,,-5.E+6,0.4E+11 ,,3. *EOS_GRUNEISEN 2,0.2500E+4,1.0,0.,0.,1.9,0.0 0.,1. $ 混凝土参数 密度 2.4g/cm剪切模量 12.6Cpa屈服应力 25Mpa抗拉强度 5Mpa失效应变 0.4 GRUNEISEN状态方程参数 C=2500m/s S1=1.0 S2=0 S3=0 ω=1.9 A=0 E0=0 V0=1 sdyyds混凝土随动硬化模型 *mat_plastic_kinematic 3 2100 3.00e+10 0.18 2.0e+07 0 0 0.002 *mat_plastic_kinematic 2 2600 4.75e+10 0.18 6.0e+07 4.75e+09 0 99.3 1.94 0.004

取自龚自明防护工程混凝土靶体尺寸及边界约束对侵彻深度影响的数值模拟*MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.123,0.79,1.60,0.007,0.61,2.4E-4 2.7e-5,1.0e-6,0.01,7.0,8.0e-5,5.6e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自龚自明防护工程 BLU-109B侵彻厚混凝土靶体的计算与分析 *MAT_JOHNSON_HOLMQUIST_CONCRETE 4,2.4,0.132,0.79,1.60,0.007,0.61,3.22E-4 3.15e-5,1.0e-6,0.01,7.0,1.08e-4,7.18e-4,1.05e-2,0.1 0.04,1.0,0.174,0.388,0.298 取自蔡清裕国防科技大学学报模拟刚性动能弹丸侵彻混凝土的FE-SPH方法*MAT_JOHNSON_HOLMQUIST_CONCRETE mid RO G A B C N FC 1, 2.2,0.164,0.75,1.65,0.007,0.61,4.4e-4 T EPS0 EFMIN SFMAX PC UC PL UL 2.4e-5,1.0e-6,0.01,11.7,1.36e-4,5.8e-4,1.05e-2,0.1 D1 D2 K1 K2 K3 FS 0.03,1.0,0.174,0.388,0.298 取自凤国爆炸与冲击《大应变。高应变率及高压下混凝土的计算模型〉 *MAT_JOHNSON_HOLMQUIST_CONCRETE 2,2.44,0.1486,0.79,1.60,0.007,0.61,4.8E-4 4.0e-5,1.0e-6,0.01,7.0,1.6E-4,0.001,8.0E-3,0.1 0.04,1.0,0.85,-1.71,2.08 取自宋顺成爆炸与冲击弹丸侵彻混凝土的SPH算法 *MAT_JOHNSON_HOLMQUIST_CONCRETE 1,2.4,0.1486,0.79,1.60,0.007,0.61,1.4e-4 4.0e-5,1.0e-6,0.01,7.0,1.6e-4,0.001,8.0E-3,0.1 0.04,1.0,0.174,0.388,0.298 *Mat_johnson_holmquist_concrete

ANSYS中单元的选择

在结构分析中,“结构”一般指结构分析的力学模型。按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。元类型有杆、梁和管单元(一般单称为线单元)。板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元。实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元。 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。(h为杆系的高度) ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑L/h的值,但在使用时必须达到一定程度的网格密度。对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。(h为板壳的厚度)当5~880~100时,采用薄膜单元。

对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应刚化(也称几何刚度、初始应力刚度等)等功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11无面积参数)。仅承受杆端荷载,温度沿杆元长线性变化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、拱桥的系杆等构件,必须注意线性静力分析时,结构不能是几何可

ansys各种单元及使用

ansys单元类型种类统计 单元名称种类单元号 LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189 SOLID (共30 种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05种)7,14,37,39,40 INFIN (共04种)9,47,110,111 CONTAC (共05种)12,26,48,49,52 PIPE (共06种)16,17,18,20,59,60 MASS (共03种)21,71,166 MATRIX (共02种)27,50 SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01种)36 HYPER (共06种)56,58,74,84,86,158 VISCO (共05种)88,89,106,107,108 CIRCU (共03种)94,124,125 TRANS (共02种)109,126 INTER (共05种)115,192,193,194,195 HF (共03种)118,119,120 ROM (共01种)144 SURF (共04种)151,152,153,154 COMBI (共01种)165 TARGE (共02种)169,170 CONTA (共06种)171,172,173,174,175,178 PRETS (共01种)179 MPC (共01种)184 MESH (共01种)20

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

Ansys材料参数的定义问题

材料参数的定义问题 我想用过ANSYS的人都知道:ANSYS计算结果的精度,不仅与模型,网格,算法紧密相关,而且材料参数的定义正确与否对结果的可靠性也有决定性的作用,为方便大家的学习,本人就用过的一些材料模型,作出一些总结,并给出相关的命令操作,希望对从事ANSYS应用的兄弟姐妹们有所帮助,水平有限,不对之处还望及时纠正. 先给出线性材料的定义问题,线性材料分为三类: 1.isotropic:各向同性材料 2.orthotropic:正交各向异性材料 3.anisotropic:各向异性材料 1. isotropic各向同性材料的定义: 这种材料比较普遍,而且定义也非常简单,只需定义两个常数:EX, NUXY NUXY默认为0.3,剪切模量GXY默认为EX/(2(1+NUXY)),如果你定义的是各向同性的弹性材料的话,这个参数一般不用定义.如果要定义,一定要和公式: EX/(2(1+NUXY))的值匹配,否则出错,另泊松比的定义一般推荐不要超过0.5. 相关命令,例如: mp,ex,1,300e9 mp,nuxy,1,0.25 2.orthotropic:正交各向异性材料: 这种材料也是比较常见的,不过定义起来稍微麻烦一点,需定义的常数 有: EX, EY, EZ, NUXY, NUYZ, NUXZ, GXY, GYZ, GXZ 注意:在这里没有默认值,就是说,如果你某些参数不定义的话,程序会提示出错,比如:XY平面的平面应力问题,如果你只定义了EX, EY,程序将提示你,这是正交各向异性材料, GXY, NUXY是必须的. 相关命令,例如: mp,ex,1,300e9 mp,ey,1,200e9 mp,nuxy,1,0.25 mp,gxy,1,170e9 … 3.anisotropic:各向异性材料: 各向异性材料定义起来较为复杂,这里我只作些简单的说明,更详细的资料,大家可以去看帮助.对于各向异性弹性材料的定义,需要定义弹性系数矩阵,这个矩阵是一个对称正定阵,因而输入的值一定要为正值. 弹性常数矩阵如下图所示,各向异性体只有21个独立的弹性常数,因而我们也就只需输入21个参数即可,而且对于二维问题,弹性常数缩减为10个.弹性系数矩阵可以用刚度或柔度两种形式来定义,自己根据情况选用,输入的时候,可以通过菜单或者TB命令的TBOPT选项来控制. 相关的命令流,例如: tb,anel,1

ANSYS分析中的单元选择方法

ANSYS分析中的单元选择方法 ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 一、设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作: 仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

ANSYS单元详解

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。 Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。 Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。

ansys中两种方法给材料添加材料属性

ansys中两种方法给材料添加材料属性 1 第一种在划分网格之前指定 1.1 main menu/preprocessor/meshing/mesh attributes/default attribs 出现meshing attributes 对话框,在【mat】material number下拉框中选择你需要的材料序号。单击ok 1.2 然后划分网格,则此次划分的网格的材料属性为选择的材料序号的属性。 2 第二种在划分网格之后指定 2.1 先划分好网格 2.2 点击select/entities/ 第一项选择areas ,第二项选择by num/pick,然后点击ok ,弹出面积选择框,选定面积,点击ok,完成面积选择 2.3 点击select/entities,第一项选择elements,第二项选择attached to ,第三项选择areas,表示所要选择的单元为已选定面积中的单元,点击ok,选中面中的所有单元。 2.4 点击plot/replot,将只显示已选定的单元和面积。 2.5 点击main menu/preprocessor/material pros/change mat num,在new material number 文本框中输入你需要的材料序号,在elements No. to modefied 输入all 表示所选定的所有单元对应的材料属性转为此材料属性。 ansys多种材料怎样设置材料属性呀,用什么命令? GUI方式楼上正解,或者Proprecessor->Meshing->Mesh Attributes->Picked Volumes 命令为VATT 本人喜欢在划分单元前先选好材料、实常数等再划分,命令流如下: type,1 mat,1 real,11 vmesh,all 对于其他不同材料,方式相同 :ansys中的等效应力是什么物理含义? 它与最大应力s1有什么区别,平常讨论应力分布,应该用等效应力还是最大应力s1呢?1)计算等效应力时是否需要输入等效泊松比呢?好像有效泊松比的默认值是0.5。(2)

ANSYS单元类型详细

把收集到得ANSYS单元类型向大家交流下。 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺

ansys材料模型

B.2.1. Isotropic Elastic Example: High Carbon Steel MP,ex,1,210e9 ! Pa MP, nu xy,1,.29 ! No units MP,dens,1,7850 ! kg/m 3

TB, BISO B.2.7. Bili near Isotropic Plasticity Example: Nickel Alloy MP,ex,1,180e9 ! Pa MP,n uxy,1,.31 ! No units MP,dens,1,8490 ! kg/m 3 TB,BISO,1 TBDATA,1,900e6! Y ield stress (Pa) TBDATA,2,445e6! Tangent modulus (Pa) 双线性随动模型 (与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹 性和塑性)来表示材料的应力应变特性。用MP命令输入弹性模量(Exx),密度(DENS 和泊松比(NUXY。可以用TB, BKIN禾口TBDATA 命令中的1-2项输入屈服强度和切线模量: TB, BKIN

TBDATA1,二Y(屈服应力)TBDATA 2,E tan (切线模量)

例题参看 B.2.10 , Bilinear Kinematic Plasticity Example Tita nium Alloy 。 B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy MP,ex,1,100e9 ! Pa MP,n uxy,1,.36 ! No units MP,dens,1,4650 ! kg/m 3 TB,BKIN,1 TBDATA,1,70e6 ! Y ield stress (Pa) TBDATA,2,112e6! Tan ge nt modulus (Pa) 723.6塑性随动模型 各向同性、随动硬化或各向同性和随动硬化的混合模型, 与应变 率相关,可考虑失效。通过在 0 (仅随动硬化)和1 (仅各向同性硬 化)间调整硬化参数 B 来选择各向同性或随动硬化。应变率用 Cowper-Symo nds 模型来考虑,用与应变率有关的因数表示屈服应力, 如下所示: 这里二0—初始屈服应力,;一应变率,C 和P-Cowper Symonds --E P ; P ff

相关主题